Skip to main content
. 2024 Apr 23;14:1380599. doi: 10.3389/fonc.2024.1380599

Table 4.

Analysis of deviance for various logistic regression models.

Model Comparison Res.Df. Res.Dev. Df. Dev. p-value
 Radiomics + Smoke + ETOH + T 70 56.74
 Smoke + ETOH + T 72 84.42 -2 -27.68 <0.0001
 Radiomics + Smoke 74 60.47
 Smoke 76 89.33 -2 -28.86 <0.0001
 Radiomics + ETOH 74 59.34
 ETOH 76 90.13 -2 -30.79 <0.0001
 Radiomics + T 72 59.24
 T 74 84.78 -2 -25.53 <0.0001
 Radiomics + ETOH + Smoke 73 58.99
 ETOH + Smoke 75 89.10 -2 -30.11 <0.0001
 Radiomics + T + Smoke 71 58.60
 T + Smoke 73 84.65 -2 -26.04 <0.0001
 Radiomics + T + ETOH 71 56.88
 T + ETOH 73 84.45 -2 -27.57 <0.0001
 Radiomics + Smoke + ETOH + T 70 56.74
 Radiomics 75 61.55 -5 -4.81 0.4398

Comparisons assess the impact of radiomics inclusion. The first tests the superiority of the full model (radiomics and clinical) over the clinical model alone, while the rest evaluates the model with or without radiomics. Significant p-values favor the full model in all comparisons. The table details degrees of freedom (Res.Df.), residual deviance (Res.Dev.), changes in degrees of freedom (Df.), changes in deviance (Dev.), and associated p-values.