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Abstract

Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells 

into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising 

potential in translational medicine. However, the challenges remain in handling and detecting 

extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for 

disease treatment. Here, we review the recent engineering and technology advances by leveraging 

the power of sound waves to address the challenges in diagnostic and therapeutic applications of 

extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles 

of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. 

We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, 

biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances 

in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. 

Finally, we provide perspectives into current challenges and future clinical applications of the 

promising extracellular vesicles and biomimetic nanovesicles powered by sound.
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1. Introduction

Extracellular vesicles (EVs) carrying various bioactive molecules including proteins, 

DNAs, and RNAs, from their source cells, have been used for disease diagnosis and 

therapeutics.[1–3] EVs are present in biological fluids and play a critical role in multiple 
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physiological and pathological processes.[4–6] Serving as cell-cell communicators, EVs 

can be decoded to obtain developmental information about diseased cells or tissues.[7–9] 

Furthermore, due to their inherent ability to carry intracellular secretions, EVs can be 

manipulated and engineered to load drugs and regulate cell functions for targeted therapies. 

Despite these potential benefits, the wide application of EVs is hampered due to their 

heterogeneity and rarity.[10–12] To address the challenges, biomimetic nanovesicles, such 

as cell-derived membranes and protein-bound gas vesicles, have been rapidly developed 

recently.[13–15] These biomimetic nanovesicles can be manufactured and purified from 

microbes like cyanobacteria and haloarchaea on a uniform and large scale, making them 

well-suited for diagnostic applications.[16–19] Moreover, the biomimetic nanovesicles can 

inherit the biocompatibility and long-term stability of EVs, rendering them a promising 

drug delivery tool for in vivo disease treatment.[20–23] Importantly, these biomimetic 

nanovesicles could also be designed specifically via chemical methods to target certain 

cells, reducing the risk of side effects.[24–26] Although EVs and biomimetic nanovesicles 

hold tremendous potential in disease diagnosis and therapeutics, the challenges remain 

in handling, generating, and detecting them as well as exploring their controllability and 

responsiveness for disease diagnosis and treatment. Thus, there are tremendous unmet needs 

to develop novel technologies for exploring emerging applications of EVs and biomimetic 

nanovesicles.[27, 28]

Sound waves seem to be a promising method for addressing the current challenges of EVs 

and biomimetic nanovesicles and extending their applications in disease diagnosis. So far, 

sound waves have been widely used for life sciences and clinical medicine.[29–40] As a 

kind of mechanical vibration, sound waves can provide contactless, label-free, and highly 

biocompatible manipulation in the spatiotemporal dimension by creating desired acoustic 

pressure and acoustic streaming fields.[41–47] In particular, the forces and effects derived 

from sound waves can act directly and remotely on nano to micro-scale bio-objects such 

as EVs.[48–53] Through the integration with microfluidics and microfabrication,[54–62] 

the acoustofluidic devices and acoustic microdevices have been developed and utilized to 

separate, purify, and enrich EVs from patient samples, as well as accelerate the generation 

of EVs from cells.[63–65] The contents of isolated or generated EVs are analyzed for 

providing information on the presence of diseases for disease diagnosis or biomarker 

discovery. Moreover, sound waves can facilitate biosensing and real-time imaging of EVs 

for disease detection and diagnostic applications through their interaction with EVs and 

biomimetic nanovesicles.[66–68] These acoustic technologies offer advantages such as 

rapid isolation, high purity, and minimal damage to the EVs, improving EV-based disease 

diagnosis and biomarker discovery.

Sound waves have been used to be a promising tool for extending the therapeutic application 

of EVs and biomimetic nanovesicles. Sound waves can reversibly alter the structure and 

morphology of nanovesicle membranes, allowing for the engineering and modification 

of vesicles at the molecular level.[69–71] For instance, sound waves such as ultrasound 

beams can improve drug loading[72], transportation[73], and release[74] from these vesicles 

for drug delivery applications. Moreover, sound waves such as low-intensity ultrasound 

can enhance the generation of EVs by regulating EV biosynthesis, shining light on the 

large-scale production of EVs, and making them a promising tool for translational medicine 
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applications. So far, the therapeutic combinations of sound waves and nanovesicles have 

shown promise in treating various diseases including cancer, neural disorder, etc.[75–84] 

For example, sound waves can increase the permeability of the blood-brain barrier (BBB), 

allowing to delivery of large therapeutics into brain regions. Sound waves are non-invasive 

and can be applied remotely, which makes them a safe and convenient tool for delivering 

EVs to target tissues. Sound waves can be focused on a specific area of the human body, 

allowing for targeted delivery of EVs to specific tissues or organs. Sound waves can be used 

at low intensities, which can reduce damage to the EVs and target tissues. Sound waves 

can increase the efficiency of EV delivery by increasing their uptake by target cells.[85, 

86] Therefore, the combination of sound waves and EVs would significantly improve the 

therapeutic potential of EVs and biomimetic nanovesicles.

In this review, we summarize recent emerging applications of EVs and biomimetic 

nanovesicles powdered by sounds from the basic principle to their translational applications. 

Our objective is to introduce the unique roles and physical mechanisms of sound waves in 

various theranostic applications of EVs and biomimetic nanovesicles (Fig. 1). Specifically, 

to improve the current technologies of EVs and biomimetic nanovesicles, we elaborate on 

the fundamental effects of sound waves, namely, mechanical effect, acoustic cavitation, 

thermal effect, chemical effect, scattering effect, and piezoelectric effect. Moreover, we 

summarize the recent advances in employing these effects in the enrichment, manipulation, 

biosensing, bioimaging, and excitation of EVs and biomimetic nanovesicles for translational 

medicine. We conclude by offering perspectives on current challenges and future clinical 

applications of EVs and biomimetic nanovesicles powered by sound.

2. Sound waves acting on EVs

Sound is a form of mechanical energy, and can handle and manipulate micro- to nano-scale 

objects using various physical principles.[40, 87–92] The fundamental physical mechanisms 

behind the acoustic manipulation of EVs may involve mechanical effects, cavitation, thermal 

effect, chemical effect, scattering effects, piezoelectric effect, and their combinations (Fig. 

1). The mechanical effect primarily contributes to the major forces for EV manipulation, 

such as the acoustic radiation force, and hydrodynamic force driven by acoustic streaming, 

enabling the handling of EVs in the acoustic pressure field.[93–95] By adjusting the 

frequency and intensity of the acoustic waves, EVs can be manipulated and moved in 

the desired direction.[96, 97] Acoustic streaming,[98–101] on the other hand, acts on EVs 

by generating fluid momentum through acoustic energy attenuation. In addition to the 

mechanical effect, acoustic cavitation is another common mechanism explored in biological 

applications, where tiny bubbles are formed, grown, and even collapsed due to the pressure 

distribution.[102–104] These oscillating bubbles generate stable microstreaming within 

biofluids, altering the membrane’s permeability and generating strong mechanical pressure.

[105, 106] Sound waves also can generate cycles of compression and expansion in different 

regions, creating significant heat (thermal effect).[107, 108] The compression cycles exert 

a positive pressure on the fluid, pushing molecules together, while the expansion cycles 

exert a negative pressure, pulling molecules apart. This creates an unusual environment 

with vigorous molecule motions that can facilitate sonochemical reactions, mainly relying 

on the quick heating and cooling caused by acoustic cavity implosion.[109–112] Scattering 
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effect occurs when sound waves hit a structure with different acoustic impedance to the 

surrounding tissue that is smaller than the wavelength of the incident sound wave.[113–

115] The constructive and destructive interference of the scattered waves produces different 

intensities of echoes, enabling the visualization of various bio-objects. Conversely, EVs 

and nanovesicles can also affect the sound, with the piezoelectric substrate precisely 

sensing their contact by reading the electric signal derived from the change in vibration 

(piezoelectric effect).[116, 117] Therefore, the interactions between sound and EVs and 

nanovesicles can be categorized in the principles described above.

3. Diagnostics

EVs are promising biomarkers for disease diagnostics because they contain various cell-

derived signaling molecules, DNAs, RNAs, proteins, and lipids that can reflect abnormalities 

of organisms at the cellular level.[118–124] Attractively, sound waves can be a valuable 

tool in exploring and improving the biosensing and bioimaging of nanoscale exosomes 

and biomimetic vesicles, facilitating the more effective evaluation of gene expression, 

protein biosynthesis, cell function, and tissue development.[125, 126] In this section, we 

review the diagnostic values of EVs leveraged by sound waves, based on their ultrasonic 

responsiveness, genetic information, functional heterogeneity, and scattering properties.

[127]

3.1 Handling of extracellular vesicles.

Given the tremendous potential of EVs for diagnostic purposes, extensive attention has 

been attracted to separating and enriching these vesicles from various biofluids.[128–134] 

Currently, the most common technique used to separate EVs from biofluid samples is 

differential centrifugation, which relies on differences in size and density between cells, 

cellular debris, and subgroups of EVs.[135, 136] Although this technique can achieve high 

purity of exosomes, its time-consuming, expensive, and often associated with complicated 

protocols, limiting the applications of EVs. Acoustic waves represent an emerging approach 

and offer versatility, high precision, and biocompatibility for manipulating cells and 

bioparticles. This section provides a summary of the recent progress in the acoustic handling 

of EVs including separation, enrichment, and transportation of EVs and nanovesicles.

To effectively separate EVs from biofluids, acoustic-based microfluidics has emerged as 

a simple and reliable method within miniaturized chips.[130, 137] Lee et al. developed 

an acoustic nanofiller system capable of isolating exosomes (as EVs with a diameter less 

than 200 nm) from the cell culture medium, utilizing size-dependent acoustic forces to 

selectively isolate nanovesicles with a yield greater than 90%.[138] To enable the direct 

separation of exosomes from undiluted blood samples without preprocessing, efforts have 

been made to design and optimize acoustic fields and acoustofluidic devices.[139] In 

this regard, the Huang group proposed a multiplex acoustofluidic platform to directly 

isolate exosomes from whole blood.[140] This platform integrated two sequential separation 

acoustofluidic modules utilizing the titled-angle standing surface acoustic waves (SAWs). 

The first module was used to remove cells and obtain enriched EVs, followed by the second 

module to remove other EV subgroups and ultimately achieve purified exosomes. They 
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demonstrated an exosome purity of approximately 98% and a yield of 82% from the mixture 

of purified exosomes and EVs. More recently, to isolate exosomes with high speed, yield, 

and purity, the Lee and Liu collaborative team developed an ultrafast-isolation system, called 

EXODUS, that allowed label-free purification of exosomes from different biofluids (Fig. 

2a).[141] The authors used double-coupled harmonic oscillations into a dual-membrane 

filter configuration for vibrating nano-porous filters and generating acoustic streaming. Their 

results showed harmonic oscillations can reduce the fouling effect inside filters and promote 

the filtering process, indicating its promising potential for exosome research in life sciences 

and speedy practical translations in medicine.

Recently, acoustic strategies have demonstrated improved performance in the separation and 

transportation of exosomes when integrated with other physical fields or employing more 

powerful acoustic fields. For instance, Tayebi et al. combined electric and acoustic fields to 

sort subpopulations of EVs, particularly exosomes (diameter <200 nm) and EVs (diameter 

>300 nm).[142] By leveraging the synergistic effect of dielectrophoretic and acoustophoretic 

forces, the critical diameter for particle separation decreased significantly. In another study, 

the Huang group employed an acoustofluidic droplet centrifuge to enrich and separate 

nanovesicles simultaneously.[143] The use of slanted interdigital transducers (IDTs) to spin 

droplets resulted in the concentration of nanovesicles. The authors further demonstrated that 

two spinning droplets could attract nanovesicles with different sizes, enabling the separating 

subpopulations of EVs (Fig. 2b). Rather than using a simple acoustic field, the same 

group further presented a robust strategy known as the wave-pillar excitation resonance 

system.[144] This acoustic nanoscale separation method allowed for the rapid, single-step, 

high-purity (>96% small exosomes) fractionation of EV subgroups from biofluids without 

sample preprocessing (Fig. 2c). The most significant advantage of this acoustic platform was 

the cut-off size of the isolation as low as 50 nm. Beyond separation performance, sound 

waves can also activate and manipulate nanovesicles. Wu et al. developed a selective cell 

manipulation strategy using ultrasound-responsive gas-filled protein nanovesicles (GVs).

[145] The authors demonstrated that the acoustic radiation force (ARF) acted differently on 

GVs and GV-expressing cells due to the difference in the acoustic contrast factor (Fig. 2d). 

They showed the powerful capabilities of GV-expressing cells in controllable transportation, 

bioprinting, and cell sorting.

Altogether, the isolation and interrogation of EVs and biomimetic nanovesicles could be 

enhanced with the support of sound waves. The use of acoustic radiation force and acoustic 

streaming-induced Stokes drug force has emerged as a promising strategy for achieving 

precise control of EVs. By leveraging the mechanical properties of these nanovesicles, 

precisely controlled acoustic fields have shown excellent performance in purifying EVs 

and transporting cells. These advances in the use of acoustic mechanical effects on EVs 

and nanovesicles have the potential to revolutionize the field of point-of-care diagnostics, 

enabling rapid and sensitive detection of diseases. Moreover, they can also be valuable tools 

for tissue engineering and disease management. Further research is expected to advance the 

understanding of the underlying physical mechanisms and unlock the full potential of EVs in 

life science and medicine.
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3.2 Analysis of extracellular vesicles.

EVs and biomimetic nanovesicles have been widely used for various diagnoses such 

as biosensing and bioimaging at molecular, cellular, and tissue levels.[146–151] As 

natural carriers, EVs possess significant information that can reflect the physiological 

and pathological condition of an individual.[152] Moreover, biomimetic nanovesicles such 

as acoustically-responsive gas-filled nanovesicles (GVs) can carry different imaging and 

diagnostic probes. The detection and analysis of EVs and GVs are particularly useful 

in the early and personalized diagnosis of cancer. Wang et al. developed a SAW sensor 

that exhibited high sensitivity to detect exosomes (Fig. 3a). The SAW sensors used 

the piezoelectric effect to detect the phase delay of acoustic waves, and this acoustic 

sensing method has the advantages of label-free detection, easy operation, and real-time 

measurement.[153] Moreover, EVs and nanovesicles can also function as acoustic contrast 

agents for both sensings and in vivo imaging. Recently, Lu et al. demonstrated that GVs can 

produce strong contrast in magnetic resonance imaging (MRI) for clinical imaging diagnosis 

(Fig. 3b). Interestingly, the authors discovered that clustering-based GVs can be used as 

dynamic molecular sensors for multiplexed, functional, and genetically encoded molecular 

sensing and imaging.[154]

Biomimetic nanovesicles such as GVs possess stable molecular structures and scattering 

properties, making them an excellent candidate for bioimaging in clinics, disease 

monitoring, cellular function evaluation, and gene expression visualization. Natural EVs, 

without any modification, have demonstrated the ability to enhance ultrasound imaging 

through the scattering effect (Fig. 3c). Osborn et al. reported the first-ever echogenic 

exosomes that exhibited the unique acoustic responsiveness of traditional bubbles and 

the biocompatibility of nanoscale exosomes.[155] To explore the imaging ability of 

nanovesicles, a study reported a sialic acid (SA)-capped polymersome featuring a NIR 

profluorophore (pNIR) for lysosome activation-based optical and optoacoustic tumor 

imaging (Fig. 3d). Ultrasound signals generated from the reverse process of the ultrasound 

thermal effect, which is light-induced thermal expansion. The authors demonstrated that 

their pNIR@P@SA system can target tumor tissues for imaging-guided surgery.[156] 

Compared to optical methods, the sonic method allows for imaging at a much greater depth 

in tissues. To further improve the sensitivity and specificity of in vivo imaging, Hurt et al. 

reported that GV gene clusters in bacteria and mammalian cells exhibited a stronger acoustic 

scattering effect and produced non-linear signals from the background tissue (Fig. 3e). 

Their results demonstrated that GVs could non-invasively image in situ tumor colonization 

and gene expression in tumor homing therapeutic bacteria, track the progression of tumor 

gene expression and growth in a mouse model of breast cancer, and enable gene-expression-

guided needle biopsies of a genetically mosaic tumor, showing non-invasive access to 

dynamic biological processes at centimeter depth.[157] In another study, GVs with acoustic 

scattering properties were used to ultrasonically image gene expression in mammalian cells 

with high spatial and temporal resolution, as shown in Fig. 3f. The authors engineered 

intracellular air-filled protein nanostructures called GVs that produced ultrasound contrast. 

These GVs allowed visualization of cells at tumor sites at volumetric densities below 0.5% 

and enabled high-resolution imaging of gene expression in living animals.[158]
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Together, sound waves have emerged as a powerful tool for improving the diagnostic 

applications of EVs and biomimetic nanovesicles. Its piezoelectric and scattering effect 

enables the non-invasive, real-time, high-resolution, and high-sensitivity sensing in early 

disease detection and imaging in deep tissues or organisms for visualizing genes, proteins, 

cell functions, and events. Powered by sound waves, EVs and biomimetic nanovesicles may 

offer promising potential for bioimaging in clinics, disease monitoring, cellular function 

evaluation, and gene expression visualization. The stable molecular structure and scattering 

property of biomimetic nanovesicles make them better than optical imaging for deep-tissue 

imaging under some conditions. Through accessing dynamic biological processes remotely 

and noninvasively at a centimeter depth, this method shows great potential to improve 

the sensitivity and specificity for in-vivo imaging. Thus, the comprehensive summary of 

ultrasound-responsive nanovesicle applications and deep understanding of the underlying 

physical principles would find broader utility in life science and clinical medicine. The 

development of new and innovative approaches using ultrasound-responsive nanovesicles 

could lead to significant improvements in the diagnosis and companion diagnostics of 

various diseases, ultimately improving patient outcomes.

4. Therapeutics

EVs and biomimetic nanovesicles are developed as carriers of therapeutics for drug 

delivery.[159–163] These vesicles are capable of encapsulating both therapeutics and 

nanomedicine into their lipid bilayer structures.[164] Moreover, the natural membrane 

of these vesicles exhibits high compatibility, long-term circulation, and cell-targeting 

performance in vivo, making them attractive for drug delivery applications.[165, 166] With 

the help of sound waves, engineered EVs and biomimetic nanovesicles can be efficiently 

transferred, delivered, and released on demand. These vesicles are not only useful as drug 

carriers but also have direct therapeutic potential for diseases such as cancer, obesity, 

neural disorder, and other diseases.[167–174] Sound waves play a critical role in activating 

these engineered vesicles and promoting the generation of therapeutic vesicles for disease 

treatment. This section summarizes the current state-of-the-art applications in drug delivery 

and direct therapeutics.

4.1 Generation of extracellular vesicles.

EVs are generated through a process that involves double invagination of the plasma 

membrane and the formation of intracellular multivesicular bodies (MVBs) containing 

intraluminal vesicles, which can be influenced by sonic irradiation (Fig. 4a).[10, 175] 

Increasing evidence indicates that the endosomal sorting complex for transport required 

(ESCRT) machinery promotes the formation of vesicles in late-endosomal MVBs.[176, 

177] In particular, exosome biosynthesis contains a complete pathway from subcellular to 

cellular events and can be regulated by genetic, molecular, and protagonistic approaches. 

Studies have shown that low-intensity ultrasound (LIUS) can enhance the generation of 

exosomes by changing the expression of genes associated with exosome biosynthesis, such 

as Rab GTPases, which control the secretory pathway to fuse with the plasma membrane 

for releasing exosomes.[178] High-frequency ultrasound (HFUS) can also be used to 

promote the generation of exosomes from cells (Fig. 4b), due to HFUS-driven transient 
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reorganization of the lipid structure of the plasma membrane, enabling the recruitment 

of extracellular Ca2+. Furthermore, the calcium-initiated assembly of ESCRT accessory 

proteins can orchestrate the cascade of events that lead to the generation of exosomes.

[179] In addition to upstream regulation of exosome-related pathways, sound waves can 

also directly change the function of specific proteins to regulate exosome production. For 

instance, the actin cytoskeletal regulatory protein cortactin promotes exosome secretion 

by modulating branched actin dynamics, which controls multivesicular late endosomes 

docking on the plasma membrane and exosome production.[180] The acoustic stimulus can 

accelerate the biosynthesis and secretion of the exosomes, providing an alternative source of 

exosomes for therapeutic applications.

4.2 Drug delivery.

Drug delivery using EVs and biomimetic nanovesicles can be significantly enhanced 

with the aid of sound waves. These vesicles are involved in the entire process of drug 

delivery, including drug loading, transportation, penetration, and release, for treating 

various diseases.[181–186] Wang et al. developed an acoustofluidic device for loading and 

encapsulation of drugs, and silica nanoparticles into exosomes using acoustic radiation 

force, acoustic streaming, and cavitation (Fig. 4c). They demonstrated that exosome-

encapsulated nanomedicine exhibited exceptional efficacy in intracellular transport and 

inhibited tumor cell proliferation.[187] Inspired by the motor-like properties of biomolecules 

and organisms, gold nanowires coated with nanovesicles derived from red blood cells 

(RBCs) were utilized for on-demand transportation using ultrasound (Fig. 4d). The 

controllable propulsion phenomenon was achieved via acoustic streaming acting on the 

axially asymmetric concave ends, which allowed for efficient absorption and neutralization 

of RBC-targeted pore-forming toxins.[188] Additionally, ultrasound can temporarily open 

cellular and tissue barriers in the route of exosomal drug delivery, improving drug delivery 

efficacy. Sun et al. presented an ultrasound-assisted exosomal delivery of tissue-responsive 

mRNA to enhance gene therapy, utilizing ultrasound cavitation to minimize off-target 

effects in obesity therapy, as shown in Fig. 4e.[189] These findings highlight the potential 

of ultrasound in drug delivery, particularly in the context of exosomes and biomimetic 

nanovesicles.

Another key aspect of drug delivery is the control of drug release, which can be achieved 

by ultrasound simulation of sound-responsive EVs or biomimetic nanovesicles carriers. For 

example, Wang et al. fabricated an ultrasound-assisted erythrocyte membrane-derived hybrid 

nanovesicle drug delivery system (DOX/HMME@FA-NL) for enhancing tumor therapy 

(Fig. 4f). Due to the chemical effect of sound waves, reactive oxygen species (ROS) can be 

generated from the nanovesicle for oxidizing the unsaturated phospholipids, which caused 

the destruction of the membrane structure and controlled release of DOX.[190] Beyond 

the single function in drug delivery, more studies have reported novel nanovesicle systems 

with functions of drug loading, transportation, and release, simultaneously. Recently, Lu 

et al. developed a purely physical approach, using hydrodynamic forces induced by 

acoustic streaming, for controlling the loading and release of various drugs into and 

from nanovesicles (Fig. 4g). The authors provided a non-invasive method to control 
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material exchange across vesicle membranes, exhibiting the great potential in the cellular 

therapeutics.[74]

As a special tissue barrier, the blood-brain barrier (BBB) is a highly selective semi-

permeable structure in the central nervous system that permits the passage of various 

nutrients, ions, and macromolecules.[191, 192] This critical structure functions to protect 

brain tissue from pathogens and potentially toxic substances, yet also poses a significant 

challenge to the treatment of brain diseases. The delivery of macromolecular therapeutics 

across the BBB remains a major obstacle in the development of effective treatments 

for central nervous system (CNS) disorders.[193–195] However, recent advancements 

in ultrasound-assisted nanovesicles have shown significant potential in enhancing BBB-

crossing capacity and improving drug delivery.[196–198] Two underlying mechanisms 

contribute to the delivery enhancement of drug-loaded nanovesicles. Firstly, EVs have 

been demonstrated to actively cross the BBB through various uptake and transcytosis 

mechanisms, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, 

clathrin- and caveolae-independent endocytosis, and micropinocytosis, as shown in Fig. 

5a.[199] Secondly, ultrasound has been shown to directly increase drug permeability to the 

BBB, as shown in Fig. 5b. The use of HFUS and microbubbles has been shown to generate 

stable cavitation and microstreaming, leading to the transient disruption of BBB tight- and 

adherent junctions, such as vascular endothelial (VE)-cadherin, occludin, claudin-5, and 

zonula occludens-1 (ZO-1) accessory proteins.[200] For example, one work developed an 

HFUS/bubbles system to open BBB, enhancing the LNP-mediated mRNA delivery (Fig. 

5c).[201] Recently, Rezai et al. showed a noninvasive strategy to open BBB by using 

HFUS for treating Alzheimer’s disease. The authors developed an ultrasound system that 

contained a helmet with 1024 ultrasound transducers. These transducers can be used to 

activate microbubbles and open BBB (Fig. 5d).[202] Together, the combination of sound 

waves and nanovesicles holds great promise in significantly enhancing drug permeability to 

the central nervous system and improving therapeutic effects on neurodegenerative diseases.

These research efforts and advances show the great potential of sound-assisted EV-based 

drug delivery. The non-invasive, deeper penetration, and precise regulation nature of sound 

waves allows for precise regulation of drug pharmacokinetics both in vitro and in vivo. 

Additionally, the new drug delivery approach may revolutionize traditional oral and injection 

medications, providing higher efficiency with fewer side effects. These findings highlight 

the importance of further exploring the potential of sound-assisted EV-based drug delivery 

for translational medicine.

4.3 Direct treatment.

EVs and biomimetic nanovesicles possess significant therapeutic functions, and recent 

advances in molecular engineering and synthetic biology have paved the way for 

biomolecular and cell-based therapeutics.[79, 203–206] For instance, research has 

demonstrated that biomolecules and cells can be modified to produce mechanical effects 

inside cells and tissues using ultrasound-induced inertial cavitation, as shown in Fig. 6a. 

Gas vesicles (GVs) can be converted into microbubbles with strong local mechanical 

effects, thereby disrupting cells and tissues. This approach has significant potential 
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for tumor-homing probiotic therapy. In addition to their physical therapeutic function, 

exosomes exhibit important biological properties such as regulation of cell-cell signaling 

and intracellular biomaterial transport.[207] Recently, Sheybani et al. demonstrated that 

focused ultrasound-induced hyperthermia could enhance the release of glioma-derived 

extracellular nanovesicles (Fig. 6b). Their findings showed that ultrasound-triggered release 

of nanovesicles could invoke a key signature of innate immune activation.[208] In another 

study, researchers demonstrated the potential of ultrasound in treating neurodegenerative 

diseases (Fig. 6c). They utilized ultrasonic mechanical stimulation to enhance the generation 

of exosomes from astrocytes, which provided neuroprotective effects and reversed 

oligomeric amyloid-β-induced neurotoxicity in vitro. Moreover, these exosomes facilitated 

the clearance of amyloid-β plaques in vivo when combined with focused ultrasound-induced 

blood-brain barrier opening, indicating their potential in treating Alzheimer’s disease.[209] 

Altogether, EVs and biomimetic nanovesicles powered by sound waves hold great potential 

in disease treatments.

5. Perspectives

The potential of EVs and biomimetic nanovesicles in diagnostics and therapeutics powdered 

by sound has been demonstrated. However, challenges remain in exploring the underlying 

biological fundamentals of EVs and biomimetic nanovesicles and in leveraging sound 

physics and systems for broader translational medicine applications. Biologically, to 

uncover more cellular communication abilities of EVs, there is an urgent need for the 

quantitative study of the biogenesis, trafficking, and cellular entry of EVs and/or biomimetic 

nanovesicles.[210–212] Moreover, It is promising to massively generate EVs for therapeutic 

purposes, but the mechanism is still unclear for enhanced EV generation by sound waves. 

Technically, standardized purification and analytical procedures should be developed to 

study exosomes, which may reveal their functional heterogeneity.[213–215] Due to the 

nano- to submicron-sized of these vesicles, the forces generated by sound waves must 

be strengthened by advancing the design and incorporating other physical and chemical 

methods to achieve a better manipulation of these vesicles.[216–218] If possible, well-

designed sound beams may directly manipulate EVs in vivo for enhancing their diagnostic 

and therapeutic abilities.[219, 220] Clinically, the translational diagnosis and therapy using 

sound-powdered EVs and biomimetic nanovesicles are still challenging, mainly due to the 

variability of EVs biomimetic nanovesicles and the non-standard protocol in applying sound 

in vivo. For example, the precise detection of EVs in biofluids still hinders the development 

of the point-of-care diagnosis of various diseases in a precise and long-term manner. Finally, 

challenges remain in manipulating and decoupling multiple effects induced by sound waves 

to achieve diagnostics and therapeutic purposes of EVs and biomimetic nanovesicles.

The future of EVs and biomimetic nanovesicles powdered by sound waves is expected 

to further explore the fundamental life sciences and translational medical applications 

in several aspects: (1) One area of advancement is the development of point-of-care 

diagnostic technologies through the innovation and integration of various EV isolation 

and characterization approaches. For example, acoustic and acoustofluidic EV handling 

devices can be integrated with characterization techniques, such as multimodal sensors, 

to enable real-time detection and/or analysis of isolated EVs.[221, 222] Furthermore, 
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these devices can be miniaturized and integrated into portable lab-on-a-chip platforms, 

enabling the development of new disease detection methods as well as new approaches 

for monitoring disease progression in clinics. (2) Another advancement is the EV-based 

biomarker discovery for exploring disease etiology. The innovation of sound-powdered 

EV handling may address the current sample preparation and processing challenges for 

current multi-omics technologies for precise investigations of the biomarkers carried by 

EVs from patients. (3) Another future direction is the further development of ultrasound-

targeted delivery of EVs to specific tissues or organs in the body for disease treatment. 

[160, 223] Further efforts are required to design a better acoustic field and novel ultrasound-

responsive multifunctional EVs and biomimetic nanovesicles for improving the safety, 

specificity, efficiency, and convenience of current therapy approaches. (4) The integration 

of artificial intelligence (AI) has the potential to further improve the sound powdered 

diagnostic and therapeutic performance of these vesicles by providing deeper insights 

into precision medicine and personalized therapy.[224–228] Specifically, AI algorithms can 

optimize the design of acoustic fields and biomimetic nanovesicles, advance the system and 

procedure of the sound-powered EVs/biomimetic nanovesicles technologies, and facilitate 

the understanding of fundamental EV biology for various diseases. In conclusion, the 

combination of sound waves and EVs/biomimetic nanovesicles holds vast potential for 

future applications in the fields of life science and medicine.
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Fig 1. Overview of exploiting sound waves for applications of extracellular vesicles and 
biomimetic nanovesicles.
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Fig 2. Manipulations of extracellular vesicles.
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Fig 3. Detection and analysis of extracellular vesicles.
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Fig 4. Extracellular vesicles and biomimetic nanovesicles as excellent drug carriers.
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Fig 5. Vesicles cross the BBB enhanced by sound waves.
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Fig 6. Direct treatment using ultrasound.

Wu et al. Page 29

Nano Res. Author manuscript; available in PMC 2024 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Sound waves acting on EVs
	Diagnostics
	Handling of extracellular vesicles.
	Analysis of extracellular vesicles.

	Therapeutics
	Generation of extracellular vesicles.
	Drug delivery.
	Direct treatment.

	Perspectives
	References
	Fig 1.
	Fig 2.
	Fig 3.
	Fig 4.
	Fig 5.
	Fig 6.

