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Animals can respond to extreme climates by behaviourally avoiding it or by physiologically coping with it. We understand
behavioural and physiological thermoregulation, but water balance has largely been neglected. Climate change includes
both global warming and changes in precipitation regimes, so improving our understanding of organismal water balance
is increasingly urgent. We assessed the hydric physiology of US federally endangered blunt-nosed leopard lizards (Gambelia
sila) by measuring cutaneous evaporative water loss (CEWL), plasma osmolality and body condition. Measurements were taken
throughout their active season, the short period of year when these lizards can be found aboveground. Compared to a more
mesic species, G. sila had low CEWL which is potentially desert-adaptive, and high plasma osmolality that could be indicative
of dehydration. We hypothesized that throughout the G. sila active season, as their habitat got hotter and drier, G. sila would
become more dehydrated and watertight. Instead, CEWL and plasma osmolality showed minimal change for females and
non-linear change for males, which we hypothesize is connected to sex-specific reproductive behaviours and changes in food
availability. We also measured thermoregulation and microhabitat use, expecting that more dehydrated lizards would have
lower body temperature, poorer thermoregulatory accuracy and spend less time aboveground. However, we found no effect
of CEWL, plasma osmolality or body condition on these thermal and behavioural metrics. Finally, G. sila spends considerable
time belowground in burrows, and burrows may serve not only as essential thermal refugia but also hydric refugia.
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Introduction
Desert animals live life at the extremes, experiencing severe
temperatures and sparse water resources. To avoid such harsh
conditions, animals can behaviourally buffer themselves by
selecting favourable microhabitats (Sunday et al., 2014) and
by limiting their activity to specific times of year (Storey,
2002) or times of day (Abom et al., 2012; DeGregorio et al.,
2018). Many animals seek refuge in burrows when under
threat of desiccation (Nagy and Medica, 1986; Nagy, 1988;
Fishman et al., 1992; Christian et al., 1996; Fuller et al.,
2021). However, behavioural responses to climate are only
effective when microhabitat heterogeneity is available (Sears
et al., 2016). Thus, physiological limits are what ultimately
determine the geographic distribution of species (Kearney
et al., 2018). There has been a wealth of research on such
thermal limits (e.g. Angilletta, 2009; Sinervo et al., 2010;
Taylor et al., 2020), but a comparative paucity of research on
hydric limits. Climate change is well underway (IPCC, 2021),
and hydric costs of thermoregulation are likely the biggest
drivers of population declines (Riddell et al., 2019a, 2021).
It is imperative that we understand the water balance and
dehydration tolerances of organisms to predict how species
may or may not cope with climate change. This is especially
urgent for threatened and endangered species adapted to arid
environments, which are already living under hydric stress.

Blunt-nosed leopard lizards (Gambelia sila) are US fed-
erally endangered desert lizards that have been the subject
of plenty of thermal physiology and ecology research (e.g.
Germano, 2019; Ivey et al., 2020; Gaudenti et al., 2021)
but no hydric physiology research. Adult G. sila are typi-
cally active aboveground from April to July each year, with
some opportunistic activity in March, August, September
and October (Montanucci, 1965 and 1967; Germano and
Williams, 2005). These lizards rely on perennial shrubs, large
annual forbs and mammal burrows to behaviourally buffer
themselves from mid-day and late summer heat (Ivey et al.,
2020; Gaudenti et al., 2021). Despite having ‘apparently
no requirement for [free-standing drinking] water’ (Ahlborn,
2000) and lower likelihood of occurrence where rainfall is
higher (Stewart et al., 2019), studies suggest that G. sila fails
to reproduce in drought years (Germano and Williams, 2005;
Westphal et al., 2016). So, while these lizards may be able to
behaviourally buffer themselves from temperature extremes,
water restriction appears detrimental. Accordingly, we set out
to characterize the hydric physiology of G. sila (Fig. 1).

To assess the typical hydration levels and water loss rates
of G. sila, we measured cutaneous evaporative water loss
(CEWL), plasma osmolality and body condition (Fig. 1A)
throughout their active season. Because they should be
adapted to hot, dry desert conditions, we hypothesized that G.
sila would have extremely low water loss rates (Cox and Cox,
2015), and that variation in these rates among individuals
would be impacted by individual lizards’ hydration. We
predicted that G. sila would have higher plasma osmolality

(i.e. be less hydrated) and lower CEWL compared to mesic
species, which live in comparably water-rich environments.
We also expected that the hydric physiology of G. sila would
change throughout their active season relative to seasonal
weather patterns (Davis and DeNardo, 2009, 2010). In the
spring when their habitat is relatively lush, G. sila should
be relatively hydrated (Fig. 1C). But throughout their active
season, as their habitat gets hotter and drier, G. sila should
become dehydrated and maximize water conservation by
reducing CEWL (Fig. 1D). In addition to measuring hydric
physiology, we used temperature-sensing radio-transmitters
to record body temperature and track microhabitat use. As
temperatures increase throughout their active season, G. sila
spends progressively more time belowground (Ivey et al.,
2020; Gaudenti et al., 2021), but their decreased surface
activity could also be related to dehydration (Davis and
DeNardo, 2009). We hypothesized that hydration would
constrain thermoregulation, predicting that more dehydrated
individuals would maintain lower body temperatures, have
poorer thermoregulatory accuracy and spend less time
aboveground (Davis and DeNardo, 2009; Sannolo and
Carretero, 2019). We also predicted that across individuals,
as their habitat got hotter and drier throughout the season, G.
sila would become dehydrated, leading them to spend more
time belowground to conserve water.

Materials and Methods
Capture and identification
In the spring and summer of 2021, we used hand-held lassos
to capture 79 (32F, 47 M) G. sila in the Carrizo Plain National
Monument, CA, USA (Table 1). Sample size was constrained
only by time and search effort. Each lizard was implanted
with a passive integrated transponder (PIT-tag) for identifi-
cation upon recapture (8 mm MUSICC Integrated Chip; Avid
Identification Systems, Inc, Norco, CA, USA), and a subset of
lizards (Table 1) were fitted with very high frequency (VHF)
temperature-sensing radio transmitter “collars” with 16 cm
whip antenna (model BD-2 T; Holohil Systems Ltd, Carp,
Ontario, Canada; collar mass 1.9–2.7 g, 3.4–8.6% lizard
body mass) as described in Ivey et al. (2020). Throughout
the study, 13 lizards lost their transmitter collars, and we re-
fitted two of those collars to different lizards in May (Table 1).
Handling of G. sila was approved under Federal Recovery
Permit TE-166383, an MOU issued to M.F. Westphal in 2018
by the California Department of Fish and Wildlife, and Cal
Poly IACUC #1809.

Hydric physiology
At each capture or recapture, we collected the following data:
lizard mass (Pesola 50–100 g precision scale; ± 0.1 g), snout-
vent-length (SVL; ± 1 mm), sex, blood samples either from
caudal venipuncture using heparinized needles or from the
post-orbital sinus of the right eye using heparinized micro-
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Figure 1: Hydric physiology variables and predictions for this study on G. sila. Variables related to hydric physiology (a) include plasma
osmolality, CEWL and body condition. VPD (b) quantifies the drying power of the air as a function of both air temperature and humidity. High
VPD is desiccating to organisms. We predict that when environmental VPD is low (c), such as in early spring when G. sila are emerging from
hibernation, they should be able to maintain relatively good hydration, measured as low plasma osmolality and high body condition. Because
lizards are hydrated, CEWL should be unrestricted (c). Conversely, we predict that when VPD is high (d), such as during the summer, G. sila
should become relatively dehydrated, measured as higher plasma osmolality and lower body condition compared to when they are not
exposed to desiccating conditions. Because lizards are dehydrated, CEWL should be reduced to aid in water conservation (d). Artwork of G. sila
by S. Mieko Temple.

Table 1: Number of G. sila for which hydric physiology was evaluated
during each measurement period of the study

Measurement
period

Newly captured
lizards

Recaptured
lizards

Total

April 23–25 67 (39) - 67

May 7–8 11 (2) 26 (21) 37

July 14 1 14 (14) 15

Total 79 40 119

Numbers in parentheses are the subset of lizards that were fitted with radio-
transmitter collars.

hematocrit capillary tubes (Clay Adams, Becton Dickinson,
Sparks, MD, USA), and CEWL (± g m−2 h−1) in 3–5
technical replicates on the same spot on the mid-dorsum using
an AquaFlux evaporimeter (model AF200; BioX Systems,

London, UK). For each CEWL replicate group, we omitted
outliers based on boxplot distributions (n = 105 overall) and
averaged the remaining values. The AquaFlux measures
CEWL as instantaneous movement of water across the
skin of a 3-mm diameter area within a closed chamber.
When the measurement chamber is pressed against the
skin and a closed system is created, accumulated water is
removed, then instantaneous water flux is recorded when
the reading stabilizes to ±0.02 g m−2 h−1. The device has
high repeatability (Imhof et al., 2014), and it was calibrated
following manufacturer guidelines prior to our study and
before each set of measurements. Additional explanations
and uses of the AquaFlux evaporimeter are available (Imhof
et al., 2009; Elkeeb et al., 2010; Lourdais et al., 2017; Weaver
et al., 2022). Immediately following CEWL measurements,
we recorded lizard body temperature (± 1◦C) by inserting a
thermocouple into the cloaca (Traceable Pocket-size K-type
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Thermocouple, model 14–649-81; Thermo Fisher Scientific,
Waltham, MA, USA). The evaporimeter also recorded
ambient temperature (± 0.1◦C) and relative humidity (±
0.1%) at the time of measurement. We used these values to
calculate vapour pressure deficit (VPD; Fig. 1B) at the time
of CEWL measurement using the equations:

VPD = es − ea (1)

es = 0.611 × exp
(

17.502 × T
T + 240.97

)
(2)

ea = es × RH
100

(3)

where es is the saturation vapour pressure (kPa) and ea is the
actual vapour pressure (kPa), both of ambient air at a given
temperature; T is temperature (◦C) and RH is percent relative
humidity (Campbell and Norman, 1998). VPD is a more
relevant metric than relative humidity because it assesses the
drying power of the air, and therefore the desiccation pressure
to which lizards are exposed. A consistent relative humidity
value could refer to a wide range of VPDs, depending on
temperature (Fig. 1B).

Blood samples were stored on ice for transport to the lab,
then centrifuged in a micro-haematocrit centrifuge (model
IEC MB; Damon IEC Division, Thermo Fisher Scientific) for
2 minutes. Percent haematocrit (± 1%) was recorded, and
plasma was stored in a refrigerator as needed. Haematocrit
is the percent red blood cells of blood; the remaining
percent is mostly plasma, which is water-based, so the
relative quantity of haematocrit could indicate hydration
state (see Supplementary Appendix A for results). Plasma
osmolality (± 3 mmol kg−1) was measured in 1–3 technical
replicates on a vapour pressure osmometer (VAPRO, model
5600; Wescor, ELITech, Logan, UT, USA) within 48 hours
of blood collection. For triplicate groups with variation
exceeding the precision of the osmometer, we removed a
replicate if its value did not group with the other two
(n = 48 overall), and the remaining replicates were averaged.
Plasma osmolality refers to the concentration of solutes in
the blood; dehydrated animals should have high plasma
osmolality.

We compared G. sila CEWL and plasma osmolality to
those of Western Fence Lizards (Sceloporus occidentalis), a
mesic lizard measured following the same methods (Weaver
et al., 2023). This study presents the first hydric physiology
measurements taken on G. sila. It is also unclear whether
CEWL measurements taken with the AquaFlux evaporimeter
are comparable to measurements taken with respirometry–
hygrometry or based on mass loss. Thus, our comparison to
S. occidentalis is the best way to contextualize our novel mea-
surements of G. sila. We captured S. occidentalis throughout
the campus of California Polytechnic State University, San
Luis Obispo, CA, USA, ∼ 100 km northwest of the study site
for G. sila. All hydric physiology methods were identical for
the two species.

In April and May, we also assessed the gravidity of 19
radio-collared females and the approximate stage of their
egg development by palpating the lower abdomen. Gravidity
was not assessed for females that were not radio-collared, as
they were typically small, and we assumed them to be repro-
ductively inactive. We examined egg development including
clutch and egg size with ultrasonography (Sonosite M-Turbo
with a HFL50x/15-6Mhz transducer; FUJIFILM Sonosite Inc,
Bothell, WA). All measurements and samples were taken
within 2–3 hours of capture, with the exception of some
females being ultra-sounded the morning following capture.
Early in the study, we attempted to supplementally hydrate
half of the radio-collared lizards by offering them drinking
water prior to release. However, lizards did not drink water,
and we observed no effects of this treatment on the hydration
of those offered water (see Supplementary Appendix B for
results), so we pooled all data for further analysis. Imme-
diately after measurements, lizards were released at their
location of capture.

Thermal ecology and behaviour
We radio-tracked lizards between 07:00 and 18:00 daily from
the time they were fitted with collars through mid-July using
VHF receivers (TR-8 Handheld Scanning Receivers; Telonics
Inc., Mesa, AZ, USA) fitted with antennas (Yagi; Commu-
nications Specialists, Orange, CA, USA). Due to dropped
transmitter collars and lost signals, we tracked 39 of the
41 collared lizards for a mean ± SD of 45 ± 38 observations
over 45 ± 29 days per lizard. We recorded the microhabitat
use of each lizard each time. We observed it as one of the
following: ‘Burrow’ when lizards were belowground inside
burrows engineered by Giant Kangaroo Rats (Dipodomys
ingens), including lizards that could not be seen and those
that were visible deep inside the burrow; ‘Full Shade’ when
lizards were under the shade of a shrub and the entire body
was shaded; ‘Partial Shade’ when lizards were under shade
but part of the body was in the sun; and ‘Open’, when
lizards were aboveground in full sun, not under the shade
of a shrub, including when at the mouth or apron of a
burrow but still visible from above. We also recorded field
active body temperature (Tb) with a stationary 3 m tall solar-
powered omni-antenna (model RA-6B; Telonics, Mesa, AZ,
USA; RemotePro 2.5 W Solar Power System; Tycon Systems,
Bluffdale, UT, USA; Eldora 10P solar panel; Vikram Solar Ltd,
West Bengal, India) and receiver with data acquisition system
(TR-5 Option 320; Telonics) as described in Ivey et al. (2020).

At the end of the study in July, we excavated 11 of the
estivating lizards and recaptured the 3 lizards that were still
active aboveground. Only these 14 lizards survived to the
end of the active season and/or still had detectable radio-
transmitter signals; there were three other lizards that we
tracked to the end of the study, but we were unable to excavate
them and remove their collars. Throughout the season, we
found 13 dropped transmitter collars, 9 of which may have
simply fallen off the lizard and 4 of which showed clear signs
of depredation. We lost the signal of 11 transmitter collars,
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which could be due to dead batteries or lizards that were
carried away by avian predators.

Climate conditions
At our study site, we recorded temperature and relative
humidity 1 m inside 11 D. ingens burrows every 30 minutes
for the duration of the study (HOBO External Tempera-
ture/RH Sensor Data Loggers, model MX2302A; Onset Com-
puter, Bourne, MA, USA). We also obtained hourly ambient
temperature, relative humidity, wind speed and precipitation
from a weather station 3.7 km due east of the study site
(station ID CXXC1; Natural Resources Conservation Service,
2021).

Statistical analysis
Hydric physiology

We used linear regression (LR) to assess whether the vari-
ables CEWL, plasma osmolality and body condition were
interrelated. We also used LRs to quantify the effect of lizard
Tb, ambient temperature, and ambient VPD at the time of
measurement on CEWL. Lizards ranged from small yearlings
(not radio-collared) to large adults (radio-collared; Table 1),
so we calculated body condition as scaled mass index (g’; Peig
and Green, 2009) using a scaling equation derived from our
April mass and SVL measurements. We only made one scaling
equation based on the lizards with repeat measurements. SVL
did not change throughout the study (linear mixed-effect
model (LMM) with individual lizard ID as a random effect:
estimate = 0.1, SE = 0.1, t43 = 0.7, P = 0.5). Body condition is
an assessment of relative body mass for a given lizards’ body
length; for gravid female lizards, body condition is expected
to be high and mostly represent reproductive progress rather
than body condition alone. To test differences in plasma
osmolality, CEWL and temperature and VPD at the time of
CEWL measurement between G. sila and S. occidentalis, we
ran LR for each variable with species as the explanatory
variable, then we calculated model-estimated means and con-
fidence intervals.

To assess how hydric physiology changed throughout the
G. sila active season, we used LMMs to quantify how CEWL,
plasma osmolality and body condition differed across mea-
surement periods and between sexes, with individual lizard ID
as a random effect to account for repeated measurements (1–3
measurements per lizard). For CEWL, we tested the addition
of covariates ambient temperature and VPD at the time of
CEWL measurement. To assess whether the likelihood of a
female being gravid was related to CEWL, plasma osmolality
or body condition, we used generalized linear mixed-effects
models (GLMMs) with a binomial distribution and individual
lizard ID included as a random effect.

Thermal ecology and behaviour

For each lizard, we took a subset of daily Tb data between the
80 and 90th percentiles, then calculated daily ‘maximum Tb’

as the mean of that subset. We used the 80–90th percentiles
instead of actual daily maximum Tb, and extreme surface
body temperature values from each lizard (>2 SD away from
individual mean) were omitted (<5% of all points) because
the highest temperature values for body surface temperatures
tend to be inflated due to the lizard basking and exposing
their temperature-sensing radio-transmitter directly to the
sun. We calculated thermoregulatory accuracy by subtracting
preferred Tb (data from Ivey et al., 2020; Gaudenti et al.,
2021) from each instance of daytime Tb (between 07:00 and
19:00; as in Ivey et al., 2020) and taking the absolute value
(Hertz et al., 1993), with zero representing perfect accuracy.
Microhabitat use was calculated for individual lizards and
for all radio-tracked lizards overall as the proportion of
total observations that were in each microhabitat; we also
calculated proportion of time aboveground (in open or shade
microhabitats) versus belowground (in burrow microhabitat).

We paired the April and May hydric physiology mea-
surements from each lizard with their average maximum
Tb, thermoregulatory accuracy and proportion of time spent
aboveground during the 11-day time interval following that
hydric physiology measurement period. We ran a LMM on
each relationship with individual lizard ID as a random effect.
Clustering the data into 11-day time intervals was arbitrary
and simply fit with the hydric physiology measurement peri-
ods. We followed the same 11-day time interval clustering
pattern to look at how microhabitat use and climate changed
throughout the active season. To assess whether the proba-
bility that a lizard would be found belowground (in Burrow
microhabitat) changed throughout the active season, we ran
a GLMM with time interval, lizard sex and their interaction
as explanatory variables. The GLMM had a binomial distri-
bution and included individual lizard ID as a random effect.

Climate conditions

We calculated VPD as described above (Campbell and
Norman, 1998) for all recorded temperature and relative
humidity values, for both burrow and weather station data.
For each climate variable, we used the average daily mean for
each 11-day time interval throughout the active season. Day-
time and nighttime were calculated separately and defined by
sunrise and sunset times at our study site (Global Monitoring
Laboratory, 2021). We also used the local weather station
to get the annual cumulative winter precipitation from
December to March for each year 2018–2021.

Software

All statistics and figures were done in R v4.2.2 (R Core
Team, 2022) using tidyverse workflow (Wickham, 2022). We
used the lm function for linear models; the lmer and glmer
functions in the lmerTest package for LMMs and GLMMs
(Kuznetsova et al., 2020; Bates et al., 2022); the ANOVA
function for type 2 sum of squares values with Kenward–
Roger degrees of freedom and the emmeans and pairs func-
tions in the emmeans package for model-estimated means,
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Figure 2: CEWL of desert blunt-nosed leopard lizards (G. sila) captured in the Carrizo Plain National Monument, CA, USA versus mesic Western
Fence Lizards (Sceloporus occidentalis) captured throughout the campus of California Polytechnic State University, San Luis Obispo, CA, USA
(Weaver et al., 2023). CEWL is compared relative to hydration (plasma osmolality (a) and ambient temperature (b) and VPD (c) at the time of
CEWL measurement. Each small point represents a measurement of an individual lizard taken shortly after their capture. Large points represent
model-estimated means. 95% confidence intervals were removed because they were obscured by mean points. CEWL, plasma osmolality and
temperature and VPD at the time of measurement were all significantly different between species (all comparisons p < 0.0001). Photo of G. sila
by Robert Hansen. Photo of S. occidentalis by Jackson Shedd.

confidence intervals and their pairwise differences (Lenth
et al., 2022). Plots were made with ggplot2 (Wickham et al.,
2022). Functions without specified packages are from base R.
χ2 tests are type 2 with a Pearson distribution. Data and code
are archived on Zenodo (doi.org/10.5281/zenodo.10530116).

Results
Hydric physiology
Compared to more mesic S. occidentalis, G. sila had an
average 50% lower CEWL: 10.4 ± 0.9 g m−2 h−1 versus
20.8 ± 0.8 g m−2 h−1 (model-estimated means ±95% confi-
dence interval; t252 = −17.4, P < 0.0001; Fig. 2; Weaver et al.,
2023). Gambelia sila were also less hydrated on average,
with plasma osmolality 368 ± 2 mmol kg−1 compared to
348 ± 2 mmol kg−1 for S. occidentalis (t252 = 6.7, P < 0.0001;
Fig. 2A). Also, we found this difference in CEWL even with G.
sila being measured at higher temperatures (29.4 ± 0.4◦C ver-
sus 27.2 ± 0.4◦C; t252 = 7.9, P < 0.0001; Fig. 2B) and VPDs
(3.3 ± 0.1 kPa versus 2.0 ± 0.1 kPa; t252 = 17.2, P < 0.0001;
Fig. 2C).

CEWL, plasma osmolality and body condition of G. sila
all showed temporal variation, with different patterns based
on lizard sex (Table 2). Female lizards experienced no change
in CEWL or plasma osmolality throughout the active season
(Fig. 3A, B). CEWL for male lizards was lower in May than
it was for April or July (Fig. 3A), and plasma osmolality for
male lizards was lower in July than in May (Fig. 3B). The
relative differences by sex and measurement period in CEWL
and plasma osmolality were the same when assessed only
in lizards with repeated measurements, with some statistical
differences: plasma osmolality also differed between sexes in
May (t66 = −3.8, P = 0.0003), and male plasma osmolality dif-
fered between April and July (t50 = 2.5, P = 0.04). Covariates
temperature and VPD at the time of CEWL measurement
had no effect when added to the CEWL model, whether our
entire dataset or only repeat measures were used (LMM on
full dataset, temperature: SS = 9, F1,110 = 0.8, P = 0.4; VPD:
SS = 19, F1,110 = 1.8, P = 0.2; compared to Table 2). On aver-
age, the body condition of female lizards was higher in May
than in April or July, to be expected due to our inclusion
of gravid females, while male lizards had consistent body
condition from April to May, then decreased in July (Fig. 3C).
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Table 2: Linear mixed-effect model results for how much of the variation in CEWL, plasma osmolality and body
condition of G. sila is explained by measurement period (month) throughout the active season, lizard sex and their
interaction (Fig. 3)

Hydric response variable Explanatory variable SS F statistic df P value

Month 182 8.52,77 < 0.001

CEWL (g m−2 h−1) Sex 55 5.21,73 0.03

Month∗Sex 47 2.22,85 0.1

Month 9627 8.32,87 < 0.001

Plasma osmolality (mmol kg−1) Sex 5545 9.61,70 0.003

Month∗Sex 770 0.72,92 0.5

Month 348 16.22,71 < 0.0001

Body condition (g’) Sex 9 0.81,75 0.4

Month∗Sex 138 6.42,80 0.003

SS = partial sum of squares, obtained using type 2 ANOVA with Kenward–Roger degrees of freedom; month = measurement period (April,
May or July); Sex = lizard sex (Male, Female); Month∗Sex = interaction effect.

When assessed only in lizards with repeated measurements,
males again had the same decrease in body condition in
July (t51 = 2.7, P = 0.03), female body condition showed the
same pattern (Fig. 3C), and the only difference between sexes
was body condition in May (t65 = 2.9, P = 0.005). Notably,
only three female lizards were recaptured in July, so their
statistical results for that month should be interpreted with
caution.

Of the 19 radio-collared female lizards we ultra-sounded
in April and May, 12 were gravid at one or both mea-
surement periods. Each gravid female had 3–5 eggs. The
number of eggs a female had was positively correlated with
her SVL (F1,6 = 19.7, P = 0.004) and body mass (F1,6 = 14.8,
P = 0.008). For the females that were gravid by May, regard-
less of whether they were gravid in April, CEWL did not
change from April to May (t6 = −0.6, P = 0.6). Conversely,
plasma osmolality (t6 = 2.9, P = 0.03) and body condition
(t6 = 2.7, P = 0.04) both increased from April to May. These
changes in gravid females mirror the average change for all
female lizards in this study, which includes the 16 small
females for which gravidity was not assessed (Fig. 3). The
probability of a female being gravid was not affected by
their CEWL rates, plasma osmolality or body condition (all
X2 < 1.4, all P > 0.2).

When we assessed the interrelation of hydric physiology
metrics, CEWL and plasma osmolality had a relationship,
but only for one of the measurement periods. There was
a negative relationship in May (estimate = −0.06, SE = 0.03,
t110 = −2.3, P = 0.02), but no relationship in April or July
(both t < 0.6, both P > 0.5; Fig. 4). The effect of measure-
ment period (April, May, July) on CEWL was significant
(F2,110 = 4.8, P = 0.01; Fig. 4), but the singular effect of plasma
osmolality was not (F1,110 = 1.3, P = 0.2), and their interaction
effect was marginally non-significant (F2,110 = 2.8, P = 0.07).
CEWL could also be explained by a negative relationship with

body condition (F1,116 = 3.9, P = 0.05). In turn, variation in
plasma osmolality could be explained by a positive relation-
ship with body condition (F1,114 = 5.3, P = 0.02).

Thermal ecology and behaviour
The proportion of time lizards spent aboveground was not
related to CEWL (F1,3 = 6.1, P = 0.1), plasma osmolality
(F1,8 = 0.5, P = 0.5) or body condition (F1,23 = 0.3, P = 0.6).
Maximum Tb was positively related to body condition
(F1,41 = 4.3, P = 0.04), but the effect was small (Fig. 5).
Maximum Tb was not related to CEWL (F1,42 = 0.3, P = 0.6)
or plasma osmolality (F1,47 = 3.0, P = 0.09). Thermoregula-
tory accuracy was positively related to plasma osmolality
(F1,18 = 7.3, P = 0.01), but the effect was again small (Fig. 5).
Thermoregulatory accuracy was not explained by CEWL
(F1,48 = 0.8, P = 0.4) or body condition (F1,46 = 2.6, P = 0.1).
None of these relationships differed based on lizard sex.

The probability of a lizard being found belowground
between 07:00 and 18:00 h differed among time intervals
throughout the active season (χ2

6 = 283.7, P < 0.0001) and
based on sex (χ2

1 = 5.3, P = 0.02; interaction: χ2
6 = 20.3,

P = 0.002). From May 10 to June 11, females were more likely
to be in burrows than males (Fig. 6). Microhabitat use did not
differ between sexes for any other time interval (P > 0.06).
For both sexes, the probability of being belowground during
the day increased throughout the active season (Fig. 6).
When lizards were aboveground early in the season, they
used partial shade more than full shade, whereas later
in the season, they used full shade more than partial
shade (Fig. 6).

Climate conditions
Throughout the active season, temperature and VPD
increased, and relative humidity decreased for burrow micro-
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Figure 3: Hydric physiology of G. sila differed across measurement periods throughout their active season and based on lizard sex. Hydric
physiology was measured as CEWL (a), plasma osmolality (b) and body condition (c; Peig and Green, 2009). Large points with error bars
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climates and for local ambient climate (Fig. 7). Wind speed
did not consistently and directionally change throughout the
season. Cumulative local winter precipitation was 99 mm in
2018, 193 mm in 2019, 114 mm in 2020 and 74 mm in our
study year, 2021. The local winter rainfall immediately prior
to the G. sila active season of our study in 2021 was 55% of
the prior 3-year average.

Discussion
Hydric physiology
We found that G. sila are watertight and maintain higher
plasma osmolality relative to more mesic lizards. On average,
CEWL for G. sila was much lower than for more-mesic S.
occidentalis measured using the same methods (Fig. 2; Weaver
et al., 2023). We cannot directly compare them to additional
studies due to differences in measurement methods and ambi-
ent conditions, and we emphasize the need of a comparison
of the different methods for measuring evaporative water loss.
High temperature and VPD lead to increased CEWL at acute
time scales of minutes to hours (Warburg, 1965; Cooper and
Withers, 2008; Riddell et al., 2019b; Vicenzi et al., 2021;
Davis et al., 2024), but G. sila had lower CEWL than S.
occidentalis even with being measured at higher temperatures
and VPDs (Fig. 2B, C), suggesting that G. sila have adaptively
low CEWL that helps them reduce water loss to their arid
environment. This aligns with the hypothesis that decreased
skin permeability to water loss is necessary for inhabiting arid
environments (Cox and Cox, 2015).

We also observed plasma osmolality values of 320–
440 mmol kg−1 for G. sila (Figs 2A, 3B). Another desert
lizard, the Gila Monster (Heloderma suspectum), had
plasma osmolality ∼ 290 mmol kg−1 when hydrated and
∼ 360 mmol kg−1 when dehydrated (Davis and DeNardo,
2007), suggesting that most of the G. sila we measured
were dehydrated to some degree. Dehydration was to be
expected given that our study occurred during a drought
year, with winter precipitation approximately half the prior
3-year average (US Drought Monitor, 2021). Not only do
G. sila tolerate relatively high plasma osmolality compared
to another desert lizard, but the inter-individual variation
we measured in plasma osmolality suggests that they may
also tolerate extreme fluctuations in plasma osmolality.
Tolerance of variability in plasma osmolality likely benefits
G. sila because resources in their habitat are variable and
unpredictable. However, this tolerance may also necessitate
potentially costly coping mechanisms. The adaptations and
mechanisms that animals use to maintain plasma osmolality
within a narrow range are widely recognized (Willmer et al.,
2005), but more effort should go into understanding how
animals, especially desert reptiles, tolerate large changes in
and high values of, plasma osmolality.

We hypothesized that throughout the active season for G.
sila, as spring shifted to summer and their habitat got hotter
and drier (Fig. 7), these lizards would become progressively
more dehydrated and more watertight. Instead, we observed
relatively consistent CEWL, plasma osmolality and body
condition (Fig. 3). The observed patterns may be related to
prey abundance and the differences in life history between
males and females. After emergence in April, lizards can gorge
themselves on relatively abundant arthropod prey, improving
body condition and hydration. Although the abundance of
arthropods was lower during this study than other years
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due to the drought, arthropods are generally most abundant
in April and early May (T. McIntyre, S.J. Weaver and E.N.
Taylor, unpublished data). As the season progresses, arthro-
pods begin to disappear, and by July, lizards have lost some
body condition (Fig. 3C), potentially due to the lack of food.
Despite the assumed hydric gain of feeding on arthropods,
male G. sila had lower CEWL and higher plasma osmolality
in May than in April and July (Fig. 3A, B), and no change
in body condition from April to May (Fig. 3C). However, the
increased osmolality in May could be due to the hydric cost of
feeding and digestion (Chabaud et al., 2023). Given that males
must search for mates and defend territories (Montanucci,
1965 and 1967; Tollestrup, 1983), and that this was a drought
year (US Drought Monitor, 2021) with dry vegetation and
relatively low arthropod abundance, male G. sila might have
used more water than they could replenish with their diet,
resulting in the increased plasma osmolality and decreased
CEWL in May (Fig. 3A, B). The ensuing drop in plasma osmo-
lality for males later in the summer (Fig. 3B) was surprising.
Considering that male G. sila also decreased body condition
from May to July (Fig. 3C), they could be catabolising muscle
to maintain hydration (Brusch et al., 2018). The changes
could also be due to a lack of ingesting solutes from the
decrease in arthropod prey late in the season, but mesic
lizards are unable to maintain or improve hydration without
drinking water (Chabaud et al., 2023). We cannot attribute
our findings to either of these mechanisms, but G. sila seems
to have adaptations that help maintain and even improve
hydration.

Changes in body condition for females could be due to
the additive effects of feeding and egg development: as more
resources are put towards egg development between April
and May, females become heavy with eggs. Then, by July,
females lay eggs and lose mass (Fig. 3C). Feeding should
result in water gain, and egg development should result in
water loss, with the two counteracting each other when
it comes to hydration, potentially leading to the consistent
plasma osmolality and CEWL values observed for females
(Fig. 3A, B). Alternatively, it is possible that females were
not eating, and not allocating water to their eggs. Water
restriction did not affect reproductive output in viviparous
lizards (Dupoué et al., 2017), suggesting that female G. sila
likely develops and lay eggs despite drought, such as during
our study. However, dehydrated females have dehydrated
eggs (Brusch et al., 2019) and less viable offspring (Dupoué
et al., 2017), so hatching and/or hatchling success, rather than
maternal reproductive investment, may be the mechanism
underlying lack of recruitment for G. sila in drought years
(Westphal et al., 2016).

Unsurprisingly, each of the hydric physiology metrics we
assessed was correlated. Plasma osmolality and CEWL were
related, but the direction of that relationship differed depend-
ing on when hydric physiology was assessed. In April and July,
there was a slight positive relationship, while in May there
was a strong negative relationship (Fig. 4). The difference
in this correlation among time periods could relate to the
changes in CEWL and plasma osmolality throughout the
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active season, especially for males, which made up most of
our sample size (Fig. 3). This negative relationship suggests
that when lizards are dehydrated, measured as high plasma
osmolality, they become more watertight, reducing CEWL
(Figs 3A, 3B, 4), similar to observations in toads (Anderson
et al., 2017; Senzano and Andrade, 2018). Dehydration mini-
mizes the ability to evaporatively cool in another desert lizard
(DeNardo et al., 2004), but evaporative water loss could
also be reduced to maintain hydration (Gerson et al., 2019).
We cannot say based on our study whether G. sila reduces
CEWL to maintain hydration or have decreased CEWL due
to dehydration. However, the sex differences we found might
suggest that because males are more active (Fig. 6), they
become dehydrated (Fig. 3B) and reduced CEWL follows

(Figs. 3A, 4). This emphasizes the need to investigate how
and why different metrics of organismal water balance are
interrelated.

Thermal ecology
Although there was variability in hydric physiology across
individual lizards and measurement periods (Figs 3, 4), hydric
physiology did not meaningfully correlate with any thermal
ecology metrics (Fig. 5). We predicted that more hydrated
lizards (with low plasma osmolality) would maintain higher
body temperatures, have better thermoregulatory accuracy
and spend more time aboveground (Ladyman and Bradshaw,
2003; Davis and DeNardo, 2009; Sannolo and Carretero,
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2019), but we were unable to detect any hydric constraints on
thermoregulation and microhabitat use. Basking and main-
taining activity may be much more important to these helio-
thermic lizards than hydric homeostasis. Their tolerance of
dehydration, shown in their high plasma osmolality val-
ues, could be due to the necessity of foraging and mat-
ing within their short active season. Rather than hydra-
tion constraining thermoregulation, as seen in other lizards
(Davis and DeNardo, 2009; Sannolo and Carretero, 2019;
Rozen-Rechels et al., 2020b, 2020a), G. sila might tolerates
dehydration to maintain thermoregulation. However, if G.
sila are adapted to readily tolerate dehydration, it is even more
puzzling why we did not observe somewhat linear decreases in
CEWL (Fig. 3A) and increases in plasma osmolality (Fig. 3B)
throughout the active season while G. sila were spending time
aboveground during the day (Fig. 6) and their habitat got
hotter and drier (Fig. 7).

An alternative explanation for why we detected no rela-
tionships between hydric physiology and thermal ecology
(Fig. 5) is that this is an artefact of all lizards in this study
being dehydrated. All radio-tracked lizards may have been
spending equally high proportions of time in burrows due
to dehydration (Fig. 6). Our entire study could represent one
end of the relationship we hypothesized that dehydration con-
strains thermoregulation (Rozen-Rechels et al., 2019). In our
study, most of the lizards were likely dehydrated compared
to wetter years, and thus potentially thermally constrained.
But perhaps if hydrated lizards were compared to dehydrated
lizards, we would observe the predicted hydric constraints on
thermal ecology.

Behaviour and climate
At the beginning of their active season, G. sila spent most of
their time aboveground. Then in mid-June, they more than
doubled the amount of daytime spent in burrows, and they
continued to increase the proportion of time spent below-
ground through the end of the study (Fig. 6). The increased
proportion of time spent in burrows (Fig. 6) qualitatively par-
allels the increased heat and dryness as the active season goes
on (Fig. 7). This shift could be due to universally decreased
activity, or a shift to more crepuscular activity, which we did
not survey for. Other studies posit that this microhabitat use
pattern, observed at both seasonal and daily scales, is for
thermoregulation (Ivey et al., 2020; Gaudenti et al., 2021).
Indeed, the sudden increase in time spent belowground in
burrows corresponded to an increase in local aboveground
temperatures (Figs. 6, 7A). However, VPD, a measure of the
desiccation pressure of the air based on both temperature and
water, increased similarly (Fig. 7). Compared to local above-
ground daytime conditions, VPD was consistently lower at
night aboveground and at all times in burrows (Fig. 7C).
While lizards certainly use burrows to avoid thermal extremes
aboveground, our data indicate that burrows are likely help-
ful to G. sila water balance. By selecting less-desiccating
microhabitats, G. sila can decrease the amount of water lost

to their environment (Seebacher and Alford, 2002; Dezetter
et al., 2022). From May 10 to June 11, females spent more
time in burrows than males (Fig. 6), likely related to egg laying
behaviour, and possibly a factor that led to less change in
CEWL and plasma osmolality throughout the active season
for females compared to males (Figs. 3A, 3B). Increased time
spent in burrows (Fig. 6) could be proactive to preserve
hydration, or it could be reactive to dehydration. Microhab-
itat selection could be equally or more important for water
balance as it is for thermoregulation (Guillon et al., 2014;
Pintor et al., 2016; Lourdais et al., 2017), and understanding
the hydric needs of these endangered lizards will be essential
for their conservation.

Conclusion
Our assessment of G. sila water balance could either show
that these lizards are exceptionally desert-adapted, or that
they are dangerously water-stressed. These desert lizards have
relatively low CEWL (Fig. 2), and more dehydrated lizards
tend to be more watertight (Fig. 4), suggesting that G. sila
are adapted to conserve water. CEWL and plasma osmolality
were relatively consistent throughout these lizards’ active
season (Fig. 3A, B), despite their environment getting hotter
and drier (Fig. 7), and we detected no effect of hydric physi-
ology on thermoregulation or microhabitat selection (Fig. 5).
Our data indicate that either G. sila tolerate dehydration to
maintain their usual behaviour or all G. sila in this study
were equally dehydrated, and thus equally thermally and
behaviourally constrained. In either case, there is certainly a
limit to this dehydration tolerance; a single drought year may
not be detrimental, but repeated drought years are more likely
to surpass their limits (Dodd, 1993; Selwood et al., 2015).
Given that we conducted our study in a dry year amidst a
drought (US Drought Monitor, 2021), we do not know what
CEWL and plasma osmolality would be for hydrated G. sila,
so future studies should assess these values during a wetter
year. Alternatively, experiments could be carried out with
captive G. sila or a surrogate crotaphytid species to explicitly
measure hydration, test dehydration tolerance and assess the
effects of dehydration on behaviour (e.g. Dezetter et al.,
2022). Although G. sila did not drink when we offered them
water, supplemental feeding of gut-loaded arthropods could
be more likely to lead to changes in hydration and behaviour
(but see Chabaud et al., 2023). Or, misting enclosures, rather
than providing standing water, could more closely simulate
their natural water resources and be more likely to lead to
drinking.

Hydration is clearly an important variable impacting the
ecology, physiology and behaviour of arid-adapted animals
like G. sila. Supplemental hydration could be an effective
conservation intervention to mitigate the potential negative
impacts of dehydration, especially during severe drought
years. However, the feasibility of such an intervention is
questionable. For small populations on the brink of extinction
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such as G. sila, individuals could be captured and provided
with food and water inside enclosures for a short period
of time, then released. But, the benefits of hydration would
need to be weighed against the potential negative effects of
capturing stress. Continuing to collect data on the hydric
and thermal physiology and ecology of G. sila will aid
their conservation by improving our understanding of their
ecophysiological limits and enabling effective mechanistic
distribution models. That knowledge will in turn inform
where conservation breeding programs could (re)establish
populations and where land restoration projects could be
beneficial. We must understand water balance to understand
the effects of climate change on organisms and to determine
worthwhile, effective actions to mitigate those effects.
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