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Background: Image-based assessment of prostate cancer (PCa) is increasingly emphasized in the diagnostic 
workflow for selecting biopsy targets and possibly predicting clinically significant prostate cancer (csPCa). 
Assessment is based on Prostate Imaging-Reporting and Data System (PI-RADS) which is largely dependent 
on T2-weighted image (T2WI) and diffusion weighted image (DWI). This study aims to determine whether 
deep learning reconstruction (DLR) can improve the image quality of DWI and affect the assessment of PI-
RADS ≥4 in patients with PCa.
Methods: In this retrospective study, 3.0T post-biopsy prostate magnetic resonance imaging (MRI) of  
70 patients with PCa in Korea University Ansan Hospital from November 2021 to July 2022 was 
reconstructed with and without using DLR. Four DWI image sets were made: (I) conventional DWI (CDWI): 
DWI with acceleration factor 2 and conventional parallel imaging reconstruction, (II) DL1: DWI with 
acceleration factor 2 using DLR, (III) DL2: DWI with acceleration factor 3 using DLR, and (IV) DL3: DWI 
with acceleration factor 3 and half average b-value using DLR. Apparent diffusion coefficient (ADC) value, 
signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured by one reviewer, while two 
reviewers independently assessed overall image quality, noise, and lesion conspicuity using a four-point visual 
scoring system from each DWI image set. Two reviewers also performed PI-RADSv2.1 scoring on lesions 
suspected of malignancy.
Results: A total of 70 patients (mean age, 70.8±9.7 years) were analyzed. The image acquisition time was 
4:46 min for CDWI and DL1, 3:40 min for DL2, and 2:00 min for DL3. DL1 and DL2 images resulted in 
better lesion conspicuity compared to CDWI images assessed by both readers (P<0.05). DLR resulted in a 
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Introduction

Prostate cancer (PCa) is the second most prevalent cancer 
in men and ranks fifth in terms of cancer-related mortality 
worldwide (1). Clinical suspicion of PCa is largely based on 
prostate-specific antigen (PSA) levels in combination with 
digital rectal examinations and other patient characteristics. 
Recently, pre-biopsy prostate magnetic resonance imaging 
(MRI) has been incorporated into the diagnostic workflow 
for selecting Prostate Imaging-Reporting and Data 
System (PI-RADS) ≥3 lesions as biopsy targets on MRI 
as recommended by the 2020 European Association of 
Urology guidelines (2). In the management of PCa, the 
choice of treatment intensity ranges from active surveillance 
to prostatectomy or radiotherapy, depending on various 
parameters, including PSA concentration, tumor stage, 
histological grade, and Gleason score (3). Discrimination of 
clinically significant prostate cancer (csPCa) from silent PCa 
has become more clinically relevant, as active management 
is required due to its aggressiveness and poor prognosis (4).  
Among the various criteria for csPCa, tumors with an 
International Society of Urological Pathology (ISUP) 
high grade (i.e., Gleason score 3+4 or higher) constitute 
the most common and important criterion for csPCa (5). 
For treatment decisions, 2023 NCCN Clinical Practice 
Guidelines in Oncology (NCCN Guidelines®) suggest 
that initial risk stratification according to overlapping 
features of csPCa and clinical T staging, along with life 
expectancy should be considered (6). Various applications 

in multiparametric prostate MRI have been investigated for 
the image-based prediction of csPCa (7,8).

The most recent PI-RADS v2.1 relies on T2-weighted 
image (T2WI) and diffusion weighted image (DWI) for the 
detection of csPCa based on imaging findings (9). Limitations 
in the positive predictive value of PI-RADS assessment arise 
primarily from the qualitative assessment of images, which 
heavily relies on (I) image quality, especially in DWI scans 
and apparent diffusion coefficient (ADC) maps (10,11), and 
(II) readers. A review article has reported only moderate to 
substantial inter-reader agreement for PI-RADS v.2.1, with 
k-statistics ranging from 0.42 to 0.70, lacking significant 
improvement since the last version of PI-RADS v2.0 (12). 
Advances in MRI technology with the implementation of 
deep learning (DL) algorithms for image reconstruction have 
improved image quality, reduced noise, increased signal-to-
noise ratio (SNR), and shortened overall scan time (13). The 
application of DL in image reconstruction has resulted in a 
65% reduction in acquisition time in prostate Turbo Spin 
Echo imaging without a significant loss of image quality (14). 
Furthermore, improvements in image quality with denoising 
algorithms and DL-based post-processing (15) have been 
successfully implemented for fast acquisition sequences (16),  
providing images with sufficient quality comparable to 
that of conventional images (17,18). Recently, DL-based 
reconstruction techniques have been validated on DWI with 
high-b-values of 1,000, 3,000, and 5,000 in the prostate gland 
to show a significant improvement in SNR and contrast-

significant increase in SNR, from 38.4±14.7 in CDWI to 56.9±21.0 in DL1. CNR increased from 25.1±11.5 
in CDWI to 43.1±17.8 in DL1 (P<0.001). PI-RADS v2.1 scoring for PCa lesions was more agreeable 
with the DL1 reconstruction method than with CDWI (κ value CDWI, DL1; 0.40, 0.61, respectively). A 
statistically significant number of lesions were upgraded from PI-RADS <4 in CDWI image to PI-RADS 
≥4 in DL1 images for both readers (P<0.05). Most of the PI-RADS upgraded lesions were from higher than 
unfavorable intermediate-risk groups according to the 2023 National Comprehensive Cancer Network 
guidelines with statistically significant difference of marginal probability in DL1 and DL2 for both readers 
(P<0.05).
Conclusions: DLR in DWI for PCa can provide options for improving image quality with a significant 
impact on PI-RADS evaluation or about a 23% reduction in acquisition time without compromising image 
quality.
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to-noise ratio (CNR), along with image quality, with a 
significant reduction in the overall scan time (19). However, 
its clinical relevance and influence on radiologist reporting, 
especially PI-RADS scoring, has yet to be reported.

Therefore, we hypothesized that DL-based reconstruction 
of prostate gland DWI can improve overall image quality 
and affect PI-RADS scoring regarding clinically significant 
tumors. We present this article in accordance with the 
STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1379/rc). 

Methods

Study design

In this retrospective study, 97 patients who underwent 
prostate MRI scans between November 2021 and July 2022 
at Korea University Ansan Hospital were examined. After 
excluding patients without deep learning reconstruction 
(DLR) (n=8), previous treatments such as surgery (n=3), 
local ablation/radiotherapy (n=7), or medication (n=5), 
lack of biopsy due to general condition (n=3), and no PCa 
on biopsy (n=1), 70 patients with biopsy-proven PCa were 

enrolled (Figure 1). Due to the current clinical workflow in 
our institution, all 70 patients had received prostate MRI 
scans post-biopsy.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional review board of Korea 
University Ansan Hospital in the Republic of Korea 
(IRB No. 2023AS0046), and individual consent for this 
retrospective analysis was waived. 

Image acquisition and reconstruction

All patients underwent prostate MRI using a 3.0 T scanner 
(MAGNETOM Vida; Siemens Healthcare, Erlangen, 
Germany) with a 30-channel body coil. T2WIs, DWI 
scans, and dynamic T1-weighted images with compressed 
sensing golden-angle radial sparse parallel-volumetric 
interpolated breath-hold examination (CS GRASP-VIBE) 
sequences were acquired. DWI scans were obtained with 
b-values of 50, 1,000, and 1,400 sec/mm2. In total, four 
different DWI image sets were acquired for each patient 
using the following settings: (I) conventional DWI (CDWI): 
DWI with acceleration factor 2 (iPAT2) and conventional 

Patients underwent prostate MRI for any purpose
between November 2021 to July 2022 (n=97)

Patients included
(n=70)

Exclusion:
1. No DLR DWI (n=8)
2. Previous surgery (n=3)
3. Previous radiotherapy/local ablation (n=7)
4. Previous medical Tx (n=5)
5. Lack of biopsy (n=3)
6. No prostate cancer (n=1)

Multiparametric prostate MRI: 
•	DWI (b=50, 1,000, 1,400 sec/mm2) and corresponding ADC maps
⸰	 CDWI: DWI with iPAT2 & conventional GRAPPA reconstruction
⸰	 DL1: DWI with iPAT2 using DLR
⸰	 DL2: DWI with iPAT3 using DLR
⸰	 DL3: DWI with iPAT3 and reduced averages per b value using DLR

•	T2WI, T1WI, T1 CS GRASP-VIBE FS, T1WI CE FS axial/sagittal/coronal

Figure 1 Patient selection flowchart. MRI, magnetic resonance imaging; DWI, diffusion weighted image; ADC, apparent diffusion 
coefficient; CDWI, conventional diffusion weighted image; DL1, DWI with iPAT2 using DLR; DL2, DWI with iPAT3 using DLR; DL3, 
DWI with iPAT3 and reduced averages per b-value using DLR; GRAPPA, generalized auto-calibrating partially parallel acquisition; iPAT2, 
acceleration factor 2; iPAT3, acceleration factor 3; DLR, deep learning reconstruction; T2WI, T2-weighted image; T1WI, T1 weighted 
image; CS, compressed sensing; GRASP, golden-angle radial sparse parallel; VIBE, volumetric interpolated breath-hold examination; CE, 
contrast enhanced; FS, fat suppression; Tx, treatment.

https://qims.amegroups.com/article/view/10.21037/qims-23-1379/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1379/rc
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Generalized Auto-calibrating Partially Parallel Acquisition 
(GRAPPA) reconstruction; (II) DL1: DWI with iPAT2 
using DLR; (III) DL2: DWI with acceleration factor 3 
(iPAT3) using DLR; and (IV) DL3: DWI with iPAT3 and 
reduced averages per b-value using DLR. All DL images 
were generated with a research application package. The 
specific acquisition parameters are listed in Table 1.

The DLR consisted of two steps. First, DLR of the 
k-space data was performed following the scheme of a 
variational neural network (20). The k-space and pre-
calculated coil sensitivity maps were used as inputs. 
Seventeen iterations were performed in total with Nesterov-
type extrapolation and gradient steps with trainable step 
sizes. Of these 17 iterations, the first 6 focused on parallel 
imaging without applying additional regularization. The 
remaining 11 iterations employed a convolutional neural 
network with a hierarchical down-up architecture as the 
regularizer. Training of the reconstruction scheme was 
performed in a supervised fashion on approximately 500,000 
single-shot DWI images acquired from volunteers using 
clinical 1.5T and 3T scanners (MAGNETOM, Siemens 
Healthcare, Erlangen, Germany). Based on this data, the 
training pairs were built by retrospectively doubling the 
parallel imaging acceleration factor.

F o l l o w i n g  t h e  D L - b a s e d  k - s p a c e  f o r  i m a g e 
reconstruction, a DL-based super-resolution network was 
applied to the single-shot images to increase sharpness. 
For this purpose, a network based on the pixel shuffle 
architecture (21) was trained using volunteer magnetic 
resonance images of various body parts acquired from 
several volunteers. To avoid modifying the acquired image 
information, hard data consistency was applied, and only 
non-measured frequencies were extrapolated. For training, 
image pairs were built by reducing the spatial resolution 
two-fold along the readout and phase-encoding directions. 

After training the networks in Python, they were frozen 
and integrated into the C++-based reconstruction pipeline 
on the scanner. Following the DL-based reconstruction 
steps, DWI processing of single-shot images, including 
averaging and apparent diffusion coefficient (ADC) 
calculations, was performed analogously to CDWI.

Image assessment

Two radiologists with varying experience (18 and 2 years 
of clinical experience) who were blinded to the DWI 
techniques, independently evaluated four data sets with 
2-week intervals per data set. Each data set consisted of one 

Table 1 MRI acquisition parameters

Parameters (unit) CDWI DL1 DL2 DL3 T2WI axial

Median acquisition time 
(min)

04:46 04:46 03:40 02:00 03:06

TR/TE (ms) 5,200/65 5,200/65 4,000/65 4,000/65 2,640/103

Flip angle (o) 90 90 90 90 136

Diffusion mode 3-Scan Trace 3-Scan Trace 3-Scan Trace 3-Scan Trace –

Slice thickness/gap (mm) 3/0 3/0 3/0 3/0 3/0.3

FOV (mm2) 200×180 200×180 200×180 200×180 180×180

Acquisition matrix 120×108 120×108 120×108 120×108 320×320

Reconstruction matrix 240×216 240×216 240×216 240×216 640×640

b-values (s/mm2) 50/1,000/1,400 50/1,000/1,400 50/1,000/1,400 50/1,000/1,400 –

Bandwidth, Hz/pixel 1,667 1,667 1,667 1,667 200

No. averages 3/6/8 3/6/8 3/6/8 2/3/4 2

Echo train length 54 54 36 36 18

Parallel imaging factor 2 2 3 3 2

MRI, magnetic resonance imaging; CDWI, conventional diffusion weighted image; DL1, DWI with iPAT2 using DLR; DL2, DWI with iPAT3 
using DLR; DL3, DWI with iPAT3 and reduced averages per b-value using DLR; T2WI, T2-weighted image; TR, repetition time; TE, echo time; 
FOV, field of view; DWI, diffusion weighted image; DLR, deep learning reconstruction; iPAT2, acceleration factor 2; iPAT3, acceleration factor 3.
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of b-value =50, 1,000, 1,400 sec/mm2 DWI reconstruction 
images (CDWI, DL1–3) with corresponding ADC maps, 
and T2-weighted axial and coronal images. For the 
qualitative assessment of b-value =1,400 sec/mm2 DWI 
reconstruction images, noise (Noise Level: 1, high; 2, 
moderate; 3, mild, 4; minimal), lesion conspicuity, and 
overall image quality (Lesion conspicuity and Lesion 
conspicuity: 1, poor; 2, equivocal; 3, good; 4, excellent) were 
assessed using a four-point visual scoring system. Any lesion 
suspected of malignancy was scored using PI-RADS v2.1 by 
two radiologists, independently. To account for the positive 
select bias in our cohort, readers were asked to rate any 
lesion in the 12 sections of the prostate given in Figure S1. 
The largest lesion was evaluated for the scope of this study. 

For quantitative evaluation, circular regions of interest 
(ROIs) were placed over the dominant prostate lesion, 
the internal obturator muscle for reference of contrast, 
and extracorporeal air for noise evaluation in the four sets 
of b-value =1,400 sec/mm2 DWI reconstruction images 
(CDWI, DL1–3) and corresponding ADC maps by one 
reviewer. For each patient, signal intensity (SI) of all ROIs 
were measured twice and averaged to obtain final values. 
SNR and CNR were calculated as follows: SNR = SIlesion/
SDnoise and CNR = (SIlesion – SImuscle)/SDnoise, SI is the average 
signal intensity of the ROI, and SD is the standard deviation 
of the signal intensity measured in the ROI (22).

Histopathology data and analysis

Lesions were confirmed pathologically using transrectal 
ultrasonography (TRUS)-guided 12-core sampling needle 
biopsy following the recommendations of the American 
Urological Association (23), including the apex and far-
lateral regions of the prostate gland. Biopsy specimens 
were acquired and labeled according to the panel shown in 
Figure S1. The biopsy results were analyzed for malignancy 
and the associated Gleason score sums by experienced 
pathologists who were blinded to the MRI findings. Radical 
prostatectomy or transurethral resection specimens were 
obtained in 31 patients. The sensitivity of TRUS-guided 
systemic biopsy and MRI-detected lesions was compared 
based on location matching of the 12 core-needle specimens 
and the 12 zones based on previous literature (24).

Statistical analysis

To determine the capability of DLR for image quality 
improvement, quantitative analysis (SNR, CNR, and ADC) 

was conducted on each high b-value image series with 
and without DLR using paired t-tests with Bonferroni 
correction, and qualitative analysis (four-point visual 
scoring system) was compared using the Wilcoxon signed-
rank test with Bonferroni correction. To determine the 
clinical significance of this difference, PI-RADS scoring 
was grouped into highly malignant (PI-RADS 4 and 5) 
versus PI-RADS <4 lesions. The marginal probability of 
discriminating highly malignant lesions was compared 
among the DLR techniques using McNemar’s test. In 
addition, inter-reader agreement for qualitative assessment 
of image quality and PI-RADS scoring was evaluated 
using κ statistics, followed by the x2 test. The agreement 
was considered poor for κ of less than 0.21, fair for κ of 
0.21–0.40, moderate for κ of 0.41–0.60, substantial for 
κ of 0.61–0.80, and excellent for κ of 0.81–1.00 (25). 
Subgroup analysis was conducted for csPCa (Gleason score 
≥7) and higher than unfavorable intermediate risk group 
according to 2023 NCCN Guidelines® (6), determined 
by a combination of cT2b–cT2c, Gleason score 7, PSA 
10–20 ng/mL (Table S1). The average of quantitative 
measurements (SNR, CNR, and ADC) was compared 
between groups using independent t-tests with Bonferroni 
correction. Two-sided P value <0.05 was considered 
indicative of a significant difference for each statistical 
analysis. Statistical analysis was performed using IBM SPSS 
software package version 26.0 (Statistical Package for Social 
Sciences™, Chicago, IL, USA).

Results

Clinical characteristics

A total of 70 patients (mean age, 70.8±9.7 years; age range, 
41–88 years) were enrolled in this study. The general 
characteristics of the study participants are presented in 
Table 2. The mean PSA level was 76.45±263.54 ng/mL at 
the time of MRI. TRUS-guided biopsy confirmed PCa 
located only in the peripheral zone (PZ) in 20 patients 
(28.6%), in the transitional zone (TZ) in 3 patients (4.3%), 
and in both the PZ and TZ in 47 patients (67.1%). The 
Gleason score of surgical or biopsied specimens ranged 
from 6 to 10, with 51 (72.9%) patients with csPCa (Gleason 
score ≥7). 

Qualitative assessment

The subjective image quality scores (noise, lesion 
conspicuity, and overall image quality) were assessed by 

https://cdn.amegroups.cn/static/public/QIMS-23-1379-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1379-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1379-Supplementary.pdf
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two readers with fair to moderate agreement, with Cohen’s 
kappa values ranging from 0.31–0.44 (κ values; 0.44, 0.38, 
0.31, respectively).

The results of the qualitative assessment of image 
quality are summarized in Table 3. For reader 1, statistically 
significant improvements in lesion conspicuity were 
observed in the DL1 and DL2 compared to CDWI (mean 
conspicuity scores of CDWI, DL1, DL2, DL3: 3.1, 3.5, 3.3, 
and 3.3, respectively), with no significant difference in noise 
levels or overall image quality between CDWI and DL1 
images (mean noise scores of CDWI, DL1, DL2, DL3: 4.0, 
3.9, 3.7, 3.2; mean overall image quality scores of CDWI, 
DL1, DL2, DL3: 3.8, 3.8, 3.6, 3.4, respectively). 

For reader 2, a statistically significant improvement 
(P<0.05) in lesion conspicuity was also observed in the 
DL1, and DL2 images compared to CDWI images (mean 
conspicuity scores of CDWI, DL1, DL2: 2.9, 3.6, and 3.2, 
respectively). No significant difference in noise and overall 
image quality was observed in CDWI and DL1 images, 
while DL2 and DL3 images displayed significantly higher 
noise levels represented by lower noise assessment scores 
(P<0.05) (mean noise score CDWI, DL1, DL2, DL3: 3.8, 
3.8, 3.7, 3.0; mean overall image quality score CDWI, DL1, 
DL2, DL3: 3.9, 3.9, 3.7, 3.6, respectively) (Figure 2).

Quantitative assessment 

In Table 4, the measurements of SNR, CNR, and ADC 
values of PCa lesions on each DWI are listed. The SNR, 
CNR values of all DLR images (DL1, DL2, DL3) was 
significantly higher than those of CDWI images (SNR: 
CDWI, 38.4±14.7, DL1, 56.9±21.0, DL2, 48.5±18.5, DL3, 
42.5±14.7; CNR: CDWI, 25.1±11.5, DL1, 43.1±17.8, DL2, 
36.3±15.8, DL3, 32.0±12.7; P<0.001). The mean ADC value 
was significantly higher in all DWI with DLR compared 
to CDWI (mean ADC value, 10−3 mm2/sec: CDWI, 
650.5±143.2, DL1, 712.5±150.1, DL2, 748.7±153.8, DL3, 
747.1±145.0, P<0.001).

PI-RADSv2.1 evaluation

Table 5 shows the distribution of DWI scores in PI-RADS 
v2.1 evaluation for each DWI. A majority of the lesions 
were scored as DWI score 5, while the portion increased 
with the implementation of DLR in both readers (CDWI, 
DL1, DL2: Reader 1 64.3%, 67.1%, 78.6% and Reader 
2 54.3%, 68.6%, 62.9%, respectively). Inter-reader 
agreement of PI-RADS scoring was moderate to substantial 

Table 2 Patient and tumor characteristics

Characteristics Value (n=70)

Age, years (mean ± standard deviation) 70.8±9.7

PSA, ng/mL, median (range) 10.05 (0.73, 1,906)

<10 34 (48.6%)

10–20 16 (22.9%)

>20 20 (28.6%)

Tumor location*

TZ only 3 (4.3%)

PZ only 20 (28.6%)

TZ + PZ 47 (67.1%)

Gleason score*, median (range) 7 (6, 10)

6 19 (27.1%)

7 30 (42.9%)

8 14 (20.0%)

9 1 (1.4%)

10 6 (8.6%)

T staging

cT2a 18 (25.7%)

cT2b 4 (5.7%)

cT2c 20 (28.6%)

cT3a 8 (11.4%)

cT3b 11 (15.7%)

cT4 8 (11.4%)

Lymph node metastasis

cN0 53 (75.7%)

cN1 17 (24.3%)

Metastasis

cM0 58 (82.9%)

cM1a 3 (4.3%)

cM1b 9 (12.9%)

Treatment

Surgery 31 (44.3%)

Radiotherapy 19 (27.1%)

Active surveillance 13 (18.6%)

Others 7 (10.0%)

Data are given as number of cases with percenti le in 
parentheses if not otherwise stated. *, Gleason score and 
tumor location was assessed on 12-core-systemic biopsy or 
transurethral resection/total prostatectomy specimens when 
available. PSA, prostate-specific antigen; TZ, transitional zone; 
PZ, peripheral zone. 
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with κ value ranging from 0.33–0.61, with DL1 showing 
the highest agreement (CDWI, DL1, DL2, DL3: 0.40, 
0.61, 0.33, 0.50, respectively). DL3 images were excluded 
for statistical comparison of PI-RADS scoring, based on the 
aforementioned loss in overall image quality. 

Among the 70 PCa patients enrolled in this study, a 
significant number of PI-RADS <4 lesions on CDWI 
images were upgraded to PI-RADS 4 or 5 in DL1 images 
by both readers as shown in Table 6 (P<0.05). Significant 
differences in the number of PI-RADS ≥4 lesions were also 
observed on DL2 images for reader 2 (P=0.03). 

Subgroup analysis was performed based on Gleason 
scores (high grade ≥7) and 2023 NCCN Guidelines 
unfavorable or high-risk groups. SNR and CNR did not 
show a significant difference, whereas the average ADC 
value was significantly lower in the Gleason score ≥7 high-
grade group (n=51) compared to the Gleason score <7 low-
grade group (n=19) in all DWI images (Table 7). Clinically 
significant PCa according to Gleason score grade did 
not show a statistically significant difference in marginal 
probability for PI-RADS scoring in DL1 and 2 as seen in 
Table 8. Also, subgroup analysis of unfavorable intermediate 
or higher risk groups (n=54) according to NCCN 
Guidelines is shown in Table 9. Interestingly, most of the 
previously mentioned PI-RADS upgraded lesions were 
from the higher risk subgroup with a statistically significant 
difference in marginal probability of PI-RADS scoring in 
DL1 and DL2 for both readers (P<0.05).

Location matching

The sensitivity of MRI to detect any-grade cancer or 
clinically significant cancer (Gleason score ≥7) as PI-RADS 
≥4 using location matching is shown in Table 10. Only the 
sensitivity is listed, as all patients included in this study had 
biopsy-proven PCa. The sensitivity of location matching 
between systemic biopsy specimens and clinically significant 
cancer ranged between 78.4–86.3%.

Discussion

Our study shows that the use of DLR in DWI of PCa allows 
for better image quality with better lesion conspicuity, 
or faster acquisition without significant difference in 
image quality. Moreover, the application of DLR in DWI 
resulted in better SNR and CNR of PCa lesions in all cases 
compared to CDWI. The improvements in image quality, 
lesion conspicuity, SNR, and CNR in DL1 resulted in a 
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better inter-reader agreement and upgrading of PCa lesions 
from PI-RADS <4 to PI-RADS ≥4 csPCa. Therefore, our 
study has demonstrated the successful implementation of 
DLR in prostate DWI and its clinical relevance in assessing 
PCa lesions with substantial agreement between readers of 
varying clinical experience.

To increase sensitivity, the most recent version of 
PI-RADS v2.1 recommends using DWI images with 
a high b-value greater than 1,400 sec/mm2 to improve 
the conspicuity of cancer lesions (26,27). Although high 
b-values greater than 2,000 sec/mm2 may improve the 
sensitivity of tumor detection, previous studies have 
reported a significant loss in image quality (28) and a 

significant SNR (29). However, the DLR methods applied 
in our study produced DWI of PCa with better lesion 
conspicuity in DL1 and DL2 images, and better SNR and 
CNR in all iPAT2 and iPAT3-based images. This is in 
accordance with previously reported implementations of 
DLR methods in DWI showing higher SNR and better 
image quality in assessing PCa (19), intra-abdominal  
organs (17), and hepatic mass (17,30), while a study on 
breast cancer DWI DLR showed no significant increase in 
SNR but increase in CNR (31). Due to its signal scarcity, 
the trade-off between high b-value and SNR is an intrinsic 
challenge in DWI, and signal averaging is traditionally 
used for better SNR and noise reduction as opposed to 

A B C D

E F G H I

Figure 2 A 75 years old male patient with current PSA level of 6.28 ng/mL. Axial high b-value (b=1,400 sec/mm2) DWI and ADC map 
of the prostate gland at the apex level are indicated as solid arrows in (A-H). (A) CDWI: DWI with iPAT2 without using DLR, (B) DL1: 
DWI with iPAT2 using DLR, (C) DL2: DWI with iPAT3 using DLR, (D) DL3: DWI with iPAT3 and reduced averages per b-value 
using DLR. (E) ADC map of CDWI, (F) ADC map of DL1, (G) ADC map of DL2, (H) ADC map of DL3. (I) T2WI demonstrates 
asymmetric contour of the right peripheral zone with a focal T2 homogeneous low SI lesion (arrow) about 15 mm in size. (A) An ill-defined 
intermediate signal intensity lesion is seen in the right peripheral zone in CDWI with SNR of 16.9. A corresponding focal low value lesion 
is suspected in (E) and the lesion was evaluated as PI-RADS v2.1 score 3 on CDWI by reader 2. (B-D) Deep-learning reconstructed DWI 
images demonstrated focal high signal intensity (arrows) in the right peripheral zone with high SNR (27.8, 21.0, 21.1, respectively) with 
corresponding low values in (F-H) ADC maps. The lesion was assessed as PI-RADS v2.1 score 4 or 5 on DL1–3 images. TRUS-guided 
biopsy revealed adenocarcinoma with Gleason score 8 (4+4) in the right peripheral zone. PSA, prostate-specific antigen; DWI, diffusion 
weighted images; ADC, apparent diffusion coefficient; CDWI, conventional diffusion weighted image; iPAT2, acceleration factor 2; DL1, 
DWI with iPAT2 using DLR; DL2, DWI with iPAT3 using DLR; DL3, DWI with iPAT3 and reduced averages per b-value using DLR; 
GRAPPA, generalized auto-calibrating partially parallel acquisition; iPAT3, acceleration factor 3; DLR, deep learning reconstruction; 
T2WI, T2-weighted image; SI, signal intensity; PI-RADS, Prostate Imaging-Reporting and Data System; SNR, signal-to-noise ratio. 
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Table 4 Quantitative image assessment

Measurements
CDWI 

(mean ± SD)

DL1 DL2 DL3

Mean ± SD P value Mean ± SD P value Mean ± SD P value

SNR 38.4±14.7 56.9±21.0 <0.001 48.5±18.5 <0.001 42.5±14.7 <0.001

CNR 25.1±11.5 43.1±17.8 <0.001 36.3±15.8 <0.001 32.0±12.7 <0.001

ADC value (×10−3 mm2/sec) 650.5±143.2 712.5±150.1 <0.001 748.7±153.8 <0.001 747.1±145.0 <0.001

*Pearson’s coefficient 0.85 0.79 0.78

P values are provided by paired t-tests to compare values between DL1–3 and CDWI. *, Pearson’s coefficient between CDWI ADC values 
and DL1–3 ADC values are shown. CDWI, conventional diffusion weighted image; DL1, DWI with iPAT2 using DLR; DL2, DWI with iPAT3 
using DLR; DL3, DWI with iPAT3 and reduced averages per b-value using DLR; SD, standard deviation; SNR, signal-to-noise ratio; CNR, 
contrast-to-noise ratio; ADC, apparent diffusion coefficient; DWI, diffusion weighted image; DLR, deep learning reconstruction; iPAT2, 
acceleration factor 2; iPAT3, acceleration factor 3.

Table 5 Diffusion weighted image scores according to PI-RADS v 2.1

DWI scores
Reader 1 Reader 2

CDWI DL1 DL2 CDWI DL1 DL2

5 45 (64.3) 47 (67.1) 55 (78.6) 38 (54.3) 48 (68.6) 44 (62.9)

4 21 (30.0) 22 (31.4) 11 (15.7) 17 (24.3) 16 (22.9) 17 (24.3)

3 4 (5.7) 1 (1.4) 4 (5.7) 14 (20.0) 6 (8.6) 9 (12.9)

2 0 0 0 1 (1.4) 0 0 

1 0 0 0 0 0 0 

Total 70 70 70 70 70 70 

Data are given as the number of cases (%). PI-RADS, Prostate Imaging-Reporting and Data System; DWI, diffusion weighted image; 
DLR, deep learning reconstruction; CDWI, conventional diffusion weighted image; DL1, DWI with iPAT2 using DLR; DL2, DWI with iPAT3 
using DLR; iPAT2, acceleration factor 2; iPAT3, acceleration factor 3. 

Table 6 PI-RADS scoring confusion matrix, McNemar test

PI-RADS 
scores

Reader 1 Reader 2

DL1 DL2 DL1 DL2

PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4

CDWI

PI-RADS <4 3 6 2 7 6 10 10 6 

PI-RADS ≥4 0 61 2 59 1 53 0 54 

P value 0.03 0.18 0.01 0.03 

Data are given as the number of cases. P values are provided by Mcnemar test for marginal homogeneity between DL1–2 and CDWI for 
each reader. PI-RADS, Prostate Imaging-Reporting and Data System; DL1, DWI with iPAT2 using DLR; DL2, DWI with iPAT3 using DLR; 
CDWI, conventional diffusion weighted image; DWI, diffusion weighted image; DLR, deep learning reconstruction; iPAT2, acceleration 
factor 2; iPAT3, acceleration factor 3. 

higher parallel imaging acceleration factors. However, 
signal averaging is time-consuming as acquisition time is 
proportional to the number of signals averaged. As DWI 

naturally contributes considerably to overall scan time, 
echoplanar imaging in combination with parallel imaging, 
compressed sensing, and DLR are important techniques for 
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scan time reduction in DWI while maintaining significant 
image quality (32). In this study, the role of DLR in 
overcoming such image quality trade-offs has been carefully 
examined by applying different acceleration parameters in 
combination with DLR. Better lesion conspicuity, SNR, and 
CNR in the DL2 scan of this study have shown that DLR 
can be successfully implemented in DWI to increase parallel 
imaging acceleration factor up to 3 without compromising 
image quality or lesion characterization.

To note, an increase in SNR was seen despite the 
higher mean ADC values of cancer lesions on DLR images 
(DL1, DL2, and DL3) than on CDWI in this study. So 
far, the effects of DLR on ADC values have not been 
thoroughly investigated, as there have been contradictory 
reports of higher ADC values (30,33), of no significant 
differences (19,31), or of lower ADC values (17) in lesions 
on DLR images. Previous reports concerning DLR have 
attributed the differences in ADC values to limitations in 
SNR in high b-value images above 3,000 sec/mm2 (19), 
and differences in imaging protocols such as different 
fat saturation techniques, acceleration factors, and signal 
averages (17) or higher ADC values due to increased 
signal losses due to cardiac motion in the left hepatic  
lobe (30). In this study, the trend of higher ADC values with 
DLR imaging was consistent in all DLR images and was 
statistically significant, especially with no change in imaging 
parameters between CDWI and DL1. To note, the increase 
in ADC value between conventional images and DLR 
images was less than 100×10−3 mm2/sec, while analysis with 
Pearson’s coefficient showed that the values were increased 
proportionately. Although the reason for the increase in 
ADC values with DLR is yet to be validated, results of this 
study indicate that such an increase in ADC value had not 
significantly counteracted the improvement in SNR, CNR, 
and image quality in high b-value images.

The findings of our study also revealed that the DL1 
reconstruction method for DWI can improve the inter-
reader agreement of PI-RADS v2.1 evaluation to a 
substantial level (κ=0.61), compared to the moderate 
agreement observed in other reconstruction methods in this 
study (κ value range 0.33–0.50) and previous literature (12).  
Specifically, this was achieved regardless of the large 
differences in the clinical experiences of the two readers 
in this study. Similarly, a recent study demonstrated that 
inter-reader agreement and the level of confidence for PI-
RADS v2.1 scoring was higher with better image quality 
assessed by the prostate imaging quality (PI-QUAL) 
score, regardless of the reader’s clinical experience (34). In 
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addition, a meta-analysis of PI-RADS v2.1 assessment has 
revealed that inter-reader agreement declines especially 
with the inclusion of transitional zone PCa, and PI-
RADS score 3 lesions (35). In our study, inter-reader 

agreement maintained a substantial level with DL1 images 
even with the inclusion of PI-RADS score 3 lesions. The 
improvement in inter-reader agreement in combination 
with lesion conspicuity, SNR, and CNR may be helpful in 

Table 8 PI-RADS scoring confusion matrix, McNemar test for Gleason score ≥7 (csPCa)

PI-RADS scores

Reader 1 Reader 2

DL1 DL2 DL1 DL2

PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4

CDWI

PI-RADS <4 1 5 1 5 5 7 8 4 

PI-RADS ≥4 0 45 1 44 1 38 0 39 

P value 0.06 0.22 0.07 0.13

Data are given as the number of cases. P values are provided by Mcnemar test for marginal homogeneity between DL1–2 and CDWI for 
each reader. PI-RADS, Prostate Imaging-Reporting and Data System; csPCa, clinically significant prostate cancer; DL1, DWI with iPAT2 
using DLR; DL2, DWI with iPAT3 using DLR; CDWI, conventional diffusion weighted image; DWI, diffusion weighted imaging; DLR, deep 
learning reconstruction; iPAT2, acceleration factor 2; iPAT3, acceleration factor 3.

Table 9 PI-RADS scoring confusion matrix, McNemar test for NCCN Guidelines risk higher than unfavorable intermediate risk

PI-RADS 
scores

Reader 1 Reader 2

DL1 DL2 DL1 DL2

PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4 PI-RADS <4 PI-RADS ≥4

CDWI

PI-RADS <4 1 6 2 6 3 8 5 6 

PI-RADS ≥4 0 47 0 46 1 42 0 43 

P value 0.03 0.03 0.04 0.03 

Data are given as the number of cases. P values are provided by Mcnemar test for marginal homogeneity between DL1–2 and CDWI for 
each reader. PI-RADS, Prostate Imaging-Reporting and Data System; NCCN, National Comprehensive Cancer Network; DL1, DWI with 
iPAT2 using DLR; DL2, DWI with iPAT3 using DLR; CDWI, conventional diffusion weighted image; DWI, diffusion weighted imaging; DLR, 
deep learning reconstruction; iPAT2, acceleration factor 2; iPAT3, acceleration factor 3.

Table 10 Sensitivity of MRI to detect any-grade cancer or csPCa using location matching

Sensitivity
Reader 1 Reader 2

CDWI DL1 DL2 DL3 CDWI DL1 DL2 DL3

Any prostate cancer, sensitivity (%) 71.4 67.1 75.7 70.0 64.3 72.9 72.9 68.6

csPCa, sensitivity (%) 80.4 78.4 86.3 82.4 78.4 84.3 86.3 84.3

95% CI 66.9–90.2 64.7–88.7 73.7–94.3 69.1–91.6 66.9–90.2 64.7–88.7 73.7–94.3 69.1–91.6

MRI, magnetic resonance imaging; csPCa, clinically significant prostate cancer (Gleason score ≥3+4); CDWI, conventional diffusion 
weighted image; DL1, DWI with iPAT2 using DLR; DL2, DWI with iPAT3 using DLR; DL3, DWI with iPAT3 and reduced averages per b-value 
using DLR; CI, confidence interval; DWI, diffusion weighted imaging; DLR, deep learning reconstruction; iPAT2, acceleration factor 2; 
iPAT3, acceleration factor 3.
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better localization of suspicious lesions on pre-biopsy MRI 
and targeted biopsy. 

Over the years, it has been observed that surgically 
confirmed PCa with large tumor volume ≥0.5 cm3, Gleason 
score ≥7, or the presence of extra-prostatic extension is 
clinically significant. According to the recent version of PI-
RADS v2.1, the detection rate of csPCa is over 90% for PI-
RADS 5 lesions (36), 22–60% for PI-RADS 4 lesions (37),  
and only up to 12% for PI-RADS 3 lesions (38). In this 
regard, clinical implications of our study are suggested, as 
evaluation with DL1 DWI resulted in the upgrading of 
PI-RADS <4 lesions on conventional images to clinically 
significant tumors (PI-RADS 4 or 5), prompting further 
management. The reason for the difference in evaluation 
from PI-RADS <4 to PI-RADS 4 or 5 was largely due to 
DWI scores of 3 in CDWI being upgraded to DWI 4 or 
5 in DLR DWI, possibly due to a better correlation of 
diffusion restriction of lesions in both the ADC map and 
high b-value images owing to improvements in SNR, CNR 
and image quality. An example of such an upgrade in PI-
RADS assessment is demonstrated in Figure 2, in which an 
increase in SNR from 16.9 in CDWI to high SNR in DL1–
3 (27.8, 21.0, 21.1, respectively) led to better correlation 
of the lesion in high b-value and ADC map images. This 
resulted in a change of PI-RADS score 3 to PI-RADS score 
5 after considering the DLR images, and the lesion was 
pathologically confirmed as Gleason score 8 csPCa. These 
results suggest that the observed improvements in lesion 
conspicuity, SNR, and CNR on DL1 images can aid in 
better characterization of PCa lesions on DWI. To date, 
only one pilot study has investigated the clinical impact 
of using DLR DWI for PI-RADS scoring, resulting in 
no significant difference between CDWI (39). A bladder 
cancer study on another radiological reporting system 
which also relies heavily on DWI, showed that using 
DLR might further improve the diagnostic accuracy for 
determining the Vesical Imaging Reporting and Data 
System (VI-RADS) and the presence of muscle invasion (40).  
Furthermore, without change in PI-RADS ≥4 scoring, DWI 
score changes from 4 to 5 were observed in up to 10 patients  
in DLR images. This was largely due to increased 
measurement of size on DLR DWI. Further investigation 
with surgical specimens is needed in the future to determine 
whether DLR images may overestimate the size of lesions 
or aid in determining extra-prostatic extension or T staging.

Lastly, the current management of PCa is a complex 
decision taking into account various clinical factors such as 
life PSA level, clinical T staging, and Gleason score groups 

defined by the ISUP. 2023 NCCN Guidelines for PCa 
suggest categorizing patients into 5 risk groups from very 
low to very high to aid decisions in treatment. According to 
these guidelines, higher than unfavorable intermediate risk 
and longer life expectancy warrants a more aggressive initial 
treatment such as radical prostatectomy or radiotherapy as 
opposed to active surveillance in low-risk groups. In this 
study, the upgrade to PI-RADS ≥4 with the use of DLR on 
DWI was seen mostly in these higher-risk groups according 
to NCCN Guidelines. Thus, upgrading to PI-RADS 
≥4 may be correlated with the need for more aggressive 
treatments rather than active surveillance, which needs to 
be investigated further in future studies.

This was a retrospective study of patients with a relatively 
small sample size. The prostate MRI scans were taken post-
biopsy and this study included patients confirmed with 
PCa, which leaves room for a positive selection bias. In the 
conventional diagnostic workflow, MRI has been reserved 
mainly for further staging of extra-prostatic lesions rather 
than for the diagnosis or localization of PCa. However, due 
to the increasing emphasis on pre-biopsy MRI, further study 
with the inclusion of patients with intermediate clinical 
suspicion for cancer and the screening population is needed 
to investigate the full clinical implications of DL image 
reconstruction and diagnostic performance of assessing csPCa.

Moreover, although the sensitivity of location matching 
between TRUS biopsy-confirmed lesions and PI-RADS 
≥4 lesions determined on MRI was comparable to previous 
literature (24), the lack of surgical resection in the majority 
of patients may have allowed for sampling error and/or 
operator bias in the histological grading and localization of 
tumors in our study. Ghosting artifacts were observed in 
DL2 and DL3 images in the pilot scans, which were fixed 
by adjusting the field of view. Additionally, long-term follow-
up data of the patients were not available to investigate its 
effects on clinical outcomes. Finally, further investigations 
and study designs are warranted for statistical validation of 
the non-inferiority of DL2 images compared to CDWI.

Conclusions

Despite the limitations, the results of implicating DLR 
for prostate DWI in our study have shown significant 
improvement in lesion conspicuity, SNR, CNR, inter-reader 
agreement of PI-RADS evaluation, and more clinically 
relevant PI-RADS scoring (PI-RADS score ≥4) for malignant 
lesions using iPAT2 images (DL1), without additional scan 
time. Moreover, DWI with iPAT3 (DL2) resulted in a 23% 
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reduction in scan time compared to conventional imaging and 
better lesion conspicuity, without compromising consistent 
reporting of PI-RADS v2.1 evaluation. These results can be 
employed by urologists and radiologists in selecting imaging 
reconstruction methods for better characterization of lesions 
(DL1), or faster (DL2) scan methods in screening and for 
incorporating pre-biopsy prostate MRI in the diagnostic 
workflow. Moreover, better inter-reader agreement of PI-
RADS scoring along with lesion conspicuity may help localize 
lesions in pre-biopsy MRI aiding targeting biopsy. Lastly, 
further investigation is needed for the clinical implications of 
upgraded PI-RADS lesions and their correlation with higher 
NCCN Guidelines risk groups.
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