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Abstract

The Stroop task is a well-established tool to investigate the influence of competing visual cate-

gories on decision making. Neuroimaging as well as rTMS studies have demonstrated the

involvement of parietal structures, particularly the intraparietal sulcus (IPS), in this task. Given

its reliability, the numerical Stroop task was used to compare the effects of different TMS tar-

geting approaches by Sack and colleagues (Sack AT 2009), who elegantly demonstrated the

superiority of individualized fMRI targeting. We performed the present study to test whether

fMRI-guided rTMS effects on numerical Stroop task performance could still be observed while

using more advanced techniques that have emerged in the last decade (e.g., electrical sham,

robotic coil holder system, etc.). To do so we used a traditional reaction time analysis and we

performed, post-hoc, a more advanced comprehensive drift diffusion modeling approach. Fif-

teen participants performed the numerical Stroop task while active or sham 10 Hz rTMS was

applied over the region of the right intraparietal sulcus (IPS) showing the strongest functional

activation in the Incongruent >Congruent contrast. This target was determined based on indi-

vidualized fMRI data collected during a separate session. Contrary to our assumption, the

classical reaction time analysis did not show any superiority of active rTMS over sham, proba-

bly due to confounds such as potential cumulative rTMS effects, and the effect of practice.

However, the modeling approach revealed a robust effect of rTMS on the drift rate variable,

suggesting differential processing of congruent and incongruent properties in perceptual deci-

sion-making, and more generally, illustrating that more advanced computational analysis of

performance can elucidate the effects of rTMS on the brain where simpler methods may not.

Introduction

The Stroop task is used to investigate the effects of competing visual categories on decision

making. The earliest version of the Stroop task [1] employed words printed in various colors,
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and participants were asked to name the colors of the ink that the words were printed in as

quickly as possible. When the ink was the same color as the word (the congruent case), naming

responses were faster, while when the ink color was different (the incongruent case), responses

were slower. These facilitatory and interference effects in performance are quite reliable in

their general replicability across healthy adults and in their stability in effect size (after a short

initial learning period) within individuals. This reliability has made the Stroop task a useful

tool for investigating the cognitive processes involved with its effects. For example, automatic-

ity in stimulus recognition, processing speed, and selective attention, as well as in neuropsy-

chological testing in patients with deficits in such processing. The reliability of this task has

also enabled neuroimaging investigations into the neural structures underlying Stroop effects,

which have implicated the roles of the parietal cortex and prefrontal regions such as the ante-

rior cingulate cortex [2, 3]. Studies employing online repetitive transcranial magnetic stimula-

tion (rTMS) during task performance have sought to establish causal relationships between

these neural structures thought to subserve Stroop effects.

In one such study, a counting Stroop task was used, in which subjects were asked to count

the number of words shown on a screen, comparing screens using number words (the interfer-

ence condition) and screens using neutral words [4]. Short (4 pulse) trains of rTMS given at 10

Hz starting 200 ms after stimulus onset to the anterior cingulate cortex caused the eradication

of the slowing effect of the interfering words compared to the neutral words, while significant

slowing was shown with stimulation to an active control site in posterior midline cortex.

Another set of studies used a numerical Stroop task [5, 6] in which two digits were concur-

rently shown, and the subject was to identify the larger number in magnitude (i.e., 4>2). To

induce a Stroop effect, the physical size of each number was manipulated. In the neutral condi-

tion, both numbers had the same font size. However, in the congruent condition, the number

larger in magnitude had the larger font size; and in the incongruent condition the number

smaller in magnitude was in larger font. Both studies (performed by the same group), applied

a short rTMS train (3 pulses) at 10 Hz, beginning 220 ms after stimulus onset over the right

intraparietal sulcus (IPS). Both resulted in significant reduction of the Stroop facilitation/inter-

ference effects on reaction time compared to sham stimulation. Overall, there was a consis-

tency across these three studies using rTMS to modify performance in Stroop tasks: in their

application of online rTMS, their effects on Stroop performance, and in the interpretation of

their results. In terms of the latter, in Cohen Kadosh et al. [6] it was suggested that rTMS

reduced the Stroop interference effect by disrupting right parietal automated processing asso-

ciated with the competing but irrelevant stimulus dimension which would normally slow the

decision process involved in completing the task. This suggestion could also apply to Sack

et al. [5] as well as Hayward et al. [4] all of which could be classified under a general mecha-

nism of performance enhancement caused by “addition by subtraction”, where a normally

competing but interfering process is disrupted by rTMS [7].

The primary goal of the Sack et al. [5] study was to provide a direct comparison of four dif-

ferent rTMS targeting approaches used at that time: 1) scalp-based measurement, 2) anatomi-

cal MRI locations, 3) average group coordinates from fMRI activations using the task being

studied, and 4) individualized targeting based on task-related fMRI. The interindividual reli-

ability of the numerical Stroop task they successfully used in Cohen Kadosh et al. [6] made it a

good candidate task for the targeting comparison. Sack et al. [5] concluded that the most effec-

tive approach was individualized targeting based on the task-related fMRI. This was an impor-

tant result for the brain stimulation field in general, as one of the main moderators of rTMS

efficacy is the targeting approach [8]. More than a decade after this elegant demonstration of

the importance of individualized fMRI targeting, experimental TMS methodologies have

advanced, with for example the development of robotic coil holders that allow for more precise
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and stable positioning of the coil relative to the stimulation target, and an electrical sham tech-

nique that mimics the TMS-induced sensations, and thus potentially better blinds subjects to

experimental conditions. In the present study, we tested whether the addition of these tech-

niques combined with individual fMRI-based targeting approach endorsed by Sack and col-

leagues could improve rTMS effect on numerical Stroop performance, with the expectation

based on Cohen Kadosh et al. [6] and Sack et al. [5] that rTMS applied over the right IPS

would decrease the interference of incongruent stimuli and thus lessen of the reaction time in

that condition. Additionally, contrary to the prior study from Sack et al., participants com-

pleted the task multiple times preceding rTMS application (one block of trials before the MRI

session, 4 blocks during MRI, and one block in the TMS session prior to TMS), to stabilize per-

formance and minimize variability due to practice effects. This approach enabled us to probe

the influence of task practice on behavioral performance and fMRI activations.

Finally, we decided post-hoc to perform behavioral modeling approach using a drift diffu-

sion model to assess rTMS effects within a decision-making context. This model, by consider-

ing the distribution of reaction times rather than just central tendencies, offers more insight in

decision making processes. By elucidating the dynamics of evidence accumulation over time,

and by distinguishing between decision and non-decision processes, the model provides a

more nuanced understanding of ongoing cognitive mechanisms. Drift diffusion models have

demonstrated effectiveness in modeling performance data derived from simple tasks with

short reaction times (< 1 s), as in the present case. In addition, they have been linked to neural

behavior on a number of scales, from single cells to large populations (e.g., using EEG and

fMRI) [9]. The drift diffusion models have also been successfully used to investigate the neuro-

nal substrates for numerical representation using TMS [10]. Therefore, it was expected that

this modeling approach would reveal more subtle rTMS effects, as recommended by Hartwig-

sen et al. [11].

Material and methods

Participants

Nineteen healthy volunteers (14 female, 5 male) with a mean age of 39 ± 14 (SD) years partici-

pated in this 2-day study pre-registered on CT.gov (NCT00024635). All participants were

right-handed and identified as White (n = 10), Black (n = 4), Asian (n = 3), or Hispanic

(n = 2). Participants were recruited from the Washington, DC, metropolitan area via flyers,

listserv emails, advertisements, and the NIH Office of Patient Recruitment. All participants

gave written informed consent approved by the NIMH Institutional Review Board (#18-M-

0015) to be screened with psychiatric, physical, and neurological examinations, urine drug

screens, and pregnancy tests for women of childbearing capacity. Volunteers were excluded if

they had a history of current or past Axis I psychiatric disorders (including substance abuse/

dependence) as determined by the Structured Clinical Interview for DSM-IV Axis I Disorders

(SCID-NP), a history of neurological disease, or seizure risk factors. Participants were com-

pensated for their participation.

Experimental design and numerical Stroop task

Participants came in for two experimental sessions. The first visit included consenting, an ini-

tial numerical Stroop task practice session, and structural and functional neuroimaging in

combination with the Stroop task. The second visit included an additional Stroop task practice

followed by active and sham rTMS, with the order counterbalanced between participants (Fig

1). The numerical Stroop task was coded using the PsychoPy Builder interface [12]. In this

task, two single-digit numbers were presented on the screen (between 1 and 8 numbers apart)
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with a center-to-center horizontal visual angle of 7.7 degrees. The numbers varied in physical

size (vertical visual angle of 1.4 degrees for the small numbers or 2.9 for the larger ones). Three

conditions were tested: Congruent, in which the numerically larger digit was also larger in

size; Incongruent, in which the numerically smaller digit was larger in size; Neutral, in which

both digits presented were the same small size. Participants were asked to indicate with a left

or right button press as quickly and accurately as possible the number with the numerically

larger magnitude, irrespective of size. Reaction time and accuracy were collected.

Visit 1. After consenting to the study, participants completed a first training block of the

numerical Stroop task with 48 trials (24 congruent, 24 incongruent; no neutral trials were

included as they were not used during the fMRI acquisition). Feedback was provided after

each trial with the word “correct” or “oops” on the screen to ensure participants understood

the task, and overall accuracy was provided on the screen at the end of the task. Participants

were then scanned using a 3T gradient echo scanner (General Electrics) equipped with a

32-channel head coil. A structural T1-weighted MP-RAGE image was first acquired

(FOV = 25.6 cm2, voxel dimension = 1 mm isotropic, TE = Min Full echo, TI =1100 ms, band-

width = 25 Hz/Pixel, flip angel = 7 degrees). Four EPI sequences were then acquired with an

oblique orientation defined with the AC-PC axis (FOV = 72*72*52, voxel dimension = 3 mm

isotropic, TE = 30ms, TR = 3000 ms, flip angle = 70 degrees) during which participants per-

formed four more blocks of the Stroop task. Feedback (accuracy and average reaction time)

was provided at the end of each block. Stimuli were back-projected onto a screen located at the

foot of the MRI bed using an LCD projector. Subjects viewed the screen via a mirror system

located in the head coil and the start of each run was electronically synchronized with the MRI

acquisition computer. BOLD signal analyses were then performed (see MRI targeting section)

to identify a target for TMS.

Fig 1. Consort diagram and experimental design.

https://doi.org/10.1371/journal.pone.0302660.g001
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MRI targeting. AFNI (version 22.3.05) [13] was used to process MRI data. First, @SSwar-

per was used for skull stripping and estimating nonlinear alignment (via 3dQwarp; [14]) of the

anatomical image from native space to Montreal Neurological Institute (MNI) stereotaxic

space [15]. Then afni_proc.py was used to setup a full pipeline for the fMRI analysis of each

participant, including the automatic generation of a quality control HTML for evaluating the

data and processing steps [16]. The full afni_proc.py command is provided in GITHUB

(https://github.com/afni/apaper_rtms_fmri_stroop) but we briefly describe the steps here. The

first 2 TRs (6 seconds) to allow stabilization of the magnetic field were discarded from the anal-

ysis. All images were corrected for slice acquisition timing, motion corrected by registration to

the minimum outlier volume, and spatially smoothed with a 4mm full-width-half-maximum

smoothing kernel. EPI-anatomical alignment was performed using the lpc+ZZ cost function

[17] with local EPI unifizing for additional stability, and these datasets were checked for left-

right consistency [18]. To reduce effects of participant motion, volumes with large motion

(Enorm > 0.3 mm between successive time points) were censored.

A duration modulation regression basis was used, and separate events were modeled for

Congruent and Incongruent trials. The onset for each was defined by the beginning of each

event, and duration for each was defined by the extent of the participant’s reaction times.

Incorrect trials in which participants did not answer correctly (for either Congruent or Incon-

gruent stimuli) were modeled identically but as a separate stimulus class, and missed trials

were not modeled. The contrast between Incongruent > Congruent trial was generated. After

regression modeling, several steps were then performed for QC evaluation using the APQC

HTML, such as: checking the alignment between the anatomical, EPI and the template image;

checking that the stimuli were properly assigned between each stimulus class; checking how

many data points were censored because of motion. One participant was excluded via this QC

evaluation because of motion (with 27.5% of the data censored due to motion); looking at stim-

ulus statistical maps for validity. The final Incongruent > Congruent statistical maps and the

intraparietal sulcus (IPS) mask from Neurosynth (https://neurosynth.org/) were then mapped

back into subject original space; and along with the original T1 these three results were loaded

into the neuronavigation system (BrainSight, Rogue Research, Canada); and the area of the sta-

tistical peak within the right IPS mask for each participant was chosen as the rTMS target.

Visit 2. During visit 2, participants conducted a training block followed by four blocks of

the numerical Stroop task in conjunction with active or sham rTMS. Active and sham stimula-

tion were applied on the same day in random order, counterbalanced between participants

(e.g., 2 blocks of active followed by 2 blocks of sham or vice-versa). Training and stimulation

blocks contained 72 trials (24 congruent, 24 incongruent, and 24 neutral trials, replicating

Sack’s number of stimuli), with feedback (accuracy and average reaction time) provided at the

end of the block.

Stimulation was applied at 10-Hz over the individualized IPS target at 60% maximum stim-

ulator output (MSO) as per Sack et al [5]. During each trial, a triplet of pulses was applied at

220, 320, and 420 ms after the onset of numbers presentation. Sham stimulation was applied

using the same coil in placebo mode, which produced clicking sounds and somatosensory sen-

sations via electrical stimulation with scalp electrodes similar to the active mode, but without a

significant electric-field (E-field) induced in the brain [19]. Each subject was informed that 2

types of stimulation would be applied, and that we needed to define the intensity. For active

rTMS, resting motor threshold (rMT) was assessed using motor threshold assessment software

tool MTAT [20] over the right motor cortex and used as a potential covariate. For sham stimu-

lation, subjects were asked if they felt each pulse. If not, the sham intensity was increased. If

the pulse was felt, participants were asked if the sensation was tolerable. The lowest tolerable

intensity was chosen for stimulation. An A/P-B65 coil powered by a MagVenture MagPro
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X100 stimulator (MagVenture, Farum Denmark) was used, and coil placement was guided by

a computerized frameless stereotaxic system (Brainsight, Rogue Research, Montreal Canada).

Coil position and orientation was maintained precisely over the target with the Axilum Robot-

ics TMS-Cobot (Axilum Robotics, Schiltigheim, France).

Statistical analysis. The analysis is divided in three sections: the first part relies on classi-

cal analysis of reaction time and accuracy; the second section uses a drift diffusion modeling

approach to test the rTMS effect with a more subtle decision-making context. The final section

is exploratory and seeks to identify potential predictors of the rTMS effect. Analyses of accu-

racy and reaction time of correct trials were performed with JASP (Version 0.17.2, Amsterdam

Netherlands). In the classical analysis, three analyses were performed: the first linear mixed

model investigated the impact of task practice on behavioral performance using Congruency

(congruent, incongruent) and Timepoint (1 block before MRI, 4 separate MRI Blocks, 1 block

before TMS) as fixed effects variables, and Participants as a random effect variable. The second

analysis used a linear mixed model to investigate the rTMS effect on task performance using

participants as a random effect and Stimulation (active, sham), Congruency (congruent,

incongruent, neutral) and Order of stimulation (sham-first, active-first) as fixed effects. Infor-

mation about the pre-processing of behavioral data is provided in the results section. The third

analysis was conducted to replicate Sack et al.’s finding on the size congruency effect (SCE),

the difference between reaction time for Incongruent and Congruent trials, to test whether

active rTMS would decrease the SCE compared to sham stimulation. We also investigated

whether rTMS impacted the facilitatory and inhibitory component of the SCE. For each of

these analyses, we performed an ANOVA with Stimulation (active, sham) as a within-subject

factor, and Order of stimulation (active first, or sham first) as a between-subject factor.

While changes in reaction time and/or accuracy are the most commonly used variables to

investigate rTMS effects on a behavioral task, it has been demonstrated that they only provide

a limited statistical sensitivity, which might not pick up slight changes in response strategies,

for instance conflicting response tendencies in Stroop tasks (see [11] for a review). To over-

come this limitation, the second part of the analysis uses a drift diffusion model [21], in which

the reaction time distributions for correct and incorrect responses were fit into a model com-

prised of the sensitivity to the relevant stimulus (drift rate), the decision threshold (boundary

parameter, i.e., the amount of information needed to trigger the button press), and the non-

decision time (i.e., the duration of information processing before the decision process and the

time taken to execute the motor command). This approach allows assessment of rTMS effects

within a more subtle decision-making context. Drift diffusion models were fit to trial-by-trial

measures of reaction times and response type. The drift rate, boundary separation, and nonde-

cision time parameters were estimated separately across congruency and TMS conditions. 5%

of all trials were assumed to be outliers and modeled under a different process.

Finally, a linear regression model was performed to explore the impact of participant’s age,

stimulation intensity, distance to scalp, fMRI activation at the stimulated target location, dis-

tance to Sack et al.’s group fMRI target, and number of days between the MRI and the TMS

session, as potential predictors of rTMS effect, and to test the potential impact of numerical

distance between stimuli, a factor that is known to strongly impact reaction time.

Results

Four subjects were withdrawn during the protocol due to the time commitment (n = 2), move-

ment during the MRI (n = 1), and hair thickness that was incompatible with accurate electrode

placement (n = 1). Data from one additional subject was excluded due to excessively long reac-

tion times, which were greater than 2 standard deviations above the group mean for four out
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of six conditions. Therefore, analyses were performed on 14 participants. All data below are

presented as mean ± standard error.

Classical analysis

Practice effect. To investigate the impact of practice on task performance, we applied a

linear mixed effect model to analyze correct reaction time (Fig 2A). Before performing the

analyses, outliers and missed trials were removed from the data. First, missed trials, in

which participants did not respond, were removed from both for reaction time and accu-

racy data (4.2% of the trials). Next, for the analysis of reaction time only, incorrect trials, in

which participants answered incorrectly were removed (1.9%); then trials with reaction

times larger than 2.5 standard deviations above the mean were removed (2.3%). We did not

run any model on the accuracy data, as there was not enough variability in the data because

accuracy was near ceiling at all timepoint (overall group accuracy was 98.1 ± 0.3%, see Fig

2B for accuracy values and change across sessions). Results below focus on correct reaction

time.

We assessed the effects of Congruency and Timepoint on correct reaction times during

practice using a linear mixed model with Congruency and Timepoint as fixed effect variables,

and Participant as random effect. The linear mixed model did not show any interaction

between Congruency and Timepoint, however we found the expected main effect of Congru-

ency (F(1,12.58) = 94.698, p< .001) with congruent trials yielding faster reaction times

(533 ± 16 ms) than incongruent trials (607 ms ± 14 ms). A main effect of Timepoint (F(5,

14.68) = 23.830, p< 0.001) was also observed; and post-hoc contrasts (Bonferroni corrected)

revealed that while performance in the pre-MRI practice block was not significantly different

from the first MRI block (p> 0.05); reaction times at each of the timepoints thereafter were

faster than the initial reaction time collected before the MRI (p< 0.05 for all pair-wise com-

parisons). Reaction times at all timepoints after MRI block 1 were also significantly faster than

for MRI block 1 (p< 0.05 for all pair-wise comparisons). No significant pairwise differences

in RT between other blocks were observed (Fig 2A).

Fig 2. Behavioral performance in the scanner: A) reaction times and B) accuracy in the six training blocks, for congruent trials in blue and

incongruent trials in yellow.

https://doi.org/10.1371/journal.pone.0302660.g002
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In addition, as our group of participants was older (39 years old on average) than the partic-

ipants in Sack’s study (24 years old on average), we investigated whether there was any correla-

tion between age and reaction times in Congruent and Incongruent trials collapsed across the

six practice blocks. Results did not reveal any significant correlations between them (Congru-

ent trials: r = 0.26; p = 0.40; Incongruent trials: r = 0.45, p = 0.13), suggesting that age did not

impact performance.

rTMS effect. The same cleaning approach was performed on the rTMS data except that an

additional first step was added—the trials in which the TMS coil was far away from target (>=

3mm, often due to participant movement) were removed from the data (2.1% of trials). Then, tri-

als in which participants did not answer were excluded (1.3% of remaining trials). Finally, for

reaction time analysis, trials in which participants did not answer correctly (12%) and trials with

reaction times larger than 2.5 standard deviations above the mean (3% of remaining trials) were

removed. The overall group accuracy was 88%, however since no main effects or interaction

were found between the three variables, the results below focus on reaction times only. A linear

mixed model was performed with participants as a random effect, and Stimulation, Congruency

and Order as fixed effects. The model revealed a main effect of Congruency (F(2, 25.30) = 47.56,

p< 0.001), with incongruent trials slowing down participants (492 ± 15 ms) compared to con-

gruent (439 ± 12 ms) and neutral trials (457 ms ± 12 ms) (p< 0.01 for each pair-wise compari-

son). The model also revealed a significant interaction with Stimulation, Congruency and Order

(F(2, 44.43) = 3.68; p = 0.03). However, decomposition of this interaction with post-hoc Bonfer-

roni-corrected contrasts did not reveal any significant difference between active and sham rTMS.

Size congruency effect (SCE). To replicate the findings of Sack et al. [5], we calculated the

SCE by measuring the reaction time (RT) difference between congruent and incongruent trials

[SCE = RT (incongruent)—RT (congruent)]. We excluded data from an additional participant

whose size congruency values exceeded 2.5 standard deviations above the group mean, analy-

ses were therefore performed on 13 participants. Contrary to expectation, the repeated mea-

sures ANOVA did not reveal a main effect of Stimulation (F(1,11) < 1, p = 0.40:

Active = 51 ± 16 ms; Sham = 46 ± 9 ms), Order (F(1,11) < 1, p = 0.58) or interaction between

Order and Stimulation (F(1,11) < 1, p = 0.58), suggesting that contrary to Sack et al., rTMS in

our study did not impact the size congruency effect (Fig 3).

Fig 3. rTMS effect of size congruency effect and its components. A) Size Congruency effect, B) Facilitatory component and C) Interference component

showing a significant interaction between Stimulation and Order of stimulation.

https://doi.org/10.1371/journal.pone.0302660.g003
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Following the methodology employed by Sack et al., we also calculated the facilitatory com-

ponent as [RT (neutral)—RT (congruent)] and the interference component computed as [RT

(incongruent)—RT (neutral)]. For the facilitatory component, neither the interaction between

Stimulation and Order, nor the main effects reached statistical significance. However, for the

interference component, a significant interaction between Stimulation and Order was

observed (F(1, 11) = 9.39; p = 0.011, η2 = 0.21). However, post hoc analysis did not reveal any

significant differences among pairwise comparisons (Active-first group: Active = 47 ± 26 ms,

Sham = 21 ± 16 ms; Sham-first group: Active = 24 ± 17 ms, Sham = 36 ± 17 ms). The absence

of broader significant findings may be attributable to an insufficient sample size, which could

diminish the power of our analysis.

Computational analysis of rTMS effects with a drift diffusion model

The drift diffusion model revealed a significant interaction between Congruency and Stimula-

tion (F(2,70)=10.9, p<.001, Fig 4). Post hoc comparisons revealed that while no difference

were observed for incongruent (t(14)=0.90, p=.39) and neutral trials (t(14)=0.89, p=.39), the

drift rate was significantly higher with active rTMS compared to sham stimulation for the con-

gruent trials (t(14)=6.5, p<.001). While we would have expected rTMS to the right IPS to

increase the drift rate for both congruent and incongruent trials, given its role in automatic

spatial magnitude processing; the current finding suggests that within the decision process, at

least in a well-practiced state, the mechanism underlying the integration of congruent proper-

ties differs and can be more easily distinguished from that underlying the integration of incon-

gruent properties.

Fig 4. Mean drift rate for each congruency and each stimulation condition.

https://doi.org/10.1371/journal.pone.0302660.g004
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Exploratory analyses

In the first analysis, we performed a linear regression analysis with a backward selection

method to test the impact of several covariates that could impact rTMS effect (participant’s

age, functional activations at the stimulated target, scalp-to-cortex distance, distance to Sack’s

targets, stimulation intensity expressed as a percentage of the resting motor threshold, and

number of days between MRI acquisition and TMS session) on rTMS effect for calculated as

follow:

rTMSeffect %ð Þ ¼
ReactionTimewithActiverTMS � ReactionTimewithShamrTMS

ReactionTimewithShamrTMS
� 100

This method allowed to iteratively remove non-significant variables from the model, and

thus to identify the most relevant predictors of rTMS effect while controlling for potential con-

founding variables. The final model showed that only stimulation intensity predicted the

rTMS effect (F(1,13) = 13.09, p = 0.004, adjusted R2 = 48.2%). This suggests that participants

who received the strongest stimulation intensity where the ones benefitting the most from

rTMS (showing the fastest reaction times with active rTMS). We note that on average, in our

sample, an intensity of 60% MSO led to a strong variability in stimulation intensity, which ran-

ged from 94% to 188% rMT (mean = 128.9 ± 5.7% rMT, see S1 Table for individual partici-

pants data). None of the other variables: participant’s age, scalp-to-cortex distance, distance to

Sack’s target, and number of days between fMRI acquisition and TMS session, or fMRI activa-

tion at the stimulated target predicted the rTMS effect. Contrary to our assumption analysis of

the fMRI activation at the group level, did not show the expected right IPS activation. Instead,

the analyses of BOLD signal revealed a cluster of activation (t > 2.10, with 23 voxels) in the left

IPS and in subcortical structures such as the bilateral corpus callosum, and the left cingulum

(see Fig 5A and S2 Table for the list of clusters and their overlap with the Glasser atlas, gener-

ated by the AFNI whereami function).

To evaluate whether the lack of rTMS effect may have been due to targeting issues resulting

from a change in fMRI activation across blocks, which may have resulted from practice, learn-

ing, and/or fatigue, we investigated how activations differed between the first and last pairs of

blocks. Our results showed that while activation in the bilateral IPS was strong during the first

two blocks, IPS activity vanished during the last two blocks (Fig 6). Given that these changes

were observed while accuracy remained quite high and constant across all blocks, and while

reaction time continued to improve (Fig 2A). We suspect this change is due to a learning effect

and hypothesize two potential mechanisms: 1) the IPS was highly involved in the earlier learn-

ing stages of the task and became less necessary with practice, with possible activity shifts to

other regions; 2) the number of IPS neurons necessary for task performance decreased with

the optimization caused by practice, with subsequent diminishment of signal. If correct, these

hypotheses indicate the need for a better understanding of the local and network changes asso-

ciated with task practice and learning effects to estimate the best targeting parameters. In the

present case we potentially would have seen stronger rTMS effects if we only acquired two

blocks of fMRI, and this may have served as a better target for rTMS if the latter of the two rea-

sons stated above for the activation decrease was true.

The second analysis investigated the effect of numerical distance between stimuli. Indeed, it

has been demonstrated in the literature that performance in the Stroop task is inversely corre-

lated with numerical distance; more precisely, if the distance between two numbers is large

(e.g. between 1 and 9: distance of 8) reaction times are faster than if the distance is small (e.g.,

between 2 and 3: distance of 1) [23]. Since our study was not designed to test this effect, the dis-

tribution of the trials in each distance prevented us from testing the effect of each distance on
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performance. Therefore, we decided to categorize trials into small distance (from 1-3 digits)

and large distance (from 4-8 digits) groups and performed an ANOVA with Numerical Dis-

tance (Small and Large), Stimulation (Active and Sham). The analysis revealed the expected

main effect of Numerical Distance F(1,13) = 51.83, p< 0.001) with faster reaction times for

large (448 ± 12 ms) compared to small distances (471 ± 13 ms). The main effect of Simulation

Type was not significant (F(1,13) = 3.46; p = 0.09), and interestingly no interaction was found

between Stimulation Type and Numerical Distance (F(1,13) = 1.14; p = 0.31), suggesting that

while Numerical Distance had a strong impact on reaction time, the effects of rTMS were not

impacted by it.

Discussion

Cohen Kadosh et al. [6] and Sack et al. [5] reported that using short bursts of 10 Hz rTMS to

right IPS during the performance of a numerical Stroop task caused a significant decrease in

the difference between incongruent and congruent RTs. We were not able to replicate these

findings with a larger sample size, seeing no main effect of rTMS on RT or on the SCE. As dis-

cussed below, this failure to replicate may have to do with methodological differences between

their studies and ours. However, we did observe a significant effect of right parietal rTMS on

task performance, with thirteen of fourteen subjects showing an increase with active stimula-

tion to the drift rate variable in a drift diffusion model of the RT data.

Fig 5. fMRI results, TMS targets, and correlations. A) Group fMRI activation in the Incongruent> Congruent contrast.

Colors show the effect estimate value. Each voxel is thresholded by its t-stat values and the transparent thresholding was

applied [22] (Threshold: t = 2.11, bi-sided; p< .05) on a coronal and an axial view and on a 3D rendering (left is subject left).

B) TMS target for each individual on an MNI brain, and C) correlation between stimulation intensity and rTMS effect.

https://doi.org/10.1371/journal.pone.0302660.g005
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Use of more sophisticated approaches to modeling performance data stands a much greater

chance of revealing effects of rTMS on behavior [11]. In the present case, rather than just look-

ing at mean RT effects, use of a drift diffusion model incorporates the full RT distributions of

both correct and incorrect responses, accommodating speed/accuracy trade-offs and bias

effects, and by assuming that information accumulates at a constant rate, is able to estimate

that rate [9]. This drift rate can be thought of as an estimate of the signal-to-noise ratio in the

perceptual decision process.

Drift diffusion modeling has previously been used successfully with rTMS. For example, 1

Hz rTMS to dorsolateral prefrontal cortex, which might be expected to disrupt ongoing deci-

sion processing occurring there, was reported to decrease the drift rate found modeling data

from the performance of an object discrimination task [24]. In the context of numerical Stroop

task performance, rTMS to right IPL might be expected to increase the drift rate for both con-

gruent and incongruent trials. This is based on the role of right parietal cortex in automatic

spatial magnitude processing (in the case of the numerical Stroop task, a comparison of physi-

cal sizes) that Cohen-Kadosh et al. [6] posited to explain their TMS findings. Right IPL rTMS

should disrupt the automatic processing of number font size, leading to the subtracting out of

its irrelevant contribution to the ongoing decision process. The decision process, having one

less channel of useless information (i.e., noise) to integrate, is thus made more efficient, which

should be reflected in an increased drift rate. In this interpretation for the cause of a change in

drift rate with rTMS, the congruency condition should not matter. However, here only the

congruent trials, but not the incongruent, showed this effect. In the context of numerical

Stroop task performance, rTMS to right IPL might be expected to increase the drift rate for

Fig 6. fMRI activation in the Incongruent> Congruent contrast in the first pair and last pairs of fMRI acquisition. Colors show the effect estimate

value for: a) Last blocks> First blocks, b) the First blocks only, and c) the Last blocks only. Each voxel is thresholded by its t-stat values and the transparent

thresholding was applied [22] (Threshold: t = 2.16, bi-sided; p< .05) on a sagittal view.

https://doi.org/10.1371/journal.pone.0302660.g006
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both congruent and incongruent trials. This is based on the role of right parietal cortex in auto-

matic spatial magnitude processing (in the case of the numerical Stroop task, a comparison of

physical sizes) that Cohen-Kadosh et al. [6] posited to explain their TMS findings. Right IPL

rTMS should disrupt the automatic processing of number font size, leading to the subtracting

out of its irrelevant contribution to the ongoing decision process. The decision process, having

one less channel of useless information (i.e., noise) to integrate, is thus made more efficient,

which should be reflected in an increased drift rate. In this interpretation for the cause of a

change in drift rate with rTMS, the congruency condition should not matter. However, here

only the congruent trials, but not the incongruent, showed this effect. A primary methodologi-

cal difference between the Sack et al. [5] and Cohen-Kadosh et al. [6] studies and the present

one is that subjects were relatively unpracticed on the task in the former but well-practiced in

the latter, and the main difference in results was that an rTMS effect was seen directly in the

RT data of the former studies but not the latter. In terms of the present drift rate finding, these

differences suggest that within the decision process, at least in a well-practiced state, the mech-

anism underlying the integration of congruent properties differs and can be more easily distin-

guished from that underlying the integration of incongruent properties. With practice, the

effect of right parietal rTMS on automatic processing seen in the earlier studies may change

such that it only occurs in the congruent state, while the decision process in the incongruent

condition may rely more heavily on other brain regions, such as anterior cingulate cortex. A

further study comparing the effects of rTMS on subjects that are task-naïve vs. practiced

would be needed to verify this. Moreover, the diffusion model results and speculations based

on them result need to be taken cautiously as the analysis was done post hoc and the study was

not designed optimally to evaluate the drift. For example, it only included 48 trials per condi-

tion, while it has been demonstrated that about hundred trials are needed to estimate this

parameter robustly [25]. In addition, other models might be tested: for example, the drift diffu-

sion model used here fits performance data to a single processing stage, while a dual-stage

model, involving an early evidence accumulation phase followed by a later decision phase

might exhibit a more robust fit to the data than a single-stage model [26]. Future studies might

also want to conduct a drift modeling approach on single trial fMRI to delineate the neurocir-

cuitry associated with practice and congruency effects.

A primary methodological difference between the Sack et al. [5] and Cohen-Kadosh et al.

[6] studies and the present one is that subjects were relatively unpracticed on the task in the

former but well-practiced in the latter, and the main difference in results was that an rTMS

effect was seen directly in the RT data of the former studies but not the latter. In terms of the

present drift rate finding, these differences suggest that within the decision process, at least in

a well-practiced state, the mechanism underlying the integration of congruent properties dif-

fers and can be more easily distinguished from that underlying the integration of incongruent

properties. A further study comparing the effects of rTMS on subjects that are task-naïve vs.

practiced would be needed to verify this. Success in such a study would result in a toolbox of

manipulations involving states of practice, active and sham TMS applied at sites involved in

task processing (e.g., left and right IPL, DLPFC), congruent and incongruent visual properties,

and use of drift diffusion modeling. Use of this toolbox could provide the means for a more

extensive investigation into the neural mechanisms of perceptual decision making.

On replicating an rTMS effect observed in earlier studies

In this study, we tested whether fMRI-guided rTMS effects on numerical Stroop task found in

Cohen Kadosh et al. [6] and Sack et al [5] could still be observed while using more advanced

techniques that have emerged in the last decade. In general, we adhered to their reported
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methods, and when possible, we substituted procedures that corresponded to more recent

experimental standards (for example by employing electrical sham stimulation). We expected

that the substitution for some of the older techniques used in the earlier papers would poten-

tially improve the effect size they obtained. However, contrary to these expectations, we did

not find better results, and instead failed to show any superiority of active rTMS overs sham

stimulation. While it is clear that reproducing an experiment and its outcome in a different lab

is never simple or even necessarily straight-forward, it is a useful exercise to examine the rea-

sons that the replication of rTMS effect might not have occurred. Below we provide a list of the

changes we made compared to the original studies and their possible consequences on the out-

come of this study, as well as considerations for future rTMS studies using the numerical

Stroop task to improve rigor and reproducibility. These are grouped into features involving

the task itself, the study design, and rTMS delivery.

Issues concerning handling of the Stroop task in experimental procedures

Practice effect. After a brief introductory period, the difference in RT between congruent

and incongruent conditions is maintained in the numerical Stroop task, even after extensive

training (see, for example, Fig 1), which makes the task a good candidate for use in a repeated

measures design in rTMS experiments looking at stimulation effects across congruency condi-

tions. However, first subjects must be introduced to and practice the task. In this study, we

trained participants with one block of 48 task trials before the MRI (followed by performance

of 4 blocks of the task while in the scanner), and then a full block of 72 practice trials in the sec-

ond session, prior to rTMS, which led to a relatively stabilized reaction time for the experimen-

tal conditions. In contrast, Sack et al. [5] only familiarized participants with the task for a few

trials until it was clear the participants understood the task instructions. This difference in

practice may have contributed to the differences seen in the effects of TMS between the stud-

ies. It should be noted, however, that the fMRI-targeted condition in Sack et al. received more

practice on the task (because of performing additional blocks of the task while in the scanner)

than their other targeting methods. This discrepancy in the degree of practice on the task

across targeting conditions in Sack et al. calls into question whether there is definitive evidence

that individualized fMRI-guidance is the most effective way to target rTMS to modulate per-

formance on the numerical Stroop. To make such a definitive statement, it would be important

to equate the degree of practice on the task across the targeting conditions.

It may very well be that a brain in an unpracticed state, while it is still optimizing the pro-

cessing needed to carry out the task, is more vulnerable to external stimulation than a brain in

a practiced state, where the task processing is more stable and set and resilient to disruption.

Further, our interpretation of the Sack et al. [5] and Cohen Kadosh et al. [6] rTMS effect on

the numerical Stroop task performance was related to an addition-by-subtraction mechanism,

where performance enhancement occurred because rTMS disrupted the interference of the

irrelevant stimulus dimension (font size) in the decision process. However, our study using

well-practiced subjects found that the application of rTMS did not lead to significant improve-

ments in RT in the incongruent condition, suggesting that there may be a ceiling effect in

terms of the potential benefits of rTMS to right IPS in enhancing RT in that condition of the

Stroop task. Future studies examining the effect of rTMS on the numerical Stroop task in both

practiced and unpracticed states may be warranted and could examine whether the locus of

the effect shifts in practiced subjects to another location in the prefrontal-parietal executive

network involved in the task.

Our findings, and their contrast with the previous studies using the numerical Stroop, also

highlight the importance of considering individual performance levels, training protocols, and

PLOS ONE rTMS and numerical Stroop task

PLOS ONE | https://doi.org/10.1371/journal.pone.0302660 May 6, 2024 14 / 22

https://doi.org/10.1371/journal.pone.0302660


potential ceiling effects when investigating the effects of TMS in cognitive tasks such as the

numerical Stroop task. Further research is needed to explore the optimal conditions and target

populations where rTMS interventions may have the greatest impact on task performance.

Incorporating a staircase procedure in future studies may offer a viable solution to mitigate the

confounding effects of training [27]. By dynamically adjusting the task difficulty based on indi-

vidual performance, a staircase approach can help maintain a consistent level of challenge and

control for potential learning effects. This can enhance the accuracy and reliability of assessing

the impact of TMS on task performance and provide valuable insights into the underlying

mechanisms of cognitive processes. Further research is needed to explore the feasibility and

effectiveness of implementing a staircase procedure in this context.

Use of performance feedback. One specific manipulation we implemented in our task

presentation was to provide the participants with feedback regarding their performance,

which was not employed in the earlier studies. In our study, we decided to provide trial-by-

trial feedback for the two practice blocks to facilitate learning, and feedback on average perfor-

mance over a whole block of trials for each of the MRI and TMS blocks. Our decision was

informed by Liu et al. [28] who used a Hebbian reweighting model to demonstrate that both

types of feedback induce significant, equal learning.

Accounting for the numerical distance between the digit stimuli. Neither the present

study nor Sack et al. [5] or Cohen Kadosh et al. [6] considered the interaction of the congru-

ent/incongruent Stroop effect and the varying effect on performance caused by the “distance

effect” in the contrast between the cardinality of the two stimulus digits presented in a given

trial of the task, which potentially can add to variability in performance across individuals and

work to obscure the sought after rTMS effect. Generally, the “distance effect” has been found

to be an inverse relationship of RT and the cardinality difference between two numbers. For

example, Moyer & Landauer (1967) [23]observed that participants were faster when the dis-

tance between numbers was greater (e.g., 2 and 7 versus 2 and 4), and that larger numbers

(e.g., 8) were statistically more likely to be correct answers due to fewer single digits being

greater than that number (e.g., 1-7 < 8<9). Methods to control for the distance effect include

using number pairs with a set numerical ratio of 0.3 (e.g., 6, 2) [29], and presenting set pairs

with differences of 1 (e.g., 3-4) and 5 (e.g., 4-9) to control the difference and number of times

each digit was presented [30]. However, these controls limit the variability of trials and may

lead to artificially low reaction times. While not accounted for in our study, the distance

between the digit pairs used as stimuli should be balanced such that these effects are expected

to be similar between active and sham conditions. Future studies using the numerical Stroop

task should consider these limitations.

Issues involving experimental design

A possible cumulative rTMS effect. The five subjects in the group using individualized

fMRI targeting in Sack et al. [5] received sham and active rTMS conditions in the same session,

and as a group showed a significant active-sham difference in numerical Stroop performance.

In contrast, in the present study the participants who first received active rTMS followed by

sham rTMS did not show the significant reaction time improvement in incongruent trials that

was seen in the group that began with sham rTMS (in post hoc testing following a Stimulation

x Congruency x Order interaction). While this could be an accident of sampling in groups

with small sample size, it may reflect, instead, a potential carryover effect of rTMS. Online

stimulation is expected to modulate neural activity in an acute fashion, providing insight into

the timing of neural processing that underlies behavior, and there is an underlying assumption

of independence between trials in the effect of rTMS. However, very few studies have tested
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whether these short-term effects could accumulate over time. To our knowledge only two stud-

ies, including one from our group, have tested this assumption and concluded there is a lack of

evidence for such cumulative rTMS effects [31, 32]. However, the stimulation parameters were

different between each of these studies (10Hz during 3 seconds at 110% rMT over the DLPFC

and superior parietal lobule; 5Hz during 4 seconds at 120% rMT over the DLPFC). These dif-

ferences prevent direct comparison with each other or with this specific protocol. A potential

way to assess this effect would be to interleave trials with and without stimulation. Overall, in

terms of experimental design, we would recommend performing active and sham stimulation

with sufficient time between the two conditions (e.g., perform them on different days) to miti-

gate any potential confound with accumulating effects.

Electrical sham. Sack et al. [5] used a placebo coil for sham stimulation, in which the

sound of the TMS pulse and the pressure of the coil on the head are reproduced, but the sensa-

tion of the pulse is not. We used an electrical sham approach that uses electrodes applied to the

participant’s head underneath the TMS coil, that delivers a weak electrical current that mimics

the somatosensory stimulation induced by active rTMS. We used a titration approach where

we asked participants to report whether the sensation was tolerable. While this approach

appears to be an improvement, it is also associated with disadvantages. For example, because

of hair thickness on the parietal cortex, it was sometimes difficult to keeping sham electrodes

firmly adhered to the scalp, resulting in sham TMS pulses not felt by some participants, even at

the maximum stimulation intensity. It is also possible that the residual E-fields induced in the

brain by sham electrodes lead to potential neuromodulatory effects on behavioral performance

[19]. Further, to protect subject blinding, we followed the recommendations from Smith, &

Peterchev (2018) and told the participants that two types of stimulation would be applied.

However, since our study did not include any blinding questionnaire, we cannot conclude on

whether participants felt any difference. To address these limitations, future studies could

include post TMS questions on this topic. Since Sack et al. [5], did not use this sham methodol-

ogy, potential differences in performance caused by the addition of electrical stimulation could

be another reason contributing towards the failed replication.

Issues involving TMS delivery

Target selection. In selecting a TMS target through the use an individual fMRI, the indi-

vidual’s peak activation in a contrast of interest within a circumscribed cortical region is cho-

sen. But the actual size of that region is somewhat challenging to delimit a priori, as it is

generally based on previous coordinates in a group analysis but should also consider spatial

variability across individuals. We chose to follow the description given in Sack et al. [5]: the

individual location within the right IPS exhibiting the strongest BOLD-signal contrast for the

SCE. To select the TMS target, we used the IPS mask from the Neurosynth website (https://

neurosynth.org/), within which we estimated the location the peak activation for each partici-

pant. However, the size of this mask was quite large and the choice of target within this mask

suffers from a large variability across subjects in the location of the target selected, probably

due to the lack of additional anatomical constraints in our mask (Fig 2B). We also constrained

our choice to be the most active location situated on superficial cortex, to induce the strongest

E-field and potentially lead to the strongest TMS efficacy. This clearly differed from Sack et al.,

who did not introduce such a constraint, and in fact chose targets that were deeper in cortex

(but, it turned out, grouped closer together). While Sack et al. did not describe the coil orienta-

tion chosen for each target, in the present study the coil orientation was chosen such that the

second phase of the induced E-field was perpendicular and directed into the nearest sulcal wall

for each individual subject. This was done visually rather than through E-field modeling and
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could have suffered some variability as a result. Overall, while there is general agreement in the

field that, as concluded by Sack et al. [5], the use of individual fMRI activations for TMS targets

is the best method for TMS target selection, given the low signal-to-noise levels in individual

fMRI measures, there is still room for improvement.

A potential approach to overcome these limitations could be to rely on information from

causally derived targets beyond the causal evidence provided by earlier TMS studies [5, 6]. For

instance, studies have demonstrated that selecting targets from brain lesions or deep brain

stimulation studies could potentially serve as effective TMS targets (see [33] for a review).

While most causal targets have been derived from psychiatric symptoms such as depression or

anxiety, examining behavioral deficits associated with focal brain injuries or deep brain stimu-

lation can help selecting a TMS target for this specific executive function.

Regarding the group fMRI results, contrary to our expectations, while we were able to find

significantly activated voxels for most of our participants (64%), our results at the group level

do not indicate any significant activations in the right IPS in the Incongruent>Congruent con-

trast. Instead, we found some small clusters in the left IPS, and some larger clusters in subcorti-

cal structures such as the corpus callosum, and the cingulate cortex, the latter regions involved

in conflict monitoring [34]. However, the lack of a group activation in the right IPS does not

necessarily imply that it was not a good target. Indeed, it has been demonstrated that fMRI

group analysis might not always detect the brain regions that are necessary at the individual

level, and instead consider the individual topographic variability as noise [35] and that apply-

ing rTMS on subject-specific regions, even though variable, can lead to a significant rTMS

effect while stimulating the group fMRI activation site does not [35].

A potential way to improve rTMS effects in this task might be to investigate the role of the

left IPS during the Stroop task. To our knowledge, only two studies have tried this location

and demonstrated either a stronger effect by applying TMS on the left IPS than the right IPS

[36] or an effect only for the right hemisphere [6]. Another approach could be to conduct a

connectivity analysis and to stimulate the superficial region showing the strongest connectivity

with the corpus callosum. This has not been tested with this region and with this task, but this

connectivity-based technique has previously demonstrated strong effects when rTMS was

applied over the parietal cortex, to indirectly modulate the hippocampus during an episodic

memory task [37] and it may be useful in the present context.

Stimulation intensity. We used the same dosing strategy of applying a fixed intensity

across subjects that was used in the original Sack et al. study (60% maximum stimulator out-

put). However, while the stimulators used in their study and the present one were the same

models, the TMS coil we used (A/P-B65) was not the one used by Sack et al (B-70). The electric

field generated by those two coils are slightly different [38], and that, combined with the more

superficial location of our TMS targets compared to Sack et al., could also be a potential con-

found explaining the difference in outcomes. Further, individual differences in anatomy are

something that should be taken into account when choosing intensity, given the correlation

we found between the intensity expressed in relation to each individual’s motor threshold and

the size of the rTMS effect observed. The correlation suggests that using higher intensity might

increase the rTMS effect.

Number of pulses and stimulation timing. Like Sack et al. [5], we delivered three pulses

of 10Hz rTMS at 220, 320, and 420 ms post-stimulus onset. This timing was based on past

event-related potentials (ERPs) studies that found ERP components correlating perceptual

processing of congruity and numerical distance over the parietal electrodes between 300-480

ms [39]. Szucs and colleagues sought to determine whether the facilitation and interference

effects of relevant/irrelevant information occurred during perceptual or response processing

stages of the numerical Stroop task. To do so, they had participants conduct two sub-tasks,
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either selecting the value greater in numeric value or physical size. Citing early work discussing

the bidirectional congruency effects in the numerical Stroop task [40] and finding similar early

ERP timing in both sub-tasks, they concluded that numerical and size dimensions of the task

were processed in parallel regardless of relevance. With faster responses in the size task, they

identified the facilitation and interference of the physical size on the numerical value determi-

nation. More recently, Huang et al. [41], investigated the interaction between task-relevant

and irrelevant features on task performance, and found results contradicting Szucs & Soltez

[38]. Huang et al. (2020) evaluated a temporally longer range of ERPs including the late posi-

tive complex (LPC). They found more positive responses in congruent than incongruent in

early (320-520 ms) and late (520-720 ms) LPCs, with early also showing more positive

responses in congruent vs neutral trials. Therefore, it is possible that the 220-420 ms was not

the optimal timing for this task, and future studies might want to investigate different timing

or add more pulses to cover a larger section of the neural processing.

Summary of replication findings. In the present study, we tried to reproduce the rTMS effect

on numerical Stroop found in Sack et al. [5] and Cohen Kadosh et al. [6], with some newer

methods that are now available in the field, such as robotic coil holder and electrical sham,

hoping to find a similar or even stronger rTMS effect by combining those approaches with a

larger sample size. In designing our experiment, we did not initially perform a power analysis

on the optimal number of participants needed to observe significant difference between active

and sham rTMS, relying on the findings of Cohen-Kadosh et al., and Sack et al., who each

found a significant rTMS effect with 5 participants. While we tried to emulate their methods,

the changes we did make in the experimental design may have potentially lowered the effect

size, and we may have needed to employ a larger sample. There were some differences in the

procedures used in the earlier and present studies. In terms of the numerical Stroop task, we

practiced our subjects to a greater degree, additionally using feedback to accelerate their learn-

ing. While we succeeded in removing the confound of learning, we may have altered the neural

processing involved, changing the sensitivity of right IPS to rTMS in the context of the Stroop

task. Regarding experimental design, we differed in the addition of electrical stimulation to the

sham condition, and we may also have found a cumulative effect of active/sham condition

order that may have masked the performance effect we sought. Additionally, there were differ-

ences in how targeting choices using subject-specific fMRI data were handled that may have

had profound effects on our results. We further identified several issues that were common to

all the studies, involving stimulus choices, unbalanced distances between the digit stimuli pre-

sented, and choices of rTMS parameters such as intensity and stimulus timing, which could

impact rTMS effects on the numerical Stroop task.

Conclusions

In two earlier studies the use of rTMS to right IPS during performance of a numerical Stroop

task resulted in strong RT changes reflecting a diminishment of the interference of irrelevant

but automatically processed visual properties [5, 6]. While we did not directly replicate those

findings, application of a drift diffusion model to performance data demonstrated a strong

effect of rTMS on the drift rate variable in the decision process. This analysis revealed possible

differences in how congruent and incongruent properties are integrated during perceptual

decision making. To compare rTMS targeting methods during a cognitive task, we first must

be able to validate and replicate the rTMS effect on the task. Our results show that replicating

rTMS effects remains challenging and we highlight steps that can be taken to improve the

rigor and reproducibility in rTMS studies of cognition. For example, the differences and issues

in replicating rTMS studies that we discussed point to the need for more extensive
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experimental planning and piloting, as well as more documentation of methodology (such as

degree of practice on the task). Moreover, the sensitivity to changes of the effect of rTMS on

the numerical Stroop task and its resistance to replication calls into question conclusions that

can be drawn from it, and thus indirectly, conclusions on the best method for rTMS targeting.

This calls for further work establishing best methods for TMS targeting. It also suggests more

generally the need for further development of procedures to establish what constitutes a brain/

behavior “TMS effect”, both in terms of the modeling of performance data and on the cogni-

tive processes involved, as well as engagement of brain networks supporting that performance.

The application of more sophisticated behavioral performance analysis such as drift diffusion

modeling may help parse out more subtle effects of rTMS on brain networks involved in the

task.
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