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Abstract

We use prompt engineering to guide ChatGPT in the automation of text mining of metal–

organic framework (MOF) synthesis conditions from diverse formats and styles of the scientific 

literature. This effectively mitigates ChatGPT’s tendency to hallucinate information, an issue that 

previously made the use of large language models (LLMs) in scientific fields challenging. Our 

approach involves the development of a workflow implementing three different processes for 

text mining, programmed by ChatGPT itself. All of them enable parsing, searching, filtering, 

classification, summarization, and data unification with different trade-offs among labor, speed, 

and accuracy. We deploy this system to extract 26 257 distinct synthesis parameters pertaining to 

approximately 800 MOFs sourced from peer-reviewed research articles. This process incorporates 

our ChemPrompt Engineering strategy to instruct ChatGPT in text mining, resulting in impressive 

precision, recall, and F1 scores of 90–99%. Furthermore, with the data set built by text mining, we 

constructed a machine-learning model with over 87% accuracy in predicting MOF experimental 

crystallization outcomes and preliminarily identifying important factors in MOF crystallization. 

We also developed a reliable data-grounded MOF chatbot to answer questions about chemical 

reactions and synthesis procedures. Given that the process of using ChatGPT reliably mines 

and tabulates diverse MOF synthesis information in a unified format while using only narrative 

language requiring no coding expertise, we anticipate that our ChatGPT Chemistry Assistant will 

be very useful across various other chemistry subdisciplines.

Graphical Abstract
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INTRODUCTION

The dream of chemists is to create matter in the hope of advancing human knowledge 

for the betterment of society.1,2 As we stand on the precipice of the age of artificial 

general intelligence (AGI), the potential for synergy between AI and chemistry is vast and 

promising.3,4 The idea of creating AI-powered chemistry assistants offers unprecedented 

opportunities to revolutionize the landscape of chemistry research by applying knowledge 

across various disciplines, efficiently processing labor-intensive and time-consuming tasks 

such as literature searches, compound screening, and data analysis. AI-powered chemistry 

may ultimately transcend the limits of human cognition.5–8

Identifying chemical information for compounds, including ideal synthesis conditions and 

physical and chemical properties, has been a critical endeavor in chemistry research. 

The comprehensive summary of chemical information from literature reports, such as 

publications and patents, and their subsequent storage in an organized database format is 

the next logical and necessary step toward the discovery of materials.9 The challenge lies 

in efficiently mining the vast amount of available literature to obtain valuable information 

and insights. Traditionally, specialized natural language processing (NLP) models have been 

employed to address this issue.10–14 However, these approaches can be labor-intensive and 

necessitate expertise in coding, computer science, and data science. Furthermore, they are 

less generalizable, requiring the program to be rewritten when the target changes. The 

advent of large language models (LLMs), such as GPT-3, GPT-3.5, and GPT-4, has the 

potential to fundamentally transform this process and revolutionize the routine of chemistry 

research in the next decade.9,15–18

Herein, we demonstrate that LLMs, including ChatGPT based on the GPT-3.5 and GPT-4 

models, can act as chemistry assistants to collaborate with human researchers, facilitating 

text mining and data analysis to accelerate the research process. To harness the power of 

what we termed the ChatGPT Chemistry Assistant (CCA), we provide a comprehensive 

guide on ChatGPT prompt engineering for chemistry-related tasks, making it accessible 

to researchers regardless of their familiarity with machine learning, thus bridging the gap 

between chemists and computer scientists. In this report, we present (1) a novel approach 

to using ChatGPT for text mining the synthesis conditions of metal–organic frameworks 

(MOFs), which can be easily generalizable to other contexts requiring minimal coding 

knowledge and operating primarily on verbal instructions; (2) an assessment of ChatGPT’s 

intelligence in literature text mining through accuracy evaluation and its ability for data 

refinement; and (3) utilization of the chemical synthesis reaction data set obtained from text 

mining to train a model capable of predicting reaction results as crystalline powder or single 

crystals. Furthermore, we demonstrate that the CCA chatbot can be tuned to specialize in 

answering questions related to MOF synthesis based on literature conditions, with minimal 

hallucinations. This study underscores the transformative potential of ChatGPT and other 

LLMs in the realm of chemistry research, offering new avenues for collaboration and 

accelerating scientific discovery.
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MATERIALS AND METHODS

Design Considerations for ChatGPT-Based Text Mining.

In curating research papers for ChatGPT to read and extract information, it is imperative to 

account for the diversity in MOF synthesis conditions, such as variations in metal sources, 

linkers, solvents, and equipment as well as the different writing styles employed. Notably, 

the absence of a standardized format for reporting MOF synthesis conditions leads to 

variable reporting templates by research groups and journals. Indeed, by incorporating a 

broad spectrum of narrative styles, we can examine ChatGPT’s robustness in processing 

information from heterogeneous sources. On the other hand, it is essential to recognize 

that the challenge of establishing unambiguous criteria to identify MOF compounds in the 

literature may lead to the inadvertent inclusion of some non-MOF compounds reported in 

earlier publications that are nonporous inorganic complexes and amorphous coordination 

polymers (included in some MOF data sets). As such, maintaining a balance between quality 

and quantity is vital, and prioritizing the selection of high-quality and well-cited papers, 

rather than incorporating all associated papers indiscriminately, can ensure that the text 

mining of MOF synthesis conditions yields reliable and accurate data.

Moreover, papers discussing postsynthetic modifications, catalytic reactions of MOFs, and 

MOF composites are not directly pertinent to our objective of identifying MOF synthesis 

conditions. Hence, such papers have been excluded. Another consideration is that MOFs can 

be synthesized as both microcrystalline powders and single crystals, both of which should 

be regarded as valid candidates for our data set. Utilizing the above-mentioned selection 

criteria, we narrowed our selection to 228 papers from an extensive pool of MOF papers, 

retrieved from the Web of Science, the Cambridge Structure Database MOF subset,19 and 

the CoreMOF database.20,21 This sample represents a diverse range of MOF synthesis 

conditions and narrative styles.

To enable ChatGPT to process each paper, we devised three different approaches analogous 

to human paper reading: (1) locating potential sections containing synthesis conditions 

within the document, (2) confirming the presence of synthesis conditions in the identified 

sections, and (3) extracting synthesis parameters one by one. For our ChatGPT Chemistry 

Assistant, these steps are accomplished through filtering, classification, and summarization 

(Figure 1).

In Process 1, we developed prompts to guide ChatGPT in summarizing text from designated 

experimental sections contained in those papers. To replace the need for human intervention 

to obtain synthesis sections, in Process 2, we designed a method for ChatGPT to categorize 

text inputs as either “experimental section” or “nonexperimental section”, enabling it to 

generate experimental sections for summarization. In Process 3, we further devised a 

technique to swiftly eliminate irrelevant paper sections, such as references, titles, and 

acknowledgments, which are unlikely to encompass comprehensive synthesis conditions. 

This accelerates the processing speed for the later classification task. As such, in Process 

1, ChatGPT is solely responsible for summarizing and tabulating synthesis conditions and 

requires one or more paragraphs of experimental text as input, while Processes 2 and 3 

can be considered to be an “automated paper reading system”. While Process 2 entails 
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a thorough examination of the entire paper to scrutinize each section, the more efficient 

Process 3 rapidly scans the entire paper, removing the least relevant portions and thereby 

reducing the number of paragraphs that ChatGPT must meticulously analyze.

Prompt Engineering.

In the realm of chemistry-related tasks, ChatGPT’s performance can be significantly 

enhanced by employing prompt engineering (PE)—a meticulous approach to designing 

prompts that steer ChatGPT toward generating precise and pertinent information. We 

propose three fundamental principles in prompt engineering for chemistry-focused 

applications, denoted as ChemPrompt Engineering:

1. Minimizing Hallucination, which entails the formulation of prompts to avoid 

eliciting fabricated or misleading content from ChatGPT. This is particularly 

important in the field of chemistry, where the accuracy of information can 

have significant implications on research outcomes and safety. For instance, 

when asked to provide synthesis conditions for MOFs without any additional 

prompt or context, ChatGPT may recognize that MOF-99999 does not exist 

but will generate fabricated conditions for existing compounds with names such 

as MOF-41, MOF-419, and MOF-519. We should note that with additional 

prompts followed after the question, it is possible to minimize hallucination and 

force ChatGPT to answer the questions based on its knowledge (Tables 1 and 

2). Furthermore, we demonstrate that with well-designed prompts and context, 

hallucination occurrences can be minimized (Supporting Information, Section 

S2.1). We note that this should be the first and foremost principle to follow 

when designing prompts for ChatGPT to perform in handling text and questions 

relevant to chemical information.

2. Implementing Detailed Instructions, whereby explicit directions are provided in 

the prompt to assist ChatGPT in understanding the context and desired response 

format. By incorporating detailed guidance and context into the prompts, we 

can facilitate a more focused and accurate response from ChatGPT. In chemistry-

related tasks, this approach narrows down the potential answer space and reduces 

the likelihood of irrelevant or ambiguous responses. For example, we can specify 

not to include any organic linker synthesis conditions and focus solely on 

MOF synthesis (Supporting Information, Figure S8). In this case, we found that 

ChatGPT can recognize the features of organic linker synthesis and differentiate 

them from MOF synthesis. With proper prompts, information from organic linker 

synthesis will not be included. Additionally, instructions can provide step-by-

step guidance, which has proven effective when multiple tasks are included in 

one prompt (Supporting Information, Section S2.2).

3. Requesting Structured Output, which includes the incorporation of an organized 

and well-defined response template or instructions to facilitate data extraction. 

We emphasize that this principle is particularly valuable in the context of 

chemistry, where data can often be complex and multifaceted. Structured 

output enables the efficient extraction and interpretation of critical information, 

which in turn can significantly contribute to the advancement of research and 
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knowledge in the field. Taking synthesis condition extraction as an example, 

without clear instructions on the formatted output, ChatGPT can generate a 

table, list-like bullet points, or a paragraph, with the order of parameters such as 

the reaction temperature, reaction time, and solvent volume not being uniform, 

making it challenging for later sorting and storage of the data. This can be 

easily improved by explicitly asking it to generate a table and providing a 

fixed header to start with a prompt (Supporting Information, Section S2.3). By 

incorporating these principles, the resulting prompt can ensure that ChatGPT 

yields accurate and reliable results, ultimately enhancing its utility in tackling 

complex chemistry-related tasks (Figure 2). We further employ the idea of 

interactive prompt refinement, in which we start by asking ChatGPT to write a 

prompt to instruct itself by giving it preliminary descriptions and information 

(Supporting Information, Figure S15). Through conversation, we add more 

specific details and considerations to the prompt, testing it with some texts, and 

once we obtain output, we provide feedback to ChatGPT and ask it to improve 

the quality of the prompt (Supporting Information, Section S2.4).

As there has been almost no literature systematically discussing prompt engineering in 

chemistry and the fact that this field is relatively new, we provide a comprehensive step-

by-step ChemPrompt Engineering guide for beginners to start with, including numerous 

chemistry-related examples in the Supporting Information, Section S2. At present, everyone 

is at the same starting point, and no one possesses exclusive expertise in this area. It is our 

hope that this work will stimulate the development of more powerful prompt engineering 

skills and help every chemist quickly understand the art of ChemPrompt Engineering, 

thereby advancing the field of chemistry at large.

Process 1: Synthesis Conditions Summarization.

One revolutionary aspect of ChatGPT is its specialized domain knowledge due to its 

extensive pretrained text corpus, which enables an understanding of chemical nomenclature 

and reaction conditions.18 In contrast to traditional NLP methods, ChatGPT requires no 

additional training for named entity recognition and can readily identify inorganic metal 

sources, organic linkers, solvents, and other compounds within a given experimental 

text. Another notable feature is ChatGPT’s ability to recognize and associate compound 

abbreviations (e.g., DMF) with their full names (N,N-dimethylformamide) within the 

context of MOF synthesis (Supporting Information, Figure S5). This capability is crucial as 

the use of different abbreviations for the same compound can inflate the number of “unique 

compounds” in the data set after text mining, leading to redundancy without providing 

new information. This challenge is difficult to address using traditional NLP methods or 

packages as no model can inherently discern that DMF and N,N-dimethylformamide are the 

same compound without a manually curated dictionary of chemical abbreviations. Although 

ChatGPT may not cover all abbreviations, its proficiency in identifying and associating 

the most common ones, such as DEF, DI water, EtOH, and CH3CN with their full names, 

enhances data consistency and reduces redundancy. This, in turn, facilitates data retrieval 

and analysis, ensuring that different names of the same compound are treated as a single 

entity with its unique chemical identity and information.
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Our first goal is to develop a ChatGPT-based AI assistant that demonstrates high 

performance in converting a given experimental section paragraph into a table containing 

all synthesis parameters (Supporting Information, Figure S22). To design the prompt for this 

purpose, we incorporate the three principles discussed earlier into ChemPrompt Engineering 

(Figure 2). The rationale for using tabulation as the output for synthesis condition 

summarization is that the tabular format simplifies subsequent data sorting, analysis, and 

storage. In terms of the choice of 11 synthesis parameters, we include those deemed 

most important and non-negligible for each MOF synthesis. Specifically, these parameters 

encompass metal sources and quantities, dictating metal centers in the framework and their 

relative concentrations; the linker and its quantity, which affect connectivity and pore size 

within the MOF; the modulator and its quantity or volume, which can fine-tune the MOF’s 

structure by impacting the nucleation and growth of the MOF in the reaction; the solvent 

and its volume, which can influence both the crystallization process and the final MOF 

structure; and the reaction temperature and duration, which are vital parameters governing 

the kinetics and thermodynamics of MOF formation in each synthesis. In our prompt, we 

also account for the fact that some papers may report multiple synthesis conditions for the 

same compound and instruct ChatGPT to use multiple rows to include each variation. For 

multiple units of the same synthesis parameters, such as when molarity mass and weight 

mass are both reported, we encourage ChatGPT to include them in the same cell, separated 

by a comma, which can be later streamlined depending on the need. If any information is not 

provided in the sections, e.g., most MOF reactions may not involve the use of modulators 

and some papers may not specify the reaction time, then we expect ChatGPT to answer 

“N/A” for that parameter. Importantly, to eliminate non-MOF synthesis conditions such 

as organic linker synthesis, postsynthetic modification, and catalysis reactions, which are 

not helpful for studying MOF synthesis reactions, we simply add one line of narrative 

instruction, asking ChatGPT to ignore these types of reactions and focus solely on MOF 

synthesis parameters. Notably, this natural language-based instruction is highly convenient, 

requiring no complex and laborious rule-based code to identify unwanted cases and filter 

them out, and is friendly to researchers without coding experience.

The finalized prompts for Process 1 consist of three parts: (i) a request for ChatGPT to 

summarize and tabulate the reaction conditions and use only the text or information provided 

by humans, which adheres to Principle 1 to minimize hallucination; (ii) a specification 

of the output table’s structure, enumerating expectations and handling instructions, which 

follows Principles 2 and 3 for detailed instructions and structured output requests; and (iii) 

the context, consisting of MOF synthesis reaction condition paragraphs from experimental 

sections or the Supporting Information in research articles. Note that parts (i) and (ii) are 

fixed prompts, while part (iii) is considered to be “input”. The combined prompt results in 

a single question-and-answer interaction, allowing ChatGPT to generate a summarization of 

the given synthesis conditions as output.

Process 2: Synthesis Paragraph Classification.

The next question to be answered is, “if ChatGPT is given an entire research article, 

can it correctly locate the experimental sections?” The objective of Process 2 is to 

accept an entire research paper as input and selectively forward paragraphs containing 
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chemical experiment details to the next assistant for summarization. However, locating 

the experimental synthesis section within a research paper is a complex task, as simple 

techniques, such as keyword searches, often prove insufficient. For instance, the synthesis of 

MOFs may be embedded within the Supporting Information or combined with organic linker 

synthesis. In earlier publications, the synthesis information might appear as a footnote. 

Furthermore, different journals or research groups utilize varying section titles, including 

“Experimental”, “Methods”, “General Methods and Materials”, “Experimental Methods”, 

“Synthesis and Characterization”, “Synthetic Procedures”, “Methods Summary”, and more. 

Manually enumerating each case is labor-intensive, especially when synthesis paragraphs 

may be dispersed with non-MOF synthesis conditions or instrument details. Even a human 

might take considerable time to identify the correct section.

To address this challenge and enable ChatGPT to accurately discern synthesis details within 

a lengthy research paper, we draw inspiration from the human process. A chemistry Ph.D. 

student, when asked to locate the MOF synthesis section in a new research paper, would 

typically start with the first paragraph and ask themselves if it contains synthesis parameters. 

They would then draw upon prior knowledge from previously read papers to determine 

whether the section is experimental. This process is repeated paragraph by paragraph until 

the end of the Supporting Information is reached, with no guarantee that additional synthesis 

details will not be encountered later. To train ChatGPT similarly, we prompt it to read 

paper sections incrementally, focusing on one or two paragraphs at a time. Using a few-shot 

prompt strategy, we provided ChatGPT with a couple of example cases of both synthesis 

and nonsynthesis paragraphs and asked it to classify the sections it read as either “Yes” 

(synthesis paragraph) or “No” (nonsynthesis paragraph). The ChatGPT Chemistry Assistant 

would then continue processing the research paper section by section, passing only the 

paragraphs labeled as “Yes” to the following assistant for summarization.

This few-shot prompt strategy is more convenient than traditional approaches, which require 

researchers to manually identify and label a large number of paragraphs as “Synthesis 

Paragraphs” and train their models accordingly. In fact, ChatGPT can even perform 

such classification using a zero-shot prompt strategy with detailed descriptions of what a 

“Synthesis Paragraph” should look like and contain. However, we have found that providing 

four or five short examples in a few-shot prompt strategy enables ChatGPT to identify the 

features of synthesis paragraphs more effectively, streamlining the classification process 

(Supporting Information, Figure S24).

The finalized prompt for Process 2 comprises three parts: (i) a request for ChatGPT 

to determine whether the provided context includes a comprehensive MOF synthesis, 

answering only with “Yes” or “No”; (ii) some example contexts labeled as “Yes” and others 

labeled as “No”; and (iii) the context to be classified, consisting of one or more research 

article paragraphs. Similar to Process 1’s prompt, parts (i) and (ii) are fixed, while part (iii) 

is replaced with independent sections from the paper to be classified. The entire research 

article is parsed into sections of 100–500 words, which are iteratively incorporated into 

the prompt and sent separately to ChatGPT for a “Yes” or “No” response. Each prompt 

represents a one-time conversation, and ChatGPT cannot view answers from previous 

prompts, preventing potential bias in its decision making for the current prompt.
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Process 3: Text Embeddings for Search and Filtering.

Text embeddings are high-dimensional vector representations of text that capture semantic 

information, enabling quantification of the relatedness of textual content.22,23 The distance 

between these vectors in the embedded space correlates with the semantic similarity between 

corresponding text strings, with smaller distances indicating greater relatedness.24,25 While 

Process 2 can automatically read and summarize papers, it must evaluate every section 

to identify synthesis paragraphs. To expedite this process, we developed Process 3, which 

filters sections least likely to contain synthesis parameters using OpenAI embeddings before 

exposing the article to the classification assistant in Process 2. To achieve this, we employed 

a two-step approach to construct Process 3: first, parsing all papers and converting each 

segment into embeddings and second, calculating and ranking the similarity scores of 

each segment based on their relevance to a predefined prompt encapsulating the synthesis 

parameter.

In particular, we partitioned the 228 research articles into 18 248 individual text segments 

(Supporting Information, Figures S30–S32). Each segment was converted into 1536-

dimensional text embedding using OpenAI’s text-embedding-ada-002, a simple but efficient 

model for this process (Supporting Information, Figures S33–S35). These vectors were 

stored for future use. To identify segments most likely to contain synthesis parameters, we 

employed an interactive prompt refinement strategy (Supporting Information, Section S2.4), 

consulting with ChatGPT to optimize the prompt. The prompt used in Process 3, unlike 

previous prompts, served as a text segment for search and similarity comparison rather than 

instructing ChatGPT (Supporting Information, Figure S25). Next, the embeddings of all 

18 248 text segments were compared with the prompt’s embedding, and a relevance score 

was assigned to each segment based on the cosine similarity between the two embeddings. 

Highly relevant segments were passed on to a classification assistant for further processing, 

while low-similarity segments were filtered out (Figure 1).

To evaluate the effectiveness of this approach, we conducted a visual exploration of our 

embedding data (Figure 3). By reducing the vectors’ dimensionality, we observed distinct 

clusters corresponding to different topics. Notably, we identified distinct clusters related 

to topics such as gas sorption, literature references, characterization, structural analysis, 

and crystallographic data, which were separate from the synthesis cluster. This observation 

strongly supports the efficiency of our embedding-based filtering strategy. However, this 

strategy, while effective at filtering out less relevant text and passing segments of mid- 

to high relevance to the subsequent classification assistant, cannot directly search for 

synthesis paragraphs to feed to the summarization assistant, thus bypassing the classification 

assistant. In other words, the searching-to-classifying-to-summarizing pipeline cannot be 

simplified to a searching-to-summarizing pathway due to the inherent search limitations of 

the embeddings. As shown in Figure 3, embeddings alone may not accurately identify all 

relevant synthesis sections, particularly when they contain additional information, such as 

characterization and sorption data. The presence of these elements in a synthesis section 

can reduce its similarity score and its proximity to the center of the synthesis cluster. Points 

between the synthesis and characterization or crystallographic data clusters may not have the 

highest similarity scores and could be missed. However, by filtering only the lowest scores, 
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midrelevance points are retained and passed to the classification assistant, which can more 

accurately classify ambiguous content.

ChatGPT-Assisted Python Code Generation and Data Processing.

Rather than relying on singular, time-consuming conversations with web-based ChatGPT to 

process textual data from a multitude of research articles, OpenAI’s GPT-3.5-turbo, which is 

identical to the one underpinning the ChatGPT product, facilitates a more efficient approach, 

as it incorporates an application programming interface (API), enabling batch processing 

of text from an extensive array of articles. This is achieved through iterative context and 

prompt submissions to ChatGPT, followed by the collection of its responses (Supporting 

Information, Section S3.4).

Specifically, our approach involves having ChatGPT create Python scripts for parsing 

academic papers, generating prompts, executing text processing through Processes 1, 2, and 

3, and collating the responses into cleaned, tabulated data (Supporting Information, Figures 

S28–S39). Traditionally, such a process could necessitate substantial coding experience 

and could be time-consuming. However, we leverage the code generation capabilities of 

ChatGPT to establish Processes 1, 2, and 3 for batch processing using OpenAI’s APIs, 

namely, gpt-3.5-turbo and text-embedding-ada-002. In essence, researchers only need to 

express their requirements for each model in natural language, specifying inputs and desired 

outputs, and ChatGPT will generate the appropriate Python code (Supporting Information, 

Section S3.5). This code can be copied, pasted, and executed in the relevant environment. 

Notably, even in the event of an error, ChatGPT, especially when equipped with the GPT-4 

model, can assist in code revision. We note that while coding assistance from ChatGPT may 

not be necessary for those with coding experience, it does provide an accessible platform 

for individuals lacking such experience to engage in the process. Given the simplicity 

and straightforwardness of the logic involved in Processes 1, 2, and 3, ChatGPT-generated 

Python code exhibits minimal errors and significantly accelerates the programming process.

ChatGPT also aids in entity resolution after text mining (Figure 4). This step involves 

standardizing data formats including units, notation, and compound representations. For 

each task, we designed a specific prompt for ChatGPT to handle data directly or a 

specialized Python code generated by ChatGPT. More details on designing prompts to 

handle different synthesis parameters are available in a cookbook style in the Supporting 

Information, Section S4. In simpler cases, ChatGPT can directly handle conversions such 

as time and reaction temperature. For complex calculations, we take advantage of ChatGPT 

in generating Python code. For instance, to calculate the molar mass of each metal source, 

ChatGPT can generate the appropriate Python code based on the given compound formulas. 

For harmonizing the notation of compound pairs or mixtures, ChatGPT can standardize 

different notations to a unified format, facilitating subsequent data processing.

To standardize compound representations, we employed the simplified molecular input 

line-entry system (SMILES). We faced challenges with some synthesis procedures, where 

only abbreviations were provided. To overcome this, we designed prompts for ChatGPT 

to search for the full names of the given abbreviations. We then created a dictionary 

linking each unique PubChem Compound identification number (CID) or Chemical 
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Abstracts Service (CAS) number to multiple full names and abbreviations and generated 

the corresponding SMILES code. We note that for complicated linkers or those with 

missing full names, inappropriate nomenclature, or nonexistent CID or CAS numbers,26–

33 manual intervention was occasionally necessary to generate SMILES codes for such 

chemicals (Supporting Information, Figures S50–S54). However, most straightforward cases 

were handled efficiently by ChatGPT’s generated Python code. As a result, we achieved 

uniformly formatted data, ready for subsequent evaluation and utilization.

RESULTS AND DISCUSSION

Evaluation of Text Mining Performance.

We began our performance analysis by first evaluating the execution time consumption 

for each process (Figure 5a). As previously outlined, the ChatGPT assistant in Process 

1 exclusively accepts preselected experimental sections for summarization. Consequently, 

Process 1 requires human intervention for the identification and extraction of the synthesis 

section from a paper to operate autonomously. As illustrated in Figure 5a, this process 

can vary in duration based on the length and structure of the document and its Supporting 

Information file. In our study, the complete selection procedure spanned 12 h for 228 papers, 

averaging around 2.5 min per paper. This period must be considered to be the requisite 

time for Process 1’s execution. For summarization tasks, ChatGPT Chemistry Assistant 

demonstrated an impressive performance, taking an average of 13 s per paper. This is 

noteworthy considering that certain papers in the data set contained more than 20 MOF 

compounds, and human summarization in the traditional way without AI might consume 

a significantly larger duration. By accelerating the summarization process, we alleviate the 

burden of repetitive work and free up valuable time for researchers.

In contrast, Process 2 operates in a fully automated manner, integrating the classification 

and result-passing processes to the next assistant for summarization. There is no doubt that 

it outperforms the manual identification and summarization combination of Process 1 in 

terms of speed due to ChatGPT’s superior text processing capabilities. Finally, Process 3, as 

anticipated, is the fastest due to the incorporation of section filtering powered by embedding, 

reducing the classification tasks and subsequently enhancing the speed. The efficiency of 

Process 3 can be further optimized by storing the embeddings locally as a CSV file during 

the first reading of a paper, which reduces the processing time by 15–20 s (28–37% faster) in 

subsequent readings. This provides a convenient solution in scenarios necessitating repeated 

readings for comparison or the extraction of diverse information.

To evaluate the accuracy of the three processes in text mining, instead of sampling, we 

conducted a comprehensive analysis of the entire result data set. In particular, we manually 

wrote down the ground truth for all 11 parameters for approximately 800 compounds 

reported in all papers across the three processes, which was used to judge the text 

mining output. This involved the grading of nearly 26 000 synthesis parameters by us. 

Each synthesis parameter was assigned one of three labels: true positive (TP, correct 

identification of synthesis parameters by ChatGPT), false positive (FP, incorrect assignment 

of a compound to the wrong synthesis parameter or extraction of irrelevant information), 

or false negative (FN, failure of ChatGPT to extract some synthesis parameters). Notably, a 
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special rule for assigning labels on modulators, most of which were anticipated to be acid 

and base, was introduced to accommodate the neutral solvents in a mixed-solvent system 

due to the inherent challenges in distinguishing between cosolvents and modulators. For 

instance, in a DMF:H2O = 10:1 solution, the role of H2O becomes ambiguous. In such 

situations, we labeled the result as a TP if H2O was considered to be either a solvent or 

modulator. However, we labeled it as FP or FN if it appeared or was absent in both solvent 

and modulator columns. Nevertheless, acids and bases were still classified as modulators, 

and if labeled as solvents, they were graded as FP.

The distribution of TP labels counted for each of the 11 synthesis parameters across all 

papers is presented in Figure 5b. It should be noted that not all MOF synthesis conditions 

necessitate the reporting of all 11 parameters; for instance, some syntheses do not involve 

modulators, and in such cases, we asked ChatGPT to assign an N/A to the corresponding 

column and its amount. Subsequently, we computed the precision, recall, and F1 scores for 

each parameter across all three processes, as illustrated in Figure 5c and d. All processes 

demonstrated commendable performance in identifying compound names, metal source 

names, linker names, modulator names, and solvent names. However, they encountered 

difficulties in accurately determining the quantities or volumes of the chemicals involved. 

Meanwhile, parameters such as the reaction temperature and reaction time, which usually 

have fixed patterns (e.g., units such as °C and hours, respectively), were accurately identified 

by all processes, resulting in high recall, precision, and F1 scores. The lowest scores were 

associated with the recall of solvent volumes. This is because ChatGPT often captured only 

one volume in mixed solvent systems instead of multiple volumes. Moreover, in some of the 

literature, the stock solution was used to dissolve metals and linkers, and in principle these 

volumes should be added to the total volume. Unfortunately, ChatGPT lacked the ability to 

report the volume for each portion in these cases.

Nevertheless, it should be noted that our instructions did not intend for ChatGPT to perform 

arithmetic operations in these cases, as the mathematical reasoning of the large language 

models is limited, and the diminishment of the recall scores is unavoidable. In other 

instances, only one exemplary synthesis condition for MOF was reported, and then for 

similar MOFs, the paper would state only “following similar procedures”. In such cases, 

while occasionally ChatGPT could duplicate conditions, most of the time it recognized 

solvents, the reaction temperature, and the reaction time as N/A, which was graded as a FN, 

thus reducing the recall scores across all processes.

Despite these irregularities, which were primarily attributable to informal synthesis reporting 

styles, the precision, recall, and F1 scores for all three processes remained impressively high, 

with less than 9.8% of NP and 0 cases of hallucination detected by human evaluators. We 

further calculated the average and standard deviation of each process on precision, recall, 

and F1 scores, as shown in Figure 5c. By considering and averaging precision, recall, and 

F1 scores across the 11 parameters, given their equal importance in evaluating the overall 

performance of the process, we found that all three processes achieved impressive precision 

(>95%), recall (>90%), and F1 scores (>92%).
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The performance metrics of Process 1 substantiated our hypothesis that ChatGPT excels 

in summarization tasks. Upon comparing the performance of Processes 2 and 3—both 

of which are fully automated paper-reading systems capable of generating data sets from 

PDFs with a single click—we observed that Process 2, by meticulously examining every 

paragraph across all papers, ensures high precision and recall by circumventing the omission 

of any synthesis paragraphs or the extraction of incorrect data from irrelevant sections. 

Conversely, while Process 3’s accuracy is marginally lower than that of Process 2, it 

provides a significant reduction in processing time, thus enabling faster paper reading while 

maintaining acceptable accuracy, courtesy of its useful filtration process.

To the best of our knowledge, these scores surpass most of those of the other models 

in text mining in the MOF-related domain.11,13,14,34,35 Notably, the entire workflow, 

established via code and programs generated from ChatGPT, can be assembled by one 

or two researchers with only basic coding proficiency in a period of as brief as 1 

week while maintaining remarkable performance. The successful establishment of this 

innovative ChatGPT Chemistry Assistant workflow, including the ChemPrompt Engineering 

system, which harnesses AI for processing chemistry-related tasks, promises to significantly 

streamline scientific research. It liberates researchers from routine laborious work, enabling 

them to concentrate on more focused and innovative tasks. Consequently, we anticipate that 

this approach will catalyze potentially revolutionary shifts in research practices through the 

integration of AI-powered tools.

Prediction Modeling of MOF Synthesis Outcomes.

Given the large quantity of synthesis conditions obtained through our ChatGPT-based text 

mining programs, our aim is to utilize these data to investigate, comprehend, and predict the 

crystallization conditions of a material of interest. Specifically, our goal was to determine 

the crystalline state based on synthesis conditions; we seek to discern which synthesis 

conditions will yield MOFs in the form of single crystals and which conditions are likely to 

yield nonsingle crystal forms of MOFs, such as microcrystalline powder or solids.

With this objective in mind, we identified the need for a label signifying the crystalline 

state of the resulting MOF for each synthesis condition, thereby forming a target variable 

for prediction. Fortunately, nearly all research papers in the MOF field consistently include 

the description of crystal morphological characteristics such as the color and shape of 

as-synthesized MOFs (e.g., yellow needle crystals, red solid, sky-blue powdered product). 

This facilitated rerunning our processes with the same synthesis paragraphs as input and 

modifying the prompt to instruct ChatGPT to extract the description of reaction products, 

summarizing and categorizing them (Supporting Information, Figures S23 and S47). The 

final label for each condition will be either single-crystal (SC) or polycrystalline (P), and 

our objective is to construct a machine learning model capable of accurately predicting 

whether a given condition will yield SC or P. Furthermore, we recognized that the 

crystallization process is intrinsically linked to the synthesis method (e.g., vapor diffusion, 

solvothermal, conventional, or microwave-assisted). Thus, we incorporated an additional 

synthesis variable, the “synthesis method”, to categorize each synthesis condition into four 

distinct groups. Extracting the reaction type variable for each synthesis condition can be 
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achieved using the same input but a different few-shot prompt to guide our ChatGPT-based 

assistants for classification and summarization, subsequently merging this data with the 

existing data set. This process parallels the method for obtaining the MOF crystalline state 

outcomes, and both processes can be unified in a single prompt. Moreover, as the name of 

the MOF is a user-defined term and does not influence the synthesis result, we excluded this 

variable for the purposes of prediction modeling.

After unifying and organizing the data to incorporate 11 synthesis parameter variables and 

1 synthesis outcome target variable, we designed respective descriptors for each synthesis 

parameter capable of robustly representing the diversity and complexity of the synthesis 

conditions and facilitating the transformation of these variables into features suitable for 

machine learning algorithms. A total of six sets of chemical descriptors were formulated 

for the metal node(s), linker(s), modulator(s), solvent(s), their respective molar ratios, and 

the reaction condition(s), aligning with the extracted synthesis parameters (Supporting 

Information, Section S5).36–40 These MOF-tailored hierarchical descriptors have been 

previously shown to perform well in various prediction tasks.13,41 To distill the most 

pertinent features and streamline the model, a recursive feature elimination (REF) with 

5-fold cross-validation was performed on 80% of the total data. The rest was preserved as a 

held-out set unseen during the learning process for independent evaluation (Figure 6a). This 

down-selection process reduced the number of descriptors from 70 to 33, thereby preserving 

comparative model performance on the held-out set while removing the noninformative 

features that can lead to overfitting (Supporting Information, Section S5).

Subsequently, we constructed a machine learning model to train for synthesis conditions 

to predict whether a given synthesis condition can yield single crystals. A binary classifier 

was trained based on a random forest model (Supporting Information, Section S5). The 

random forest (RF) is an ensemble of decision trees whose independent predictions are max 

voted in the classification case to arrive at the more precise prediction.42 In our study, we 

trained an RF classifier to predict crystalline states from synthesis parameters, given its 

ability to work with both continuous and categorical data, its advantage in ranking important 

features toward prediction, its robustness against noisy data,43 and its demonstrated efficacy 

in various chemistry applications such as chemical property estimation,44–47 spectroscopic 

analysis,48–51 and material characterization and discovery.52

The dimension-reduced data was randomly divided into different training sizes; for each 

train test split, optimal hyperparameters, in particular, the number of tree estimators and 

minimum samples required for leaf split, were determined with 5-fold cross validation of the 

training set. Model performance was gauged in terms of class weighted accuracy, precision, 

recall, and F1 score over 10 runs on the held-out set and test set (Figure 6b and Supporting 

Information, Figure S64). The model converged to an average accuracy of 87% and an F1 

score of 92% on the held-out set, indicating a reasonable performance in the presence of the 

imbalanced classification challenge.

Following the creation of the predictive model, our objective was to apply this model for 

descriptor analysis to illuminate the factors impacting MOF crystalline outcomes. This 

aids in discerning which features in the synthesis protocol are more crucial in determining 
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whether a synthesis condition will yield MOF single crystals. Although the random forest 

model is not inherently interpretable, we probed the relative importance of the descriptors 

used in building the model. One potential measure of a descriptor’s importance is the 

percent decrease in the model’s accuracy score when values for that descriptor are randomly 

shuffled and the model is retrained. We found that among the descriptors involved, the 

top 10 most influential descriptors are key in predicting MOF crystallization outcomes 

(Figure 6c). In fact, these descriptors broadly align with the chemical intuition and our 

understanding on MOF crystal growth.53,54 For example, the descriptors related to the 

stoichiometry of the MOF synthesis, namely, the modulator to metal ratio, solvent to metal 

ratio, and linker to metal ratio, take precedence in the ranking. These descriptors reflect the 

vital role of precise stoichiometric control in MOF crystal formation and directly impact the 

crystallization process, playing critical roles in determining the quality and morphology of 

the MOF crystals.

Following closely is the descriptor “time”, and it highlights the significant role of 

reaction duration in the crystallization process. Additionally, the “metal valence” descriptor 

emphasizes the key role of the nature and reactivity of the metal ions used in MOF synthesis. 

The valence directly influences the secondary building units (SBUs) and the final crystalline 

state of the MOF. In the meantime, descriptors related to the molecule and the linker can 

impact the kinetics of the synthesis, influencing the orderliness of crystal growth. Together, 

this result provides a greater understanding of the crucial factors affecting the crystallization 

of MOFs and will aid in the design and optimization of synthesis conditions for the targeted 

preparation of single-crystal or polycrystalline MOFs (Figure 6d).

Interrogating the Synthesis Data Set via a Chatbot.

Having utilized text mining techniques to construct a comprehensive MOF Synthesis 

Data set, our aim was to leverage this resource to its fullest potential. To enhance data 

accessibility and aid in the interpretation of its intricate contents, we embarked on a 

journey to convert this data set into an interactive and user-friendly dialogue system, which 

effectively converts the data set to dialogue. The resulting chatbot is part of the umbrella 

concept of the ChatGPT Chemistry Assistant thus serving as a reliable and fact-based 

assistant in chemistry, proficient in addressing a broad spectrum of queries pertaining to 

chemical reactions, in particular, MOF synthesis. Unlike typical and more general web-

based ChatGPT provided by OpenAI, it may suffer from limitations such as the inability 

to access the most recent data and a propensity for hallucinatory errors. This chatbot is 

grounded firmly in the factual data contained within the MOF synthesis data set from 

text mining and is engineered to ensure that responses during conversations are based 

on accurate information and synthesis conditions derived from text mining the literature 

(Supporting Information, Section S6).

In particular, to construct the chemistry chatbot, our initial step was the creation of 

distinct entries corresponding to each MOF we identified from the text mining, which 

encompasses a comprehensive array of synthesis parameters, such as the reaction time, 

temperature, metal, and linker, among others, using the data set we have. Recognizing 

the value of bibliographic context, we compiled a list of paper information, such as 
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authors, DOI, and publication years, collated from the Web of Science, into each section 

(Supporting Information, Table S3). Subsequently, we generated embeddings for each of 

these information cards of different compounds, thereby constructing an embedding data set 

(Figure 7). When a user asks a question, if it is the first query, the system first navigates 

to the embedding data set to locate the most relevant information card using the question’s 

embedding, which is based on a similarity score calculation and is similar to the foundation 

of Process 3 in text mining. The information on the highest-ranking entry is then dispatched 

to the prompt engineering module of the MOF chatbot, guiding it to construct responses 

centered solely around the given synthesis information.

To mitigate the possibility of hallucination, the chatbot is programmed to refrain from 

addressing queries that fall outside the scope of the data set. Instead, it encourages the 

user to rephrase the question (Supporting Information, Figure S69). It is worth noting that, 

following the initial query, the chatbot “memorizes” the conversation context by being 

presented with the context of prior interactions between the user and itself. This includes 

the synthesis context and paper information identified from the initial query, ensuring that 

the answers to subsequent queries are also based on factual information from the data set. 

Consequently, this strategy guarantees that responses to ensuing queries are contextually 

accurate, being grounded in the facts outlined in the synthesis data set and corresponding 

paper information (Figure 7 and Supporting Information, Figures S71–S74).

By virtue of its design, the chatbot addresses the challenge of enhancing data accessibility 

and interpretation. It accomplishes this by delivering synthesis parameters and procedures in 

a clear and comprehensible manner. Furthermore, it ensures data integrity and traceability 

by providing DOI links to the original papers, guiding users directly to the source of 

information. This functionality is particularly beneficial for newcomers to the field. By 

leveraging ChatGPT’s general knowledge base, they can receive guided instructions through 

the synthesis process, even when faced with a procedure in a journal that is ambiguously or 

vaguely described. In this case, the user can consult ChatGPT to “chat with the paper” for 

a more precise explanation, thereby simplifying the learning process and facilitating a more 

efficient understanding of complex synthesis procedures. This capability fosters independent 

learning and expedites the comprehension of intricate synthesis procedures, reinforcing 

ChatGPT’s role as a valuable assistant in the field of chemistry research.

Exploring Adaptability and Versatility in Large Language Models.

The adaptability of LLM-based programs, a hallmark feature distinguishing them from 

traditional NLP programs, lies in their inherent ability to modify search targets or tasks 

simply by adjusting the input prompt. Whereas traditional NLP models may necessitate a 

complete overhaul of rules and coding in the event of task modifications, programs powered 

by ChatGPT and some other LLMs utilize a more intuitive approach. A simple change in 

narrative language within the prompt can adequately steer the model toward the intended 

task, obviating the need for elaborate code adjustments.

However, we recognize limitations within the current workflow, particularly concerning 

token limitations. Research articles for text mining were parsed into short snippets due to the 

4096 token limit from GPT-3.5-turbo, since longer research articles can extend to 20 000–40 
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000 tokens. This fragmentation may inadvertently result in the undesirable segmentation of 

the synthesis paragraphs or other sections containing pertinent information. To alleviate this, 

we envision that a large language model that can process higher token memory61,62 such 

as GPT-4–32K (OpenAI) or Claude-v1 (Anthropic) will be very helpful since each time, it 

reads the entire paper rather than just sections, which can further increase its accuracy by 

avoiding undesirable segmentation of the synthesis paragraph or other targeted paragraphs 

containing information. Longer reading capabilities will also have the added benefit of 

reducing the number of tokens used in repeated questions, thus enhancing processing times. 

As we continue to refine our workflow, we believe that there are additional opportunities for 

improvement. For instance, parts of the fixed prompt could be more concise to save tokens, 

and the examples in the few-shot prompt can be further optimized to reduce the total tokens. 

Given that each paper may have around 100 segments, such refinements could dramatically 

reduce time and costs, particularly for classification and summarization tasks, which must 

process every section with the same fixed prompt, especially for few-shot instructions.

Furthermore, language versatility, a crucial aspect in the realm of text mining, is seamlessly 

addressed by LLMs. Traditional NLP models, trained in a specific language, often struggle 

when the task requires processing text data in another language. For example, if the model is 

trained on English data, it may require substantial adjustments or even a complete rewrite to 

process text data in Arabic, Chinese, French, German, French, Japanese, Korean, and some 

other languages. However, with LLMs that can handle multiple languages, such as ChatGPT, 

we showed that researchers just need to slightly alter the instructions or prompts to achieve 

the goal, without the necessity of substantial code modifications (Supporting Information, 

Figures S55–S58).

The adaptable nature of LLMs can further extend their versatility in handling diverse tasks. 

We demonstrated how prompts can be changed to direct ChatGPT to parse and summarize 

different types of information from the same pool of research articles. For instance, with 

minor modification of the prompts, we show that our ChatGPT Chemistry Assistants have 

the potential to be instructed to summarize diverse information such as thermal stability, 

BET surface area, CO2 uptake, crystal parameters, water stability, and even MOF structure 

or topology (Supporting Information, Section S4). This adaptability was previously a labor-

intensive process, requiring experienced specialists to manually collect or establish training 

sets for text mining each type of information.11,13,35,41,63–66

Moreover, the utility of this approach can benefit the broader chemistry domain: it is 

capable of not only facilitating data mining in research papers addressing MOF synthesis 

but also extending it to all chemistry papers with the accorded modifications. By fine-

tuning the prompt, the ChatGPT Chemistry Assistant can effectively extract and tabulate 

data from diverse fields, such as organic synthesis, biochemistry preparations, perovskite 

preparations, polymer synthesis, and more. This capability underscores the versatility of 

the ChatGPT-based assistant, not only in terms of subject matter but also in terms of the 

level of detail it can handle. In the event that key parameters for data extraction are not 

explicitly defined, ChatGPT can be prompted to suggest parameters based on its trained 

understanding of the text. This level of adaptability and interactivity is unparalleled in 

traditional NLP models, highlighting a key advantage of the ChatGPT approach. The shift 
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from a code-intensive approach to a natural language instruction approach democratizes 

the process of data mining, making it accessible even to those with less coding expertise, 

making it an innovative and powerful solution for diverse data mining challenges.

CONCLUDING REMARKS

Our research has successfully demonstrated the potential of LLMs, particularly GPT 

models, in the domain of chemistry research. We presented a ChatGPT Chemistry Assistant 

that includes three different but connected approaches to text mining with ChemPrompt 

Engineering: Process 3 is capable of conducting search and filtration, Processes 2 and 

3 classify synthesis paragraphs, and Processes 1, 2, and 3 are capable of summarizing 

synthesis conditions into structured data sets. Enhanced by three fundamental principles 

of prompt engineering specific to chemistry text processing, coupled with the interactive 

prompt refinement strategy, the ChatGPT-based assistant has substantially advanced the 

extraction and analysis of the MOF synthesis literature, with precision, recall, and F1 scores 

exceeding 90%.

We elucidated two crucial insights from the data set of synthesis conditions. First, the data 

can be employed to construct predictive models for reaction outcomes, which shed light 

on the key experimental factors that influence the MOF crystallization process. Second, 

it is possible to create an MOF chatbot that can provide accurate answers based on text 

mining, thereby improving access to the synthesis data set and achieving a data-to-dialogue 

transition. This investigation illustrates the potential for rapid advancement inherent in 

ChatGPT and other LLMs as a proof of concept.

On a fundamental level, this study provides guidance on interacting with LLMs to serve 

as AI assistants for chemists, accelerating research with minimal prerequisite coding 

expertise and thus bridging the gap between chemistry and the realms of computational 

and data science more effectively. Through interaction and chatting, the code and design 

of experiments can be modified, democratizing data mining and enhancing the landscape 

of scientific research. Our work sets a foundation for further exploration and application 

of LLMs across various scientific domains, paving the way for a new era of AI-assisted 

chemistry research.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematics of the ChatGPT Chemistry Assistant workflow having three different processes 

employing ChatGPT and ChemPrompt for efficient text mining and summarization of MOF 

synthesis conditions from a diverse set of published research articles. Each process is 

distinctively labeled with red, blue, and green dots. To illustrate, Process 1 is initiated with 

“Published Research Articles”, proceeds to “Human Preselection”, moves to the “Synthesis 

Paragraph”, integrates “ChatGPT with Chem-Prompt”, and culminates in “Tabulated Data”. 

Steps shared among multiple processes are indicated with corresponding color-coded dots. 

The two-snakes logo of Python is included to indicate the use of the Python programming 

language, with the logo’s credit attributed to the Python Software Foundation (PSF). The 

white or black OpenAI logo is embedded to symbolize that the process is powered by 

OpenAI models, with the logo’s credit acknowledged as belonging to OpenAI.
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Figure 2. 
Illustration of a carefully designed ChemPrompt (shown on the left) encapsulating all three 

fundamental principles of ChemPrompt Engineering (shown on the right). The prompt 

guides ChatGPT to systematically extract and summarize synthesis conditions from a 

specified section in a research article, organizing the data into a well-structured table.
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Figure 3. 
Two-dimensional visualization of 18 248 text segment embeddings, with each point 

representing a text segment from the research articles selected. Color coding denotes 

thematic categories: red for synthesis, green for gas sorption, yellow for literature reference, 

blue for crystallographic data, purple for structural analysis, orange for characterization, and 

gray for other text segments not emphasized in this study.
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Figure 4. 
Schematic representation of the diverse data unification tasks managed either directly by 

ChatGPT or through Python code written by ChatGPT. The figure distinguishes between 

simpler tasks handled directly by ChatGPT, such as standardizing chemical notation and 

converting time and temperature units in reactions. More complex tasks, such as matching 

linker abbreviations to their full names, converting these to SMILES codes, classifying 

product morphology, and calculating metal amounts, are accomplished via Python code 

generated by ChatGPT. The Python logo displayed is credited to the Python Software 

Foundation, while the OpenAI logo is credited to OpenAI.
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Figure 5. 
Multifaceted performance analysis of ChatGPT-based text mining processes. (a) Comparison 

of the average execution time required by each process to read and process a single paper, 

highlighting their relative efficiency. (b) Distribution of true positive counts for each of 

the 11 synthesis parameters, derived from the cumulative results of Processes 1, 2, and 

3 based on a total of 2387 synthesis conditions. Despite minor discrepancies, the counts 

are closely aligned, demonstrating the assistants’ proficiency in effectively extracting the 

selected parameters. (c) Aggregate average precision, recall, and F1 scores for each process, 

indicating their overall accuracy and reliability. Standard deviations are represented by gray 

error bars in the chart. (d) Heat map illustrating the detailed percentage precision, recall, and 

F1 scores for each synthesis parameter across the three processes, providing a nuanced 

understanding of the ChatGPT-based assistants’ performance in accurately identifying 

specific synthesis parameters.
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Figure 6. 
Performance of the classification models in predicting the crystalline state of MOFs from 

synthesis. (a) Learning curves of the classifier model with 1σ standard deviation error 

bars. (b) Model performance evaluation through the F1 Score, Precision, Recall, and Area 

Under the Curve metrics. The training set fraction was in ratio to the data excluding the 

held-out set. (c) The 10 most significant descriptors of the trained random forest model, 

determined by an accuracy score increase. (d) Six examples of MOFs, MOF-520, MOF-74, 

ZIF-8, Al-fum, CAU-32, and MOF-808 along with their synthesis conditions derived from 
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the literature.55–60 Circle positions on the bar represent the likelihood of resulting in single-

crystal or polycrystalline states predicted by the model. The model’s predictions for these 

six examples aligned with actual experimental results.
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Figure 7. 
Integrated workflow of the MOF chatbot transforming comprehensive synthesis data sets 

into contextually accurate dialogue systems and demonstration of a conversation with the 

data-driven chatbot. The process ensures enhanced data accessibility and interpretation and 

facilitates independent learning in the field of chemistry research.
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Table 1.

Assessment of Hallucination in the ChatGPT Response without Prompt Engineering

Query ChatGPT Responsea

Which metal is used in the synthesis of MOF-5? Zinc (Correct)

Which metal is used in the synthesis ofMOF-519? Zirconium (Incorrect)

What is the linker used in the synthesis of MOF-99999? I do not know (Correct)

What is the linker used in the synthesis of MOF-419? Terephthalic acid (Incorrect)

What is the linker used in the synthesis ofZIF-8? 2-Methylimidazole
(Correct)

a
Responses are representative answers selected from a series of 100 repeated queries, followed by parenthetical indications of their correctness, 

which is based on the established facts concerning the respective compounds referenced in the queries.
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Table 2.

Improvements in ChatGPT Response Accuracy Utilizing a Basic Prompt Engineering Strategy

Initial Query Guided Prompt ChatGPT Responsea

Which metal is used in the synthesis of MOF-5? Zinc (Correct)

Which metal is used in the synthesis ofMOF-519? I do not know (Correct)

What is the linker used in the synthesis of MOF-99999? If you are uncertain, please reply with “I do not know”. I do not know (Correct)

What is the linker used in the synthesis of MOF-419? I do not know (Correct)

What is the linker used in the synthesis of ZIF-8?
2-Methylimidazole

(Correct)

a
Responses are representative answers selected from a series of 100 repeated queries, followed by parenthetical indications of their correctness, 

which is based on the established facts concerning the respective compounds referenced in the queries.
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