Skip to main content
. 2024 Apr 11;13(4):512–527. doi: 10.21037/gs-23-417

Table 3. Diagnostic performance of 48 DLR models for low nuclear grade, ER+, PR+, and HER2+ classification.

Tasks Methods DLR models
Classifier ACC AUC (95% CI) Sensitivity Specificity F1
Nuclear grade ResNet50 LR 0.758 0.573 (0.521–0.625) 0.867 0.267 0.854
SVM 0.685 0.568 (0.522–0.670) 0.763 0.333 0.798
RF 0.673 0.596 (0.573–0.729) 0.704 0.533 0.779
XGBoost 0.818 0.633 (0.576–0.749) 0.919 0.367 0.892
InceptionV3 LR 0.806 0.509 (0.472–0.647) 0.947 0.100 0.890
SVM 0.818 0.524 (0.380–0.624) 1 0.030 0.903
RF 0.812 0.562 (0.499–0.689) 0.948 0.267 0.898
XGBoost 0.655 0.544 (0.511–0.658) 0.696 0.433 0.764
DenseNet121 LR 0.711 0.535 (0.416–0.661) 0.787 0.333 0.819
SVM 0.717 0.501 (0.438–0.616) 0.860 0.267 0.857
RF 0.778 0.562 (0.434–0.676) 0.887 0.233 0.869
XGBoost 0.721 0.553 (0.463–0.716) 0.830 0.333 0.839
ER ResNet50 LR 0.647 0.592 (0.536–0.689) 0.806 0.340 0.751
SVM 0.680 0.531 (0.514–0.606) 0.990 0.075 0.803
RF 0.692 0.588 (0.569–0.624) 0.874 0.340 0.790
XGBoost 0.660 0.601 (0.51–0.668) 0.835 0.415 0.782
InceptionV3 LR 0.679 0.584 (0.552–0.626) 0.913 0.226 0.790
SVM 0.660 0.515 (0.453–0.650) 0.864 0.264 0.771
RF 0.667 0.618 (0.592–0.647) 0.796 0.415 0.759
XGBoost 0.654 0.528 (0.495–0.581) 0.806 0.359 0.755
DenseNet121 LR 0.667 0.514 (0.438–0.595) 0.893 0.226 0.780
SVM 0.660 0.606 (0.546–0.692) 0.669 0.642 0.723
RF 0.660 0.541 (0.468–0.634) 0.815 0.358 0.760
XGBoost 0.641 0.570 (0.517–0.675) 0.738 0.453 0.731
PR ResNet50 LR 0.592 0.553 (0.437–0.628) 0.848 0.257 0.702
SVM 0.629 0.509 (0.446–0.664) 0.908 0.143 0.757
RF 0.636 0.576 (0.524–0.652) 0.704 0.518 0.711
XGBoost 0.662 0.675 (0.582–0.779) 0.694 0.554 0.712
InceptionV3 LR 0.632 0.542 (0.497–0.640) 0.837 0.364 0.720
SVM 0.711 0.727 (0.673–0.761) 0.982 0.311 0.803
RF 0.685 0.696 (0.641–0.763) 0.800 0.516 0.752
XGBoost 0.696 0.755 (0.707–0.806) 0.755 0.608 0.748
DenseNet121 LR 0.566 0.504 (0.451–0.553) 0.767 0.303 0.667
SVM 0.610 0.603 (0.581–0.636) 0.735 0.393 0.706
RF 0.623 0.601 (0.535–0.629) 0.674 0.554 0.698
XGBoost 0.649 0.592 (0.517–0.724) 0.704 0.554 0.718
HER2 ResNet50 LR 0.641 0.713 (0.656–0.774) 0.764 0.572 0.604
SVM 0.588 0.628 (0.581–0.722) 0.646 0.560 0.504
RF 0.634 0.626 (0.564–0.698) 0.600 0.653 0.541
XGBoost 0.635 0.597 (0.572–0.645) 0.563 0.670 0.500
InceptionV3 LR 0.608 0.506 (0.408–0.552) 0.309 0.776 0.362
SVM 0.614 0.5352 (0.415–0.543) 0.182 0.857 0.253
RF 0.680 0.582 (0.505–0.631) 0.400 0.837 0.473
XGBoost 0.640 0.547 (0.489–0.616) 0.291 0.837 0.368
DenseNet121 LR 0.673 0.581 (0.568–0.606) 0.182 0.948 0.285
SVM 0.607 0.568 (0.492–0.619) 0.527 0.653 0.492
RF 0.634 0.634 (0.593–0.701) 0.673 0.612 0.569
XGBoost 0.615 0.539 (0.493–0.639) 0.542 0.650 0.477

DLR, deep learning radiomics; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; ACC, accuracy; AUC, area under the curve; CI, confidence interval; LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, eXtreme Gradient Boosting.