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MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit
proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several
hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the
impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations
identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse
model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in
upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic
cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell
cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML
with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic
cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.
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INTRODUCTION
Max-gene associated (MGA) is a transcription factor that uses an
n-terminal T-box domain and a c-terminal MYC-like basic helix-
loop-helix (bHLH) domain to regulate MAX-network and T-box
family targets [1]. MGA interacts with MAX, L3MBTL2, E2F6, and
PCGF6 as a part of the non-canonical polycomb repressive
complex (ncPRC1.6) [2] and is required for PRC1.6 complex
formation. In non-hematopoietic cells, the recruitment of MGA to
T-box and MAX-network target genes was shown to result in the
deposition of repressive histone marks such as H2AK119ub1 and
H3K27me3 [2, 3]. MGA is required for embryogenesis and its
depletion leads to aberrant embryonic stem cell differentiation
and embryonic lethality [4–6].
Heterozygous somatic alterations of MGA, the most common of

which lead to loss-of-function truncation/deletion of the MYC-like
bHLH domain, occur in 5% of all cancers and are commonly seen
in lung adenocarcinoma, endometrial carcinoma, and colorectal
cancer [7–10]. The loss of MGA in lung adenocarcinoma cells,
which occurs in ~8% of lung adenocarcinoma patients, was shown
to lead to an upregulation of MYC- and E2F6-target genes,
resulting in an increase in cancer cell proliferation and invasive-
ness [11, 12]. MGA has also been identified as a common genetic

alteration in hematological neoplasms, including acute myeloid
leukemia (AML), chronic lymphocytic leukemia (CLL), natural killer/
T-cell lymphoma, B-cell acute lymphoblastic leukemia (B-ALL), and
T-cell acute lymphoblastic leukemia (T-ALL) [13–18]. In particular,
we previously identified MGA mutations as recurrent alterations in
AMLs with RUNX1::RUNX1T1 fusions [17]. Likewise, similar muta-
tions have been observed in AMLs with KMT2A-PTD [16].
Despite the recurrence of these mutations, the molecular role of

MGA in normal hematopoiesis, as well as in hematopoietic malig-
nancies, has been understudied. This is partly due to the embryonic
lethality of in vivo MGA deficiency models, which we circumvented in
this study by developing a conditional knockout mouse model.
Harnessing a multidisciplinary approach to characterize the hemato-
poietic function of MGA in both human and mouse cells, we establish
that MGA loss leads to an increase in proliferation via the upregulation
of several cell cycle pathway genes and results in a shortened latency in
a mouse model of RUNX1::RUNX1T1-driven leukemia.

RESULTS
The reported mutations of MGA in pediatric RUNX1::RUNX1T1
leukemias are heterozygous, somatic mutations at variable variant
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allele frequencies and result in the deletion of the MYC-like bHLH
domain, potentially resulting in a protein with altered or abolished
function (Fig. 1A) [17]. We first assessed the protein localization of
MGA, including full-length MGA (WT-MGA) and 3 MGA truncations
(MGA p.E1953*, MGA p.S812*, and MGA p.C623*) identified in

patient samples, by transfecting GFP fusion expression vectors in
HEK293T cells (Fig. 1A). We also included an n-terminus truncation
which deletes the T-box domain; this construct expresses exons
14–23, including the bHLH domain, to serve as control along with
WT-MGA. WT-MGA was localized in both the cytoplasm and
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Fig. 1 MGA mutations lead to loss of molecular function. A Schematic of full-length MGA with protein domains and mutations identified in
RUNX1::RUNX1T1 AMLs and an experimentally-designed truncation of the T box domain [17]. Tag = GFP or Flag. Variant allele frequencies of
MGA mutations identified in RUNX1::RUNX1T1 patients called by whole exome sequencing and RNA read counts, adapted from (Faber et al.
[17]). B Immunofluorescent confocal microscopy of HEK293T cells expressing GFP-tagged MGA and the indicated truncations. MGA is labeled
with eGFP (green), fibrillarin with Alex Fluor568 (red), tubulin with Alex Fluor647 (cyan), and nucleus with DAPI (blue). Images were collected
on a Nikon C2 laser scanning confocal microscope using a 60X oil immersion optical lens. C Western blot analysis of immunoprecipitation of
Flag-tagged MGA, HA-tagged-MAX, and indicated truncations in HEK293T cells probed for components of the ncPRC1.6 complex.
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nucleus, while the MGA-ex14-23 control was exclusively found in
the cytoplasm, which suggests the n-terminal region is required
for nuclear localization (Fig. 1B). The MGA p.S812* and MGA
p.C623* mutant proteins were expressed exclusively in the

nucleus, while the MGA p.E1953* truncation maintained normal
localization in both the nucleus and cytoplasm. The retained
nuclear localization of MGA truncations suggests these mutations
could still be functional.
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We then performed co-immunoprecipitation (Co-IP) assays
followed by western blot to determine if MGA truncations interact
with components of the ncPRC1.6 complex. We co-expressed flag-
tagged WT-MGA, MGA-ex14-23, and MGA p.C623* with HA-tagged
MAX in HEK293T cells and performed IP-western blots. We found
that MGA p.C623* does not significantly bind L3MBTL2, PCGF6, or
MAX, suggesting it loses its interaction with the ncPRC1.6 complex
(Fig. 1C). Although nuclear MGA p.C623* does not interact with
components of the ncPRC1.6 complex, it still could interact with
the genome and hamper the genomic binding of MGA and the
ncPRC1.6 complex in a dominant-negative manner at MGA
binding sites. To examine this, we expressed HA-tagged MGA
p.C623* in MOLM-13 cells and observed a global loss in genomic
binding by Cleavage Under Targets and Release using Nuclease
(CUT&RUN) assays. In addition to this genome-wide decrease in
binding of the MGA mutant, binding was abolished at defined
MGA target sites such as CCND2 (Supplementary Fig. 1A, B).
The loss of interaction with the ncPCR1.6 complex and the loss of

DNA binding of MGA p.C623* supports the hypothesis that the
truncating mutations of MGA identified in patients are loss-of-
function mutations, leading to haploinsufficiency. To better under-
stand the impact of MGA loss in hematopoietic cells, we designed a
knock-out (KO) model of MGA using a CRISPR-based approach in
MOLM-13 cells (Fig. 2A). The loss of MGA in these cells led to a slight
increase in proliferation (Fig. 2B, C). RNA-sequencing (RNA-seq)
analysis showed that the loss of MGA led to the upregulation of
several genes that play a critical role in proliferation, genome
stability, and tumorigenicity, including Cyclin D1 (CCND1), Cyclin D2
(CCND2), and Structural Maintenance of Chromosomes 1B (SMC1B)
(Fig. 2D and Supplementary Fig. 1C) [19–21]. Supporting our RNA-
seq data, we found that MGA binds to the CCND2 and SMC1B
promoters and that MGA deletion reduces PCGF6 binding at these
promoters and at the genome-wide level (Fig. 2E and Supplemen-
tary Fig. 1D). In contrast, MYC binding is minimally disrupted and
potentially enhanced at CCND2 and SMC1B promoters (Fig. 2E,
Supplementary Fig. 1D). We also reveal that the loss of MGA resulted
in little to no change in the total number of TSS (transcription start
site) occupied by H2AK119Ub1, H3K27me3, and H3K4me3. How-
ever, its deletion led to an increase in the total number of TSS with
the active histone mark of H3K27Ac (Supplementary Fig. 1E, F). In
addition, the intensity (log2Fold change) of active marks H3K4me3
and H3K27Ac at TSS are significantly higher, while the intensity of
repressive mark H3K27me3 is lower in MGA-KO MOLM-13 cells,
suggesting that MGA depletion leads to a more active epigenetic
landscape (Supplementary Fig. 1G). Supporting these data, ATAC-
seq analysis demonstrates that the loss of MGA leads to a more
open chromatin state at the promoters of CCND2 and SMC1B with
minimal global chromatin accessibility changes (Fig. 2F, G). These
observations were validated in primary cord blood CD34+ cells
immortalized by RUNX1::RUNX1T1, in which disruption of MGA by
CRISPR leads to a reduction of PCGF6 binding to the CCND2
promoter associated with an overall increase in CCND2 expression,
as well as an increase in self-renewal capacity (Supplementary
Fig. 1H–J).
Considering that MGA loss leads to a cell growth advantage in

leukemic cell lines, we wanted to assess the role of MGA in

hematopoietic cell development. To this aim, we designed a
conditional knock-out model in the C57BL/6 background, in which
LoxP sites were introduced that flank exon 3 ofMga (Supplementary
Fig. 2A). When crossed with Vav1-Cre, this leads to the deletion of
exon 3 and the effective deletion ofMga in hematopoietic cells. This
conditional hematopoietic cell KO model circumvented the known
embryonic lethality of homozygous Mga loss [6], as offspring with
both heterozygous (Vav1-cretg/+ x Mgafl/+ = Mga(±)) and homo-
zygous (Vav1-cretg/+ x Mgafl/fl = Mga(−/−)) deletions of Mga
induced by Vav1-Cre were viable with normal Mendelian ratios.
Although the mutations identified in patients are heterozygous, we
also established a cohort of mice with homozygous deletion ofMga
to better define the functional role of Mga in hematopoiesis. RNA-
seq on lineage- (lin-),cKit+ hematopoietic stem and progenitor cells
(HSPCs) isolated from the bone marrow (BM) of Mga(+/+) (control),
Mga(±), and Mga(−/−) mice demonstrated dysregulation of several
critical pathways in Mga(−/−) but not in control or Mga(±) HSPCs,
including the upregulation of Myc and E2F targets and the
downregulation of extracellular signaling pathways including JAK-
STAT, TGFβ, and TNFα signaling (Fig. 3A, B, Supplementary Fig. 2C).
Similar to our findings in the MOLM-13 MGA knock-out model,
Mga(−/−) HSPCs had significant upregulation of cell cycle and
proliferation genes, including Ccne1, Ccnd1, Ccna2, Hdac2, and
Smc1b (Supplementary Fig. 2D). To assess the epigenetic changes
resulting from the loss of Mga, we performed CUT&RUN and ATAC-
seq on cKit+ HSPCs from these mice. Unfortunately, an anti-murine
MGA antibody compatible with CUT&RUN is not available. However,
both heterozygous and homozygous deletions of Mga led to
increases in H3K4me3 and H3K27Ac marks and a decrease in
H3K27me3 at the promoters of genes such as Ccne1, Smc1b, and
Cdk1 (Supplementary Fig. 3A–C). ATAC-seq analysis showed no
significant changes in promoter accessibility of Ccne1 and Cdk1,
however, the promoter of Smc1b, which is closed in control HSPCs,
showed significantly more ATAC-seq signals in both Mga(±) and
Mga(−/−) HSPCs (Fig. 3C). Globally, both heterozygous and
homozygous deletions of Mga led to a significant increase in open
chromatin at gene promoters compared to WT controls (5043
promoters (p < 0.05) and 3984 promoters (p < 0.05), respectively)
(Fig. 3D, Supplementary Fig. 3D, E). There is a ~ 50% overlap of open
promoters between Mga(±) and Mga(−/−) HSPCs leading to a
nearly identical gene set enrichment with both conditions showing
a strong enrichment of peaks of promoter regions of cell cycle-
related genes (Fig. 3E, F). When comparing the upregulated genes
from RNA-seq in Mga(−/−) HSPCs with the enriched ATAC-seq
open promoter genes for Mga(−/−), we found an overlap of
1006(18.2%) genes (Fig. 3G). This overlapping gene list is enriched
for cell cycle, pro-proliferation, and chromosome stability pathway
activation, suggesting that these cells have improved fitness and
proliferate faster than controls (Fig. 3H).
In addition to these molecular perturbations, loss of Mga in

hematopoietic cells also has functional consequences. Mga(−/−)
HSPCs have a significant increase in cell growth and proliferation
and in self-renewal capacity when compared to controls, while Mga(±)
HSPCs have only a slight advantage (Fig. 4A–D). These ex vivo analyses
of Mga deficient cells propose that the loss of Mga may alter
hematopoietic homeostasis. However, Mga(±) and Mga(−/−) mice at

Fig. 2 Loss of MGA in vitro promotes cell growth. AWestern blot analysis of MGA in WT and MGA-KO cells. B Flow cytometric analysis of WT
(n= 3) and MGA-KO (n= 3) MOLM-13 cells treated with EdU for 2 h and stained with DAPI. C Cell growth assay of WT and MGA-KO MOLM-13
cells over time. Statistics: Two-way ANOVA with Šídák’s multiple comparisons test; error bars indicate the standard error of the mean from
three or more biological replicates. D Volcano plot of differentially expressed genes (DEGs) from MGA-KO MOLM-13 cells. Red & Blue points
represent upregulated and downregulated genes, respectively, and that have wild-type MGA binding at their promoter-TSS as determined by
CUT&RUN. Green points represent nonsignificant transcriptional changes with MGA binding at promoter-TSS. E CUT&RUN coverage plots of
MGA, PCGF6, and MYC occupancy on CCND2 and SMC1B in WT (blue) and MGA-KO (red) MOLM-13 cells. F Chromatin occupancy at CCND2 and
SMC1B promoters from ATAC-Seq in WT (black) and MGA-KO (red) MOLM-13 cells. G Replicate tornado plots of ATAC-Seq showing the signal
enrichment at the most stringent threshold - Up2 and Down2 (FC > 2, FDR < 0.05).
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3–6months displayed normal CBCs and demonstrated no defect in the
development of B cells (B220+), T cells (CD3e+), or myeloid cells
(CD11b+) (Supplementary Fig. 3F, G). Ki67 staining of the B cell, T cell,
or myeloid cell populations showed a slight increase in cycling B and
T cells but not myeloid cells (Supplementary Fig. 3H). HSPC

immunophenotyping by flow cytometry showed no change in the
lymphoid progenitors (lin- cKit-, Sca-1low) or myeloid progenitors (lin-,
cKit+) in both Mga(±) andMga(−/−) mice, however, there was a slight
decrease in MPP3/4 (Lin- cKit+ Sca-1+ CD48+ CD150-) populations
for Mga(−/−) but not Mga(±) mice (Fig. 4E, F). Aged control, Mga(±),
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and Mga(−/−) mice (16 months) did not spontaneously develop a
hematopoietic malignancy (data not shown). Despite the observed
self-renewal phenotype, serial noncompetitive BM transplants of
HSPCs isolated from control, Mga(±), and Mga(−/−) mice (Supple-
mentary Fig. 4A) lead to no significant changes inWBC counts or in the
ability to reestablish mature blood cell production over a 16 week
period (Supplementary Fig. 4B–G). However, primary recipient mice
that received Mga(−/−) HSPCs had a slight decrease in LSKs and an
increase in myeloid progenitor cells (Supplementary Fig. 4B, D, E).
These data show that Mga deficiency is not sufficient for an

overt hematopoietic malignant phenotype, but do suggest that
the loss of Mga may promote a transcriptional and epigenetic
landscape that could enhance the aggressive phenotypes of
leukemia in the presence of an oncogenic driver. This was tested
using an established murine leukemia model using retroviral
expression of RUNX1::RUNX1T1 9a, which encodes a shortened
form of RUNX1::RUNX1T1, that induces the rapid development of
AML (Fig. 5A) [22]. Ex vivo RUNX1::RUNX1T1 9a expression in
Mga(+/+), Mga(±), and Mga(−/−) HSPCs showed that Mga(−/−)
HSPCs have an increase in cell growth when compared to controls,
while the Mga(±) HSPCs had little to no change, however, both
had a significant increase in CFU colony formation and serial
replating (Supplementary Fig. 5A–C). These data suggest that Mga
deficiency may enhance the development of leukemia in a
RUNX1::RUNX1T1 9 A model. This was confirmed in vivo as Mga(±)
and Mga(−/−) HSPCs expressing RUNX1::RUNX1T1 9 A rapidly
expanded and developed into leukemias characterized by
immature GFP+, cKit+ myeloid progenitor-like cells when
transplanted into lethally irradiated recipient mice (Fig. 5C and
Supplementary Fig. 5D, E, H). Mga deficiency in RUNX1::RUNX1T1
9 A expressing cells led to a significantly shortened leukemia
latency with a median survival of 177 days for controls, 146 days
for Mga(±) mice, and 132 days for Mga(−/−) mice (Fig. 5C).
Immunophenotyping of the BM and spleen confirmed that
RUNX1::RUNX1T1 9 A expressing tumors were cKit+ and morpho-
logically resembled immature blast cells (Fig. 5D–F and Supple-
mentary Fig. 5F, G). Pathological analysis of the bones (sternum),
brain and meninges, liver, and lungs further show that RUNX1::-
RUNX1T1 9 A expression in Mga(±) and Mga(−/−) HSPCs leads to
mice that are more severely infiltrated by leukemia compared to
control mice (Fig. 5G). To determine if the genomic binding of HA-
tagged RUNX1::RUNX1T1 is altered due to the loss of Mga, we
performed CUT&RUN on GFP+ sorted tumor cells isolated from
the spleen. These data show that the loss of Mga does not affect
RUNX1::RUNX1T1’s target binding which is supported by our CD34
model (Supplementary Fig. 1H and Supplementary Fig. 6A, B).
Transcriptional analysis by RNA-seq of sorted GFP+ RUNX1::-
RUNX1T1 9 A expressing tumors from Mga(±) and Mga(−/−)
moribund mice revealed upregulation of pro-proliferation path-
ways including MYC, ribosome, and oxidative phosphorylation,
while Mga(−/−) tumors interestingly had downregulation of
differentiation pathways including angiogenesis and hematopoie-
tic cell lineage (Fig. 6A–C). Mga(−/−) leukemic cells demonstrated
a higher expression of Smc1b as well as an increased expression of
cell cycle-related genes such as Ccng1, Ccnd3, Cdk1, Cdk19, Dek,

and Ranbp1 (Fig. 6D) [23, 24]. These transcriptional data support
our cell growth and serial CFU replating phenotypes. These
tumors were serially transplantable into sublethally irradiated mice
and the secondary mice quickly developed AML 4–10 weeks post-
transplantation. There was no significant difference between
Mga(+/+) and Mga(±) mice, while Mga(−/−) mice had a slightly
longer latency (Supplementary Fig. 7A, B).

DISCUSSION
Here we generated both human and mouse models to assess the
role of MGA in normal and malignant hematopoiesis. Our data
support the well-documented antiproliferative role of MGA and
show that loss of MGA leads to an open and active epigenetic
chromatin status, and subsequently the upregulation of several
critical pathways for cell growth and proliferation (Fig. 7) [2, 3].
Previous reports in non-hematopoietic models show that compo-
nents of the ncPRC1.6 complex, such as MGA and E2F6, regulate
transcriptional control of critical regulators of meiosis such as
STAG3, SMC1B, MEIOC, and CNTD1 and overall result in transcrip-
tional silencing [2, 25]. While components of the ncPRC1.6
complex are known to play a critical role in embryonic stem cell
maintenance, as depletion of MGA, L3MBTL2, and PCGF6 leads to
defects in pluripotency, proliferation, and differentiation, the
impact of disrupting this complex has not been thoroughly
evaluated in hematopoietic cells [3, 6, 26]. Our hematopoietic
MGA-KO models support these reports, revealing a similar
transcriptional landscape, including the increased expression of
genes such as Cdk1, Smc1b, and Ccne1, when Mga is disrupted.
Ccne1 and Cdk1 are known regulators of cell cycle progression,
while Smc1b is critical for genomic stability and is suggested to
play a role in cell proliferation [20, 21, 27, 28]. We believe the
upregulation of these genes and others is due to the direct loss of
MGA-dependent ncPRC1.6 binding and regulation leading to the
serial replating and cell growth advantage of Mga(−/−) HSPCs.
Overexpression of these genes has also been observed in several
cancer types including AML, hepatocellular carcinoma, and
ovarian carcinoma [29–31]. The lack of changes in H2AK119Ub1
upon MGA depletion was surprising. However, the decrease in
H3K27me3 and increase in H3K27Ac suggest both that there are
functional redundancies with other PRC1 complexes and that the
binding of MGA-dependent ncPRC1.6 to the loci is more critical for
transcriptional repression [32, 33]. To further support this, the
open chromatin of MGA target genes in MGA deficient cells is
likely due to the loss of L3MBTL2, which can regulate chromatin
compaction regardless of histone modification status [34].
Despite these clear transcriptional and epigenetic changes, the

loss of MGA in the hematopoietic compartment alone is not
sufficient to promote profound hematopoietic defects or the
development of a hematopoietic neoplasm, even under stress
conditions such as serial BM transplantation and 5-FU treatments
(data not shown). These findings support the notion that the loss of
function mutations in MGA observed in hematologic malignancies
are cooperating mutations that provide a transcriptional state that
may enhance the effects of tumor drivers. In support of this

Fig. 3 Loss of Mga in vivo leads to aberrant cell cycle pathway signaling. A Expression heatmap showing the enrichment of differentially
regulated pathways in WT, Mga(±), and Mga(−/−) HSPCs isolated from BM. The z-scale is set to between 2 and −2; red = upregulation, blue =
downregulation. B Rich factor plots of GSEA indicating upregulated pathways in Mga(−/−) HSPCs. The size of each dot represents gene count
and the color represents FDR. C Coverage plots of ATAC-seq analysis of chromatin status at on Ccne1, Smc1b, and Ccnd1 promoters in WT
(black), Mga(±) (blue), and Mga(−/−) (red) HSPCs. D ATAC-seq volcano plot for Mga(±) vs. WT and Mga(−/−) vs. WT. Statistical analysis for
ATAC-seq are: Up/Down = log2(FC) > 1 and q-value < 0.05, ns = not significant. E Venn diagram of differentially expressed peaks at open
promoters (p-value < 0.05) comparing Mga(±) and Mga(−/−) F GSEA plot for Mga(±) vs. WT and Mga(−/−) vs. WT. G Venn diagram of
differentially expressed genes with increased accessibility (p-value < 0.05) for Mga(−/−) and upregulated genes (p-value < 0.05) in RNA-seq of
Mga(−/−) HSPCs. H Rich factor plots showing the differentially regulated pathways of common up/open genes identified in G from RNA-seq/
ATAC-seq analysis. The size of each dot represents gene count and the color represents FDR. Statistics: Venn diagram p-values calculated using
hypergeometric distribution.
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of the mean from three or more biological replicates. B–E Two-way ANOVA with Dunnett’s multiple comparisons test.

M.E. Thomas III et al.

997

Leukemia (2024) 38:991 – 1002



0 50 100 150 200 250
0

25

50

75

100

Survival curve

Days

Pr
ob

ab
ili

ty
of

Su
rv

iv
al Mga(+/+) (n=18)

Mga(+/-) (n=12)
Mga(-/-) (n=21)

Mga(+/-)
Chi-square = 6.687
P-value = <0.0097

Mga(+/+) Mga(+/-) Mga(-/-)

Sternum 

A B

C D

E F

G
Blast CD71+ Myeloid B cells T cells

0

20

40

60

80

100

WBM

D
on

or
C

el
ls

(%
)

Mga(+/+)

Mga(+/-)

Mga(-/-)

✱✱
✱

ns
ns

ns
ns

ns
ns

ns
ns

Blast CD71+ Myeloid B cells T cells
0

20

40

60

80

Spleen

D
on

or
C

el
ls

(%
)

Mga(+/+)

Mga(+/-)

Mga(-/-)

✱✱
✱✱✱✱

ns
ns

ns
ns

ns
ns

ns
ns

Wee
k4

Wee
k8

Wee
k1

2

Wee
k1

6

Wee
k2

0
0

20

40

60

80

Blood (GFP+)

Li
ve

(%
)

Mga(+/+)

Mga (+/-)

Mga (-/-)

** ****

0.5M cells
Transduction

GFP+ 
Lin-

CD45.1
Mga(+/+)

RUNX1::RUNX1T1 9AMga(-/-)
Mga(+/-)

Mga(-/-)
Chi-square = 16.80
P-value = <0.0001

Brain and
Meninges 

Liver 

Lung

Mga(+/+) Mga ( +/-) Mga ( -/-)

WBM

Fig. 5 Mga deficiency enhances RUNX1::RUNX1T1 leukemia development. A Schematic of retroviral transduction of RUNX1::RUNX1T1 9 A in
lineage-negative HSPCs from WT, Mga(±), and Mga(−/−) mice (CD45.2) and transplantation into lethally irradiated recipient mice (C57BL/6, CD45.1).
B GFP expression in the peripheral blood over time. C Survival curve of recipient mice. Statistics were done using Mantel-Cox test in GraphPad Prism.
DCytospins of whole bonemarrow (WBM) harvested at sacrifice stainedwithWright–Giemsa;magnification 60X. Flow cytometric analysis ofWBM F and
Spleen G harvested from terminal recipient mice stained with tumor panel from Supplemental Table 1. Blast = GFP+ , cKit+ , lineage-negative. G.
Hematoxylin and eosin H, E -stained sections of sternum marrow, brain meninges, liver, and lungs harvested from indicated terminal recipient mice.
Magnification 40X. Statistics: BOne-way ANOVAwith Bonferroni correction (*p<0.05, **p< 0.01). Error bars indicate the standard error of themean from
three or more biological replicates. F, G Two-way ANOVA with Dunnett’s multiple comparisons test.

M.E. Thomas III et al.

998

Leukemia (2024) 38:991 – 1002



A

Mga(+/-) Up

Rich Factor

Ribosome

0.4

FDR

Proteosome
Oxida�ve Phosphoryla�on

Reac�ve Oxygen Species
Spliceosome
DNA Repair

MYC Targets V1
0.6 0.8

Mga(-/-) Up
Ribosome

Proteosome
Oxida�ve Phosphoryla�on

Reac�ve Oxygen Species
Spliceosome

DNA Repair

MYC Targets V1

Rich Factor
0.4

FDR

0.6 0.8 1

RNA Polymerase

Oocyte Meiosis
E2F Targets

MTORC1 Signaling

B

DC

Differen�a�on

MYC Pathway

E2F Pathway

Oxida�ve Stress

DNA Repair

Ribosome

Cellular Signaling

Mga(+/+) Mga(+/-) Mga(-/-)

NES: 2.646
p-value: 0.0
FDR: 0.0

Mga(-/-)

Mga(+/+)

NES: 2.515
p-value: 0.0
FDR: 0.0

Mga(-/-)

Mga(+/+)

Non-significant genes

Over-expressed genes

Under-expressed genes

Selected genes

Smc1b

Stag3
Ccng1

Hdac2
Dek
Ccnb2

Cdk1
Ccna2

Cdk19 Ranbp1

Fig. 6 Mga deficient tumors lead to hyperproliferative transcriptional profile. A Heatmap showing the enrichment of differentially
regulated pathways in RUNX1::RUNX1T1 9 A tumors (GFP+ ) from WT, Mga(±), and Mga(−/−) cells. The z-scale is set to between 2 and -2;
red=upregulation, blue = downregulation. B Rich factor plot of top upregulated pathways from RUNX1::RUNX1T1 9 A expression in Mga(±) and
Mga(±) cells. The size of each dot represents gene count and the color represents FDR. C GSEA enrichment plots of selected upregulated
pathways in RUNX1::RUNX1T1 expressing Mga(−/−) GFP+ cells vs. Mga(+/+) GFP+ cells isolated from spleens. D Volcano plot of differentially
expressed genes (DEGs) from RUNX1::RUNX1T19A expression in Mga(−/−) vs. Mga(+/+)cells. Statistics: One-way ANOVA with Bonferroni
correction (*p < 0.05, **p < 0.01). Error bars indicate the standard error of the mean from three or more biological replicates.

M.E. Thomas III et al.

999

Leukemia (2024) 38:991 – 1002



hypothesis, the latency of leukemia induced by a viral model of
RUNX1::RUNX1T1 9 A was significantly shortened when expressed in
both Mga(±) and Mga(−/−) hematopoietic cells, and the resulting
leukemic cells displayed a more immature phenotype.
RUNX1::RUNXT1 AMLs have been shown to be dependent on the

gene activation of D cyclins such as CCND2 and CCND1 [35, 36].
Overall, we propose that the shortened latency in our RUNX1::-
RUNXT1 9 Amodel is likely due to MGA-deficient cells being primed
for enhanced proliferation via the upregulation of cyclin genes and
MYC-targets, as shown by our transcriptional analysis of RUNX1::-
RUNXT1 9 A tumors. Consistent with this, our previous work
identified gain-of-function mutations in CCND2 in RUNX1::RUNX1T1
AMLs, which has been supported by other studies [37]. The findings
presented here suggest thatMGA loss may phenocopy these CCND2
mutations. Further supporting this claim is the observation that
MGA and CCND2 were mutually exclusive in our previous study [17].
Collectively, our data highlight MGA as an important regulator of
pathways critical for leukemia development, such as MYC activation,
cell cycle, and oxidative phosphorylation, and that loss of function
mutations identified in patients can functionally cooperate with the
RUNX1::RUNX1T1 oncoprotein [21, 38–41]. Importantly, we have
also defined the in vivo consequences of Mga loss by using a
conditional knock-out approach that circumvents the embryonic
lethality of constitutional knock-out models, thus providing the
scientific community with an important model.

METHODS
Animals
We used Ingenious Targeting Laboratory (Stony Brook, NY, USA) to generate
the conditionalMga KOmodel in C57BL/6 mice that bore a LoxP-flanked exon
3 ofMga using embryonic stem cell-based gene targeting. CD45.1 and C57BL/
6mice were obtained from Jackson Laboratory. Blood, WBM, and spleens were
harvested as previously described [42]. HSPCs were isolated from WBM (both
hips, femurs, and tibias) using EasySep™ Mouse Hematopoietic Cell Isolation
kit. All Animal studies were approved by St. Jude Children’s Research Hospital
Institutional Animal Care and Use Committee.

RNA-Seq analysis
MOLM-13 cells or Lin-,cKit+ HSPCs were harvested and RNA was extracted
using a quick-RNA Microprep kit (Zymo Research, CA). RNA-seq was done

using TruSeq Stranded Total RNA library kit (Illumina, CA) as previously
described [43]. The RNA-Seq paired-end reads were mapped to the mouse
mm10 genome or human hg38 genome using STAR and quantified using
RSEM [44, 45]. Differentially expressed gene analysis and GSEA was done as
previously described [42, 46].

CUT&RUN analysis
MOLM-13 cells or Lin-, cKit+ HSPCs were harvested at 500,000 cells for
each antibody probe. Genomic localization profiling was performed using
Cleavage Under Targets and Release Using Nuclease kit (CUT&RUN)
according to the manufacture’s protocols (Epicypher, NC) as previously
described [47]. Library preparations of up to 6 ng of isolated DNA
fragments were done using NEBNEXT Ultra library prep Kit with AMPure XP
beads (Beckman Colter, CA) following the NEBNext® Ultra™ DNA Library
Prep Protocol for Illumina® With Size Selection (E7370) V.2 (fragment size <
70 bp). CUT&RUN libraries were sequenced using Novaseq 6000 by
performing 100 cycles of paired-end sequencing (200 cycles total).
CUT&RUN bam files were pre-processed and peaks were called using
methods previously described [48]. Peaks from replicate samples were
merged and fragments covering those peaks were counted using bedtools
version 2.25 [49]. Peaks differentially expressed between treatment groups
were determined using a combination of the R tools limma and voom as
previously described [46]. Peaks were annotated using HOMER version 4.10
[50]. The annotation was simplified by combining the HOMER annotations
into 3 categories. Peaks within 3 kb of a transcription start site were called
‘TSS ± 3 kb’. Peaks annotated as intergenic were labeled as “Intergenic”.
Peaks annotated as non-coding were labeled “non-coding” and all other
peaks were labeled ‘Genebody’.

ATAC-seq analysis
MOLM-13 cells or Lin-,cKit+ HSPCs were harvested at 50,000 cells. Open
chromatin status was assessed using the assay for transposase-accessible
chromatin via sequencing (ATAC-seq) kit (Active Motif, CA) following the
manufacturer’s protocols. Library prep, included in kit, was done following
the manufacturer’s protocols. ATAC-seq libraries were sequenced using
Novaseq 6000 by performing 100 cycles of paired-end sequencing (200
cycles total). Analysis was done by the Center for Applied Bioinformatics at
SJCRH. Raw reads in fastq format were processed with Trim-Galore tool
(v0.4.4, Krueger F. (2012)), in order to remove potential adapters and
quality trim 3’ end of reads with cutadapt program, followed by FastQC
analysis [51, 52]. A quality score cutoff of Q20 was used and the first 15 bp
of each reads were also clipped to reduce the GC bias. Next, reads were
mapped to the human reference genome (hg38; GRCh38.p12) with BWA
mem (0.7.17-r1188), then converted to BAM format and deduplicated with
fq2bam (v3.0.0.6) [53]. Subsequently, uniquely mapped properly paired
reads were extracted with samtools (v1.2), and fragments were extracted
with bedtools(v2.24.0) [49, 54]. Chromatin status (open/closed) was
defined by a q-value of ≤ 0.05 and a log2FC of ± 2 compared to indicated
WT control.

Data presentation and statistical analysis
Data graphs were created using GraphPad Prism (San Diego, CA). One-way
ANOVA with Bonferroni correction, Two-way ANOVA with Dunnett’s or
Šídák’s multiple comparisons test was used for statistical analyses where
indicated. For survival curves, Kaplan-Meier estimates were computed in
GraphPad Prism and statistical analysis was done using the Mantel-Cox
test. Venn diagram p-values were calculated using hypergeometric
distribution [55]. For One-way ANOVA with Bonferroni correction statistical
significance was set at the following: *p < 0.05, and **p < 0.01 compared to
indicated controls.

Study approval
All animal studies and experimental procedures were performed in
accordance with protocols approved by St. Jude Children’s Research
Hospital Institutional Animal Care and Use Committee.

DATA AVAILABILITY
RNA-seq, CUT&RUN, and ATAC-seq data will be deposited into Gene Expression
Omnibus (GEO) (GSE253753).
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