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Abstract 
T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental 
techniques, a substantial database of matched TCR–antigen pairs has emerged, presenting opportunities for computational prediction 
models. However, accurately forecasting the binding affinities of unseen antigen–TCR pairs remains a major challenge. Here, we present 
convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our 
approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, 
and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by 
analyzing the structural and sequence features of epitopes and CDR3-β regions. Additionally, the framework comprises CATCR-G, 
a generative module designed for CDR3-β sequences, which applies the pretrained encoder to deduce epitope characteristics and a 
transformer decoder for predicting matching CDR3-β sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope– 
TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 
scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR 
is an effective tool for predicting unseen epitope–TCR interactions. Incorporating structural insights enhances our understanding 
of the general rules governing TCR–epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural 
and sequence information is promising, and broadening the repository of experimental TCR–epitope data could further improve the 
precision of epitope–TCR binding predictions. 
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INTRODUCTION 
T cells typically recognize antigen peptides presented by MHC 
molecules through T-cell receptors (TCRs). This process is critical 
for immune responses against exogenous pathogens and cancers 
[1]. During recognition, the complementarity-determining regions 
(CDRs) of the TCR interact with and bind to specific antigen 
epitopes. Among the different regions of the CDR, CDR3 plays a 
pivotal role in TCR diversity. CDR3 regions exhibit remarkably high 
diversity through the V(D)J recombination mechanism, allowing 
them to adapt to a wide range of existing and potential antigens 
[2]. The potential number of TCR variants that can be generated is 
estimated to reach 1018 or more [3]. The importance of TCR diver-
sity in disease monitoring, autoimmune diseases and anticancer 
immunity has driven research on the rules governing CDR3 epi-
tope binding. Experimental methods, including antigen-directed 
approaches and TCR-directed approaches [4], have been used to 

detect the binding between CDR3s and epitopes. However, due 
to technical barriers and cost limitations, the currently available 
experimental evidence for specific CDR3–epitope pairs represents 
only a small fraction of the overall repertoire [1]. 

Therefore, some studies have focused on computational meth-
ods, particularly machine learning approaches [5–7]. However, 
computational methods still present significant challenges. The 
ideal model should possess strong generalization capabilities, 
meaning that it should both effectively predict epitopes detected 
during training and learn general patterns for application to 
unseen CDR3–epitope pairs. In certain diseases, the prediction 
of epitope-specific binding has driven drug and vaccine develop-
ment [8–12]. However, the performance of existing models dimin-
ishes with unfamiliar epitopes [13]. Therefore, developing models 
that can comprehend the general principles of CDR3 epitope 
binding is necessary to enhance unseen epitope prediction.
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The CDR3 region interacts with the amino acid residues on 
the peptide through various non-covalent interactions, such 
as hydrogen bonding, ionic interactions and van der Waals 
forces, to establish stable binding. The three-dimensional (3D) 
structure, determined by these amino acid sequences, underlies 
the specific binding of CDR3 to different epitopes [14, 15]. 
Thus, individual sequence data alone cannot capture all the 
information governing CDR–epitope binding. The incorporation of 
3D structural information may be crucial for improving prediction 
accuracy. Innovative protein structure prediction methods, such 
as AlphaFold2 [16], provide non-experimental approaches for 
predicting protein structures and have demonstrated promising 
performance in short peptides [17]. Some studies have utilized 
methods such as AlphaFold2 for multimeric predictions to predict 
interactions by constructing 3D structural models; however, 
these approaches have not consistently shown clear advantages 
over sequence-based predictions [18]. Consequently, further 
investigation is required to determine how structural information 
can effectively predict TCR and epitope binding. 

Therefore, in this study, we utilized OpenFold [19] (the PyTorch 
version of AlphaFold2) to predict the 3D structures of peptides. 
We used a convolutional neural network (CNN) to extract struc-
tural features from these predictions via residue contact matrices 
(RCMs). We established a segment-based encoding scheme for 
the sequence information and employed a transformer encoder 
for feature extraction. We trained a discriminator (convolutional 
self-attention TCR discriminator, CATCR-D) to predict the binding 
of epitopes to the CDR3-β region. Building on this, we developed 
a generative model (convolutional self-attention TCR generator, 
CATCR-G) that fuses features from the epitope encoder with 
those of predicted CDR3-β structures and inputs them into a 
transformer decoder to generate the corresponding sequence. The 
CDR3-β structural features were derived using an RCM–based 
transformer (RCMT) informed by epitope features. Additionally, 
we leveraged the pretrained discriminator to refine the genera-
tive model training. We aimed to establish a robust method for 
predicting the TCR binding to unseen antigen epitopes. 

RESULTS 
The 3D structure of CDR3β and its epitope 
sequences were predicted using OpenFold 
The model architecture utilized in this research is illustrated in 
Figure 1. The sequences and pairing information for CDR3-β and 
the epitopes were obtained from the VDJdb [20], the Immune 
Epitope Database (IEDB) [21] and the McPAS-TCR [22] databases. 
The three databases contain 128 259 unique CDR3-β-epitope 
pairs, including 127 507 CDR3-β sequences and 1176 epitope 
sequences. Following data cleaning (Supplementary Figure 1), 
65 069 records were included in the training and testing sets 
(Supplementary Table S1). 

We employed OpenFold to predict the 3D structure of the pep-
tide chains to incorporate structural information into the training 
data. The 3D structure of the peptide chains was characterized 
using RCMs. We evaluated the accuracy of the structures pre-
dicted by OpenFold by comparing them with the experimentally 
determined protein structures available in the RCSB Protein Data 
Bank (RCSB PDB) [23] (Figure 2A). The results highlight OpenFold’s 
robust predictive capability for epitopes, exhibiting a root mean 
square deviation (RMSD) of 0.4 ± 0.24 Å between the experimen-
tally determined and predicted structures (Figure 2B). However, 
OpenFold exhibited a slight increase in the RMSD when predict-
ing the CDR3-β structure because of its inability to predict the 

folding of the middle segment of CDR3-β (Figure 2C). This folding 
involves interactions of other amino acids in the TCR α and β seg-
ments. Therefore, relying solely on sequence information from the 
CDR3-β region is insufficient for prediction. Nevertheless, Open-
Fold can accurately predict the structures of individual CDR3-
β subsegments, including the N-terminus, C-terminus and com-
plex structure in the middle segment (Figure 2C). Furthermore, 
OpenFold’s predictions can reflect structural distinctions for sim-
ilar sequences that differ by only one amino acid (Figure 2D). 

Discriminative model for predicting the binding 
of CDR3 to an epitope 
We developed a discriminative model to predict the binding 
between CDR3-β sequences and epitopes. The discriminative 
model comprises three principal components: a CDR3-β encoder 
and an epitope encoder, both dedicated to feature extraction, 
and a multilayer linear discriminator responsible for generating 
binding predictions (Module 1 in Figure 1). Within the encoder 
modules, we extracted both sequence and structural features 
from the peptide chains, subsequently concatenating these 
features for comprehensive representation. For the sequence 
features, certain contiguous short amino acid segments (two 
to five residues) frequently occur within the CDR3-β sequence 
and epitope, forming specific secondary structures and pro-
viding crucial recognition information for binding. Therefore, 
highlighting the differences between these similar sequences 
is meaningful. In addition to traditional single amino acid-
based coding methods such as BLOSUM62, we innovated a 
segment-based coding strategy in which frequently occurring 
amino acid segments (two to five residues) are treated as one 
character for coding (Figure 3A). In contrast, infrequent amino 
acids are encoded separately. Segments appearing more than 
1000 times in the dataset were considered frequent segments 
(Supplementary Table S2). 

Subsequently, we employed a transformer encoder to sys-
tematically extract features from the encoded sequence data, 
optimizing the representation of sequence characteristics. We 
employed RCMs, which represent the distances between amino 
acids, to extract structural features. We utilized two CNNs with 
distinct kernel sizes to derive features from the RCMs. These 
extracted features were then integrated with the sequence 
features obtained from the transformer encoder, forming a 
comprehensive input for the discriminator. The discriminator 
consisted of four progressively shrinking fully connected layers 
that output the discrimination result after being activated by the 
sigmoid function, and then, the cross-entropy loss is calculated. 
We constructed the negative sample set by employing a random 
selection approach [24],  where we chose CDR3-β sequences from 
the dataset that were confirmed not to bind with the given 
epitope. The ratio of negative to positive samples was 1:1. During 
the training process, the cross-entropy loss of both the training 
and validation sets showed a significant initial decrease. The 
training set loss stabilized after 160 epochs. In contrast, the 
validation set loss stabilized after 320 epochs (Figure 3B). 

The current challenge is to predict whether an unseen epitope 
can bind to a given TCR. To rigorously evaluate our model, we 
established two distinct test sets: the internal test set, comprising 
epitopes from the training dataset paired with novel CDR3-β 
sequences, and the external test set, featuring entirely unseen 
combinations of epitopes and CDR3-β sequences (Supplementary 
Figure 3). The internal test set achieved a precision of 92.8%, a 
recall of 98.9% and an F1 score of 0.958. The external test set

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae210#supplementary-data
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Figure 1. Model architecture. The model comprises three modules. The first module, the discriminator module (CATCR-D), employs a CNN to extract 
structural features as predicted by OpenFold and a transformer encoder for sequence feature extraction. Structures are represented using RCMs, and 
sequences are encoded using a segment-based coding scheme before embedding. The features extracted from the epitope and CDR3-β are concatenated 
and fed into a classifier to determine the binding outcome. The second module, the RCMT, leverages the pretrained epitope encoder from the first module 
to extract epitope features and utilizes a linear decoder to predict the RCM for CDR3-β. The third module, the generator module, integrates the predicted 
CDR3-β RCM with epitope features from the epitope encoder and employs the transformer decoder to generate the CDR3-β sequence. This predicted 
sequence and the predicted CDR3-β RCM are reintroduced into the discriminator to refine the generative model via feedback from the discriminator 
loss. AA: amino acid; RCM: residue contact matrices; RCMT: residue contact matrices transformer. 
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Figure 2. OpenFold predictions of CDR3-β and epitope structures. (A) The RMSD between OpenFold’s predicted structures for epitopes and CDR3-β and 
the corresponding structures obtained from the RCSB PDB. (B) OpenFold prediction results for epitopes, with the left subfigure depicting the predicted 
amino acid chain and the right subfigure illustrating the predicted molecular conformation. (C) OpenFold predictions for the CDR3-β structures. 
OpenFold faces challenges in accurately predicting the conformation of the CDR3-β central segment due to the absence of certain contextual clues 
that guide protein folding; however, OpenFold has good predictive accuracy for various subsegments. (D) OpenFold’s predictions for sequences with 
high similarity (differing by a single amino acid) show its ability to discern subtle structural differences. RMSD: root mean square deviation. 

achieved an accuracy of 84.8%, a recall of 82.8% and an F1 score 
of 0.837 ( Figure 3C). 

The area under the receiver operating characteristic curve 
(AUROC) of the internal and external test sets were 0.965 ± 0.003 
and 0.891 ± 0.006, respectively. We selected four classic or newly 
reported models as controls: TITAN (2021) [25], epiTCR (2023) 
[26], TEINet (2023) [27] and EPIC-TRACE (2023) [13]. TITAN uti-
lizes convolution and contextual attention to embed epitopes 
from SMILES and complete TCR from BLOSUM62 [28] embed-
ding. epiTCR employs random forest to predict CDR3 from BLO-
SUM62 embedding. EPIC-TRACE utilizes ProtBERT embedding to 
represent the amino acid sequences of both chains and epi-
topes while employing a combination of convolution and mul-
tihead attention structures. TEINet utilizes transfer learning to 
address the prediction problem. In a comparative analysis, our 
CATCR-D model demonstrated superior AUROC metrics in inter-
nal and external test sets, outperforming the referenced models 
(Supplementary Table S3). Particularly in the external test set, 
CATCR-D demonstrated a notable enhancement in generaliza-
tion performance for unseen antigen epitopes (Figure 3D and 
Supplementary Table S3). 

We further investigated the key factors contributing to the 
improved performance of CATCR-D. We found that when using 
only a transformer model, the predicted AUROC for unseen 
epitope-CDR3-β pairing was only 0.548 ± 0.013, similar to earlier 
related studies [25, 26]. However, when only the CNN was 
used to extract features from RCMs, the predicted AUROC 

improved to 0.756 ± 0.008 (Figure 3E). This result suggests that 
both sequence and 3D structures provide crucial information 
for predicting epitope-CDR3-β binding. In terms of the impact of 
sequence coding methods on prediction performance, we found 
that segment-based coding significantly improved predictive 
performance compared to BLOSUM62 (0.779 ± 0.008) (Figure 3F). 
In the training and testing data we used, the length of the 
epitope peptides ranged from 7 to 24, and the frequency of 
epitope occurrence (corresponding to the number of TCRs in 
the database) ranged from a minimum of 1 to 500. We analyzed 
the model’s predictive performance for unseen epitope-CDR3-
β pairing across epitopes of different lengths and frequencies 
of occurrence. The AUROC ranged between 0.673 and 0.949. 
The AUROC demonstrated an increasing trend as the length 
of the epitope peptide chain increased. Furthermore, epitopes 
with higher occurrence frequencies exhibited greater predictive 
accuracy for pairings (Figure 3G). 

Training RCM transformer 
The results of CATCR-D suggest that our encoder can capture 
generalized features of epitopes or CDR3-β. We  formulated  a  
generative model employing a decoder that utilizes features 
extracted by the CATCR-D encoder to facilitate the prediction 
of CDR3 sequences binding to novel epitopes. Previous results 
suggest that the structural data represented by the RCM 
contain crucial information about epitope–TCR binding. Given

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae210#supplementary-data
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Figure 3. CATCR-D Prediction of Epitope-CDR3-β Binding. (A) The segment-based coding method, where high-frequency amino acid segments are coded 
as single characters. (B) Training and validation set losses. (C) Confusion matrix visualizing classification results for the internal and external test 
sets. (D) Comparison of the AUROC of CATCR-D on the external test set, which includes unseen epitopes and CDR3 sequences, against those of the 
benchmark methods (TEINet, EPIC-TRACE, epiTCR and TITAN). (E) External test set AUROC comparison between CATCR-D and methods using only a 
CNN for RCM feature extraction and only a transformer for sequence feature extraction. (F) Performance of segment-based coding versus BLOSUM62 in 
terms of AUROC on the external test set. (G) AUROC of CATCR-D on the external test set across epitopes of varying lengths and frequencies of occurrence. 
AUROC: area under the receiver operating characteristic curve. 

our objective of integrating structural data within the decoder 
framework of our generative model, a significant challenge arises 
because the structural data for the target sequence remain 
undetermined. Therefore, we pretrained the RCMT to estimate 
the RCM of CDR3-β based on the epitope sequence and its RCM. 
This approach involves utilizing the feature set outputted by the 
CATCR-D encoder as input to a linear decoder, which then predicts 
the RCM for CDR3-β sequences. 

The loss of the training and validation sets both decreased with 
increased epochs during the training process. The training set loss 
stabilized after 200 epochs. In contrast, the validation set loss 
stabilized after 300 epochs (Figure 4A). By comparing the RCMT 
predictions with those labeled by OpenFold, we noted an aver-
age discrepancy in the RCMs of 1.695 ± 2.040 Å. Figure 4B shows 
the average differences between the two prediction methods at 
each position. The predicted differences in distance at different 
positions range from 0.010 to 6.195 Å. The distance deviations 
at positions 12 and 13 are relatively large, while those at other 
positions are relatively small. Multiple CDR3-β label sequences 
may exist in the dataset for a given epitope, while the RCMT can 
output only a single predicted matrix. Subsequently, we analyzed 
the relationship between the distance distribution of the label 
matrix at each position and the predicted values of the RCMT. 
Figure 4C shows the results for three epitopes with many paired 
CDR3-β label data (external test). The distances predicted by 
the RCMT are close to the median value of the label distance 
set at most positions, indicating that the RCMT can reflect the 
landscapes of the corresponding CDR3-β structure through the 
epitope sequence and structure. 

Generator for predicting CDR3-β sequences that 
bind to a given epitope 

We previously trained an encoder and an RCMT leveraging 
both the sequence and epitope structural information. Subse-
quently, we designed a generative model, CATCR-G, integrating 
the pretrained weights to facilitate the prediction of binding 
CDR3-β sequences for a given epitope. This approach involves 
utilizing a transformer decoder to generate CDR3-β predictions, 
formulated on the combined input from the epitope encoder 
and the RCM, as produced by the RCMT. The predicted CDR3-
β sequence, the epitope sequence and structural data are then 
fed into the pretrained discriminator to refine the generator 
loss using the discriminator loss. During training, we froze the 
weights of the encoder and RCMT to preserve their pretrained 
states. 

Initially, the training and validation losses declined quickly. 
However, while the training loss continued to decrease up to 
300 epochs, the validation loss plateaued after 100 epochs and 
became more variable after 200 epochs (Figure 5A). Consequently, 
we concluded the training process at 300 epochs. In testing, we 
applied a beam search to yield the top seven CDR3-β sequence 
predictions. We evaluated them against reference sequences 
using the BERTscore metric (Figure 5B), which leverages con-
textual embeddings from the BERT model. The external test 
set yielded a BERTscore precision of 0.959 ± 0.013, recall of 
0.955 ± 0.018 and F1 score of 0.957 ± 0.014. This indicates that 
CATCR-G can generate CDR3-β sequences that are highly similar 
to the reference sequences.
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Figure 4. RCMT Module. (A) Loss curves for the training and validation sets. (B) The discrepancy, as measured by the RMSD, between the RCMs for CDR3 
predicted using features extracted by the epitope encoder and those predicted by OpenFold. (C) For epitopes associated with multiple CDR3 sequences, 
the residue distances at each position predicted by the RCMT closely align with the median distances from OpenFold’s predictions. RMSD: root mean 
square deviation. 

We utilized the BERTscore for evaluation in our examina-
tion of the alignment between the predicted and reference 
CDR3-β sequences at each amino acid position. Despite the 
typical length of CDR3-β sequences ranging from 8 to 12 amino 
acids, we extended shorter sequences to 25 amino acids using 
placeholders where necessary for evaluation. This approach was 
used to ensure that all sequences had the same length when 
calculating the BERTscore, enabling a more accurate comparison 
and assessment of their similarity and alignment. Our analysis 
revealed that the use of a pretrained encoder significantly 
improved early training performance, whereas models devoid 
of this component exhibited diminished BERTscore R, P and F1 
values. Furthermore, while models employing only the pretrained 
encoder matched the combined approach in the initial training, 
those also incorporating RCMT eventually outperformed in 
BERTscore evaluations, suggesting a synergistic benefit from 
using both (Figure 5C). This confirmed high similarity across 
corresponding positions, consistent with placeholder regions 
indicating that CATCR-G can appropriately determine CDR3-
β length (Figure 5D). Additional evaluations with alternative 
metrics, ROUGE-L and skip-thought, yielded similarity scores of 
0.580 ± 0.145 and 0.959 ± 0.040, respectively, further substantiat-
ing the effectiveness of the generative predictions of CATCR-G. 

Discussion 
TCR recognition and epitope binding, particularly within the 
CDR3 region, are pivotal for initiating immune responses and 

are crucial in T-cell therapy development. The high diversity of 
the CDR3 region is a major determinant of TCR binding specificity 
[29], and a comprehensive analysis of TCR repertoires can offer 
insights into the clonal and diverse nature of immune responses 
[2]. Immunoinformatics methodologies have made significant 
advances in the specific inference of observed epitopes. For 
example, in a study of SARS-CoV-2, Rakib et al. [10, 30, 31] screened 
for potential optimal epitopes that bind to MHC-I to guide 
vaccine development in response to rapid virus mutation. Despite 
advancements in our understanding, accurately predicting TCR 
specificity remains challenging due to the extensive variability 
resulting from V(D)J recombination, the limited availability 
of negative samples and other factors that constrain model 
performance. 

A variety of machine learning methods have been applied, 
ranging from clustering-based approaches such as TCRdist (2022) 
[32], GLIPH (2017) [33] and TCRMatch (2021) [34] to random forest 
algorithms such as epiTCR (2023) [26] to address these challenges. 
The influx of data has inspired deep learning techniques, includ-
ing gated recurrent unit (GRU) and transformer models, which 
have been adapted from their success in natural language pro-
cessing to improve TCR–epitope binding predictions with models 
such as ERGO (2020) [35], ImRex (2021) [36], TITAN (2021) [25], 
DeepTCR (2021) [37], TEINet (2023) [27], PanPep (2023) [38] and  
TEIM-Seq (2023) [39]. These models have improved TCR–epitope 
binding prediction accuracy. However, despite their generaliz-
ability, their predictive performance significantly decreases with 
TCR–unseen antigen pairs compared to unseen TCR–seen antigen
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Figure 5. Evaluation of the generative module (CATCR-G). (A) Loss curves for the training and validation sets. (B) The BERT score method, which assesses 
the semantic similarity between token embeddings, was used to compare the CDR3 sequences predicted by CATCR-G for unseen epitopes with a reference 
sequence set. (C) The performance of the complete CATCR-G is compared with that of models that do not use pretrained encoder weights, do not use 
weights from the RCMT module, or neither. This comparison is shown across different epochs for accuracy, recall and F1 scores, with evaluations 
based on the BERT score method. (D) The maximum similarity observed at different positions between the predicted CDR3 sequences and reference 
sequences indicate alignment accuracy. (E) The ROUGE-L metric, which evaluates the longest common subsequence between two sequences, and the 
skip-thought method, which assesses the semantic coherence of sentence embeddings, were used to score the predicted CDR3 sequences by CATCR-G 
against reference sequences. 

pairs. Therefore, enhancing the predictive efficacy of TCR–antigen 
binding for unseen TCR–antigen pairs is a major challenge. 

From the perspective of binding mechanisms, the structural 
diversity of the CDR regions, especially the CDR3-β region, forms 
the basis for TCR diversity [1]. The simulation of 3D structures 
has been used for molecular docking analysis of epitopes [10]. 
Bradley [18] utilized an advanced complex structure prediction 
model, AlphaFold-Multimer, to embed TCR, MHC and epitope 
sequences for prediction, achieving an AUROC of 82% for eight 
seen epitope sequences. Compared to sequence-based methods, 
this approach did not show a clear advantage, possibly because 
AlphaFold-Multimer is a generative model, which increases model 

complexity when used for discrimination tasks. While the struc-
ture of peptides is determined by their amino acid sequences, 
the sequence does not contain experiential knowledge of how 
peptides should fold. OpenFold (or AlphaFold2), predicts the struc-
ture of CDR3-β or epitopes based on learning from many known 
protein structures, essentially providing CATCR with additional 
knowledge. In this study, we chose to represent structural data 
through the RCM. Using the RCM to characterize structural data 
avoids the direct interpretation of predicted complex structures, 
reduces the requirements for structural prediction accuracy and 
captures subtle differences in peptide structures for character-
ization. Our results indicate that embedding peptide structural
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data can improve model predictive performance, emphasizing 
the value of integrating structural information to enhance TCR– 
epitope binding prediction accuracy. Using only structural data, as 
opposed to only sequence data, achieved better predictive perfor-
mance in evaluating the contribution of structural and sequence 
features to model predictive outcomes, further confirming the 
importance of structural data. 

In the sequence feature representation, one-hot encoding is 
the most intuitive method; however, it struggles to reflect the 
differences between various amino acids. Amino acid substitu-
tion matrices, including PAM, BLOSUM and PSSM, as well as 
feature matrices based on physicochemical properties such as 
NLF and VHSE8, have been used to encode amino acid sequences. 
Among these, BLOSUM62 [28] has been widely applied in deep 
learning tasks due to its effective representation of amino acid 
sequences. According to our CDR3-β sequence data, we detected 
a significant presence of frequently occurring short sequences, 
such as ‘CASS’ and ‘CASR’ at the N-terminus and ‘QYF’ and ‘YTF’ 
at the C-terminus. These conserved fragments show similarities 
across different sequences, resulting in closely related features 
when encoded using traditional methods. Therefore, we employed 
a fragment-based coding approach to differentiate these simi-
lar sequences. Our results indicate that fragment-based coding 
methods can enhance the performance of the model compared 
to BLOSUM62. However, the applicability of this coding approach 
to tasks beyond antigen–TCR binding prediction requires further 
investigation. 

It is well established that an antigen can be recognized by 
multiple TCRs [39]. According to our dataset, certain epitopes, 
such as KLGGALQAK, are associated with many TCR pairs. 
However, most epitopes are linked to relatively few TCR pairs. 
We limited our dataset to 500 records for any epitope associated 
with more than 500 CDR3-β sequences to ensure a more 
balanced representation. The predictive accuracy of CATCR-
D diminishes for epitopes with scant paired CDR3-β records 
or shorter peptide chains, emphasizing the requirement for 
enhanced prediction strategies for these associations. In previous 
studies, PanPep [38] improved predictions for novel antigens 
through a synergistic meta-learning approach and a neural Turing 
machine to incorporate external memory. Moreover, embedding 
CDR3-β and epitope sequences into template sequences as part 
of complex structure prediction is promising for overcoming this 
challenge [18]. 

Given the generalization performance of CATCR-D in dis-
crimination tasks, we experimented with generative models. 
Unlike discriminative models, generative models face more 
complex challenges: they require a powerful decoder and 
accurate and comprehensive information during the encoding 
phase for effective sequence generation. Numerous studies 
have demonstrated that pretrained encoders can achieve good 
predictive performance within the encoder–decoder framework, 
with representative models being BERT [40] and its biomedical 
variants, such as DNABERT [41]. Hence, we employed pretrained 
encoder weights in the encoding process and observed that 
the use of pretrained encoders enhances model performance 
and allows for earlier convergence. Moreover, we recognized the 
importance of structural information in the evaluation of CATCR-
D, embodied through embedding RCMs. We aimed to integrate 
similar information into the generative model. Through RCMT, we 
generated predictions for the RCM of CDR3-β. An epitope might 
interact with multiple CDR3-β domains. Our results indicate 
that the RCMT-predicted matrices closely resemble the median 
conformation of the CDR3-β domain. Therefore, the output of 

RCMT should be interpreted as an overview of the potential CDR3-
β conformations for an epitope rather than a precise structural 
prediction. 

Evaluating generative models is challenging due to the absence 
of definitive reference standards and the need for task-relevant 
metrics. We leveraged BERTscore, a tool commonly used in natural 
language prediction, to gauge the quality of our sequence predic-
tions. The BERTscore measures token similarity between the gen-
erated and reference sequences using contextual embeddings and 
applies standard performance metrics such as precision, recall 
and F1 scores. We also included additional metrics in our analysis, 
such as Rouge-L, which evaluates longer sequence similarity and 
sentence embeddings as per the skip-thought approach. These 
metrics suggest that CATCR-G can produce CDR3-β sequences 
with a high resemblance to the reference TCR dataset. Neverthe-
less, we acknowledge that validating the accuracy of CATCR-G-
predicted CDR3-β sequences through wet-lab methods is essen-
tial, particularly through confirmation with the recombinant anti-
gen–MHC multimer assay [42]. Moreover, expanding the dataset 
size through experimental means enhances model performance 
and makes employing predictive models with more parameters 
feasible. 

This study has limitations. First, we did not incorporate CDR3-α 
and MHC sequences. In contrast, previous studies [6, 12, 27] have  
indicated that structural and statistical analyses suggest equal 
contributions of the α and β chains to specificity, and including 
CDR3-α and MHC information enhances the predictive accuracy 
of the model. Models limited to using the β chain CDR3 loop and 
VDJ gene encodings can only partially reveal the record of antigen 
recognition [1]. This is because antigens with complete CDR3-
α, CDR3-β and MHC records are scarce. Retaining only CDR3-β 
data is a compromise due to sample size. Moreover, the ideal 
model is expected to embed fundamental knowledge about anti-
gen presentation, TCR recognition and environment-dependent 
activation to predict whether the TCR binding to the antigen–MHC 
complex can effectively induce an immune response. 

In conclusion, this study developed the CATCR framework for 
predicting the TCR binding to antigens. This model can extract 
sequence and structural information concurrently to generate 
descriptions of CDR3-β and antigen epitope features. Its discrim-
inator component, CATCR-D, has shown robust performance in 
predicting interactions between CDR3-β and antigen epitopes, 
particularly in previously unseen CDR3-β and epitope pairs. Addi-
tionally, CATCR encompasses a generative component, CATCR-G, 
designed for the predictive generation of CDR3-β sequences that 
are likely to bind to specified epitopes. The predictions from this 
generative component require further validation through wet-lab 
experiments. Expanding the TCR–epitope–MHC pairings database 
is anticipated to significantly enhance the model’s performance 
and widen its applicability. This model is promising for facilitating 
advances in personalized immunotherapy. 

Methods and materials 
Dataset 
The CDR3 α and β regions work together to recognize antigens; 
however, the data recorded in currently available databases 
are primarily focused on CDR3-β [20–22]. Currently available 
databases primarily document paired samples of CDR3-β chains. 
The quantity of paired data for both CDR3-α and -β is limited. 
To ensure adequate data for training and testing, we included 
only the CDR3-β sequences and their paired epitope sequences 
in this study. To construct a dataset with sufficient quantity and
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diversity, we referred to the databases used in previous studies [6, 
13, 25–27, 35] (Supplementary Table S4) and included data from 
the VDJdb [20], the IEDB [21] and the McPAS-TCR [22] databases 
in our study. 

The McPAS database encompasses 39 986 TCR data records, 
including 36 620 human TCR data entries. Among these, 
12 256 data records included both CDR3-β and antigen epitope 
sequences, resulting in 10 942 non-redundant entries after 
duplicate removal. In addition to peptide antigens, the IEDB 
database records non-amino acid compounds, totaling 219 333 
entries. Among them, 113 080 data entries included both CDR3-β 
and antigen peptide epitopes, resulting in 113 038 non-redundant 
entries. In VDJdb, we selected CDR3-β–epitope pairs with VDJ 
scores ≥1, resulting in 5706 entries. After merging the three 
databases, we obtained 128 259 non-redundant data records, 
including 127 507 unique CDR3-β sequences and 1176 distinct 
epitope sequences. We removed all sequences containing ambigu-
ous amino acids (B, J, O, U, X). Among the CDR3-β sequences, 
752 sequences corresponding to more than one epitope were 
eliminated. The number of CDR3-β sequences corresponding to 
each epitope ranged from 1 to 11 899 (Supplementary Figure 2), 
with a median of 3 and an average of 109. For epitopes with more 
than 500 corresponding CDR3 sequences, we randomly selected 
and retained 500 records. Additionally, we removed records with 
peptide chain lengths <5 amino acids, resulting in a dataset 
containing 65 069 CDR3β–epitope pairs. 

Training and testing samples 
One of the main tasks of this study was to predict unseen epi-
tope–CDR3-β pairs. Therefore, we employed a sample partitioning 
method based on epitopes using 10-fold cross-validation. The 
epitopes were divided into ten relatively balanced subsets based 
on the number of paired CDR3-β sequences. One subset was 
selected each time as the external testing set, ensuring that it did 
not contain any epitope or CDR3-β sequence information from the 
training set. Additionally, 5% of the combined nine subsets were 
used as an internal testing set, which included epitope sequences 
from the training set but not CDR3-β sequences. Another 5% of the 
data were used as a validation set. CATCR-D, RCMT and CATCR-G 
were trained and tested using the same set of training and test-
ing data during each cross-validation fold to ensure information 
confidentiality. 

The epitope-CDR3-β dataset contains only positive samples. 
Generating negative samples, where for a positive sample di = 
(ei, ti) ∈ D = {

di
}N 

i=1, ei and ti are the epitope and TCR interacting 
in sample i, respectively is necessary to train a robust supervised 
model. We generated negative samples using a random CDR3-β 
approach [24, 27]. For this sampling method, the negative CDR3-
β for ei was uniformly sampled from the CDR3-β set T = {ti} 
of positive binding pairs, while excluding their known true TCR 
binding partners. Subsequently, the negative samples for ei were 
represented as ni = {(ei, tk)}M 

k=1, where  tk ∈ T and (ei, tk) /∈ D were 
different subsets. Negative samples were generated within their 
respective subsets after training and testing sample partitioning 
to avoid potential data leakage [27]. 

Predicting the 3D structure of CDR3-β and 
epitopes using OpenFold 
OpenFold [19] is an open-source PyTorch reimplementation of 
AlphaFold2 [16] trained from scratch. Like AlphaFold2, it employs 
sequence alignment and deep learning algorithms. OpenFold 
offers lower deployment complexity and hardware requirements 
than AlphaFold2. In this study, we utilized the pretrained model 

‘fineturning_ptm_1’ provided by the OpenFold developers to 
predict the 3D structures of CDR3β and its antigenic epitopes. 
To evaluate the ability of OpenFold to predict peptide chain 
structures, 112 matched sequences obtained from the RCSB 
PDB [23] were selected by aligning the amino acid sequences 
with those in the dataset. The actual structural coordinates 
corresponding to the predicted sequences were extracted during 
the evaluation. VMD software was then used to align the predicted 
sequences with the actual sequences and compute the RMSD 
values. 

Model architecture 
The model architecture is shown in Figure 1. We  employed  a  
model consisting of three modules. The first module involved 
constructing a discriminator based on structural and sequence 
data (CATCR-D) to determine whether an epitope can recognize a 
specific CDR3-β sequence. For the structural data, we represented 
structural features using RCMs, taking the positions of carbon 
atoms of amino acids from OpenFold’s predicted results as the 
positions of the amino acids and obtaining their coordinates in 
Euclidean space. The RCM D = (

dij
) ∈ Rm×m, where  dij =

∥∥Pi − Pj

∥∥, 
m is the length of the amino acid sequence and

∥∥Pi − Pj

∥∥ represents 
the Euclidean distance between the carbon atoms at position i 
and position j (Supplementary Figure 3). Two CNNs with kernel 
sizes of 3 and 5 were used to extract features from the RCMs. 
Each CNN consisted of two convolutional layers, followed by 
a max pooling layer after the second convolutional layer. The 
features extracted by the two CNNs were merged and passed 
through two linear fully connected layers to output a feature 
vector. For the amino acid sequences, we developed a segment-
based coding method. This is because we observed a signifi-
cant number of highly similar segments among CDR3 (epitope) 
sequences, such as ‘CASS’ and ‘CASR’ at the N-terminus and 
‘QYF’ and ‘YTF’ at the C-terminus. In sequence data processing, 
we treated these frequently occurring segments as single char-
acters for subsequent processing to enhance the discrimination 
of these similar segments. Segments that appeared in the dataset 
more than 1000 times were identified as high-frequency segments 
and assigned separate coding. During the coding process, longer 
segment coding is prioritized over shorter segment coding. For 
example, ‘CASS’ would be assigned a separate coding, while the 
shorter high-frequency block contained within it, ‘AS’, would 
not be encoded separately. The encoding for all high-frequency 
segments is presented in Supplementary Table S2. Subsequently, 
an embedding method was used to encode the sequences further. 
We employed a transformer encoder with six layers and eight 
heads to extract features from the encoded sequence information. 
Each inner layer contains 1024 nodes. Finally, a feature vector was 
output through a linear fully connected layer. After extracting and 
merging features from CDR3-β and epitopes separately using the 
aforementioned method, a classifier containing four linear fully 
connected layers was used to output the prediction results. 

The second module is the RCMT, which integrates the predicted 
structural information of CDR3-β into the generation model. The 
structural details of CDR3-β are not directly observable in the 
generation model. We utilized the epitope encoder in Module 1 
to extract epitope features and employed a linear generator with 
expanding dimensions to generate the predicted RCM of CDR3-
β. Throughout this process, the weights of the epitope encoder 
remained locked. 

The third module is a generator (CATCR-G) that combines 
the epitope sequence and the predicted structural information 
from RCMT to generate predictions for CDR3-β. The fundamental

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae210#supplementary-data
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principle involves merging the features produced by the epitope 
encoder with the predicted RCM of CDR3-β and employing a 
transformer decoder to generate the predicted sequence. 

Model training 
CATCR was implemented using the PyTorch deep learning frame-
work and was written in Python 3.9. The model was trained with 
a batch size of 128. CATCR-D employs stochastic gradient descent 
(SGD) to optimize binary cross-entropy loss with a learning rate 
of 0.05. In RCMT, we trained the model using a smooth L1 loss 
function augmented with L2 regularization and a learning rate of 
0.05 while using the predicted CDR3-β structure from OpenFold 
as the label. CATCR-G utilizes the Adam optimizer to optimize 
cross-entropy loss. The predicted CDR3-β sequences and the RCM 
obtained from the RCMT, along with the epitope sequences and 
structural information, are reintroduced into CATCR-D to obtain 
the discriminative loss. The final training loss is given by L = 
L(G)+ (1 − L(D))×ω, where  L is the total loss, L(G) is the loss of the 
generative model and L(D) is the discriminative loss. The weights 
of the discriminator are fixed in the CATCR-G training process. 
The value of ω was 0.5. CATCR-G employs a warm-up strategy 
to adjust the learning rate dynamically, starting at 0.000012 and 
increasing to 0.00324 after five epochs, then gradually decreasing. 
The generation model utilizes the BERT score [43], ROUGE-L [44] 
and skip-thought methods [45] for performance evaluation. 

Key Points 
• We introduced the CATCR framework, which innova-

tively integrates both the sequence and structural infor-
mation of peptides for TCR–epitope binding prediction, 
with the incorporation of structural information signifi-
cantly enhancing the predictive performance. 

• A segment-based amino acid encoding method was 
employed during sequence encoding, which has been 
shown to outperform traditional encoding methods in 
its ability to represent amino acid sequences more effec-
tively. 

• Our newly developed generative model, CATCR-G, pre-
dicts TCR sequence binding to an epitope based on 
the sequence and structural information of the epitope. 
Robust performance is exhibited in the BERT score met-
ric. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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