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Abstract

Digital therapeutics (DTx) are a somewhat novel class of US Food and Drug Administration-

regulated software that help patients prevent, manage, or treat disease. Here, we use natural 

language processing to characterise registered DTx clinical trials and provide insights into the 

clinical development landscape for these novel therapeutics. We identified 449 DTx clinical 

trials, initiated or expected to be initiated between 2010 and 2030, from ClinicalTrials.gov 

using 27 search terms, and available data were analysed, including trial durations, locations, 

MeSH categories, enrolment, and sponsor types. Topic modelling of eligibility criteria, done with 

BERTopic, showed that DTx trials frequently exclude patients on the basis of age, comorbidities, 

pregnancy, language barriers, and digital determinants of health, including smartphone or data plan 

access. Our comprehensive overview of the DTx development landscape highlights challenges in 

designing inclusive DTx clinical trials and presents opportunities for clinicians and researchers to 

address these challenges. Finally, we provide an interactive dashboard for readers to conduct their 

own analyses.

Introduction

Digital therapeutics (DTx) are a somewhat novel class of US Food and Drug Administration 

(FDA)-regulated software that help patients prevent, manage, or treat disease. Beyond 

providing additional therapeutic options for patients, the method of delivery of DTx also 

enables the delivery of continuous and personalised care at scale.1,2 Examples of approved 

DTx include the Propeller platform, which uses smart devices and paired consumer 

applications to improve medication adherence and reduces hospital admissions in patients 
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with asthma and chronic obstructive pulmonary disease (COPD),3,4 and EndeavorRx, 

a video game that helps improve attention function in children with attention-deficit 

hyperactivity disorder.5 Although DTx have the potential to help bridge gaps in access to 

care, there are concerns that these software will require access to compatible devices or high 

digital literacy, and widen disparities in health outcomes.1,6 There is also substantial interest 

from health-care and regulatory institutions to analyse the clinical development landscape 

and quality of clinical evidence available for DTx.6,7

ClinicalTrials.gov is the main website in the USA for registering clinical trials, as 

required by the FDA Amendments Act of 2007.8 Several studies have previously used the 

ClinicalTrials.gov registry to characterise the level of clinical evidence for drug therapeutics, 

including analysis of clinical trial design and applicability of trial results to real-world 

populations. 9–11 Analogous studies of clinical trials involving digital interventions12–14 

have focused on structured data fields, and only a few have attempted to provide additional 

insights through manual free-text analysis. However, manual analysis is time-consuming, 

requires specialised expertise, and is difficult to keep up to date as new DTx trials occur, and 

so automated tools are necessary to provide real-time insight into emerging trials.

In the past 5 years, developments in natural language processing (NLP) have made 

automated information extraction readily available for biomedical text. Software tools, such 

as SciSpacy, provide open-source access to text analysis pipelines and NLP models, which 

are pretrained on large biomedical datasets and can achieve high accuracies on information 

extraction and other language tasks.15,16 These pipelines can also map extracted concepts 

to existing biomedical vocabularies, such as MeSH categories, for standardisation and 

downstream analysis. Several NLP methods have been applied to analyse drug therapeutic 

clinical trials,11,17 but have not yet been used to characterise the clinical development of 

DTx.

Given the increasing availability of DTx and their corresponding clinical trials, we did 

a systematic review to describe the characteristics of trials on DTx. We took advantage 

of modern NLP methods to better understand the characteristics of DTx clinical trials 

and the quality of evidence available for these novel therapeutics. Finally, we provide an 

interactive dashboard for readers to do their own analyses of DTx studies using structured 

and unstructured data fields from ClinicalTrials.gov.

Methods

Search strategy and selection criteria

Digital therapeutics clinical trials were identified through the ClinicalTrials.gov application 

programming interface by use of a set of 27 search terms related to DTx, including “digital 

therapeutic”, “digital therapy”, “smartphone”, “mobile app”, and “video game” (appendix 

p 1). Searches were limited to the fields for BriefSummary, BriefTitle, InterventionName, 

InterventionDescription, Keyword, DetailedDescription, EligibilityCriteria, or OfficialTitle, 

and only trials registered for FDA-regulated devices and not listed as having a “basic science 

purpose” were included. We used the ClinicalTrials.gov field IsFDARegulatedDevice to 

identify trials “studying a device product subject to section 510(k), 515, or 520(m) of the 
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Federal Food, Drug, and Cosmetic Act”.18 Thus, even if FDA clearance or approval had not 

been granted for any of these trials, there was a high degree of confidence that they were for 

FDA-regulated products. Basic science studies were identified with the DesignStudyPurpose 

field and were removed to focus on trials of DTx with an established mechanism of action. 

By use of the OverallStatus field, trials that had been terminated, withdrawn, suspended, or 

had an unknown status were also excluded to limit analysis to active trials. The scope of 

the systematic review was also limited to studies with start dates occurring after 2010, or 

expected completion dates listed after 2030. Following these filtering steps, the full record 

from each remaining DTx trial was then extracted from the complete ClinicalTrials.gov 

dataset, which was downloaded on Aug 3, 2022. We report our findings in line with 

PRISMA guidelines. Since this systematic review does not assess health outcomes, no 

protocol is registered on PROSPERO. The full list of data fields available for each trial 

can be found on ClinicalTrials.gov on the Protocol Registration Data Element Definitions 

page.18

Analysis of clinical trial characteristics by use of structured data fields

We compared the number and duration of interventional and observational trials, with 

duration calculated as the number of years between reported start and completion dates. 

Clinical trials were also analysed on the basis of sponsor and collaborator types, visualised 

with a Sankey diagram. To understand the geographical distribution of clinical trial facilities 

in the USA, each entry in the LocationState field was mapped to a state code with the 

pgeocode software package (version 0.3.0) and the number of trials in each state was plotted 

as a choropleth map. The density of clinical trial facilities in each state was also calculated 

as a ratio of trial locations to the population of each state, by use of the 2021 estimated US 

Census Bureau values.19

We analysed correlation between the number of clinical trial locations and the area 

deprivation index (ADI), a metric of socioeconomic status in each region. ADIs for the 

five states with the highest number of clinical trial locations were downloaded from 

the University of Madison Neighborhood Atlas and mapped to each listed facility’s zip 

code.20,21 National and state ADIs were analysed, with national ADI score given as a 

percentile across the entire country. At the state level, ADI is provided on a scale from 

1 to 10. Higher scores represent greater socioeconomic disadvantage for both state and 

national ADIs. Only trials with available features in each data field were considered for 

these analyses (appendix p 2).

Extraction of condition and eligibility criteria by use of NLP

Although ClinicalTrials.gov has an internal algorithm to map conditions listed with 

standardised biomedical vocabulary to MeSH terms, these terms do not correspond to the 

main MeSH branches and are not available for all clinical trials.22 To create standardised 

mappings for each clinical trial, medical conditions from the condition free-text field were 

extracted and mapped to MeSH terms by use of the MeSH EntityLinker from SciSpacy 

(version 0.5.0),15 with only the first match selected for each condition. Resulting terms were 

grouped into MeSH categories and the most frequent heading was selected for trials with 

multiple conditions, with priority given to values under the branches C (diseases) and F 
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(psychiatry and psychology). MeSH terms were manually reviewed to assess the validity 

of the MeSH EntityLinker on this dataset. With conditions classified into standardised 

clusters, we compared enrolment counts in each MeSH heading, focusing on non-phase 1, 

interventional trials in groups with fewer than ten studies. The EnrolmentType field was 

used to differentiate between actual and anticipated enrolment for each trial.

To analyse the most common types of eligibility criteria, we used the BERTopic 

topic modelling technique (version 0.11.0),23 which clusters text embeddings to produce 

interpretable, semantically cohesive clusters. BERTopic has been used in previous studies 

of biomedical text and has been shown to generate more coherent topics compared with 

Latent Derelict Aldrich or other topic modelling methods.24 To generate embeddings for 

BERTopic, text from the eligibility criteria field was first split into inclusion and exclusion 

criteria, with each line con sidered a separate document. A language model from SciSpacy 

pretrained on biomedical text (en_core_sci_lg) was then used to generate embeddings for 

each eligibility criterion. The SciSpacy embeddings encode semantic relationships between 

biomedical terms, allowing related terms to be grouped into more semantically cohesive 

topics, unlike conventional methods that cluster words only on the basis of their frequency 

and co-occurence.15 A BERTopic model with default settings was used to generate topics 

from these embeddings, and the top five topics for each eligibility criterion were mapped 

back to the corresponding clinical trial to analyse the percentage of each topic occurring 

in each MeSH cluster. Again, a subset of the 200 inclusion and exclusion criteria were 

manually reviewed to confirm that the eligibility criteria were mapped correctly to these 

topics. Only MeSH groups with at least 15 studies were analysed. Topic modelling was done 

on inclusion and exclusion criteria of interventional trials in our dataset not listed as a phase 

1–4 trial.

Development of an interactive dashboard for DTx clinical trial analysis

The dashboard for clinical trials data analysis was built with Streamlit. The dashboard 

implements all the methods described in this systematic review for analysis of study types, 

sponsor types, conditions, and eligibility criteria.

Statistics

Descriptive statistics are provided for categorical variables as proportions, and averages 

are reported for continuous variables as medians and IQRs. Spearman’s rank correlation 

coefficient (r) values were calculated to analyse the correlation between continuous 

variables. Mann-Whitney U tests were used to establish differences in median enrolment 

between MeSH categories and Bonferroni correction was used to account for multiple 

testing. Statistical testing was done with Scipy (version 1.7.3) and p values less than 0·05 

were considered significant.25

Results

Using 27 search terms related to digital therapeutics (appendix p 1), we identified 8615 

clinical trials involving digital-based interventions. Of these trials, 7386 were active or 

ongoing, and 7221 had a start date after 2010 and expected completion date before 2030. 
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Since DTx are regulated by the FDA as “software as a medical device”, we only considered 

studies that were listed as using FDA-regulated devices and conducted for non-basic science 

purposes, resulting in 449 studies of interest (figure 1). Of these 449 studies, 53 (11∙8%) 

were observational and 396 (88∙2%) interventional (figure 2), with 74 interventional studies 

listing a completion date in 2022, and 88 in 2023. Overall, 150 interventional and 18 

observational studies were listed as completed, with median study durations of 1·02 years 

(IQR 0·57–1·69, range 0·06–5·17) and 0·69 years (0·32–1·59, range 0·05–5·42), respectively 

(figure 2). 13 observational and 68 interventional studies were first posted to the registry in 

2022 (appendix p 3). Because all information on ClinicalTrials.gov is voluntarily reported 

by the sponsor of each clinical trial, only available data are used for each analysis and 

missingness is reported in the appendix (p 2).

ClinicalTrials.gov requires sponsors to list the facilities in which studies are being done, 

although how this is interpreted for DTx studies is not clear. As one of the primary 

advantages of DTx is their ability to deliver care remotely, we wanted to understand the 

geographical distribution of listed physical clinical trial locations.

Using location data provided by each study, we found that the states with the most 

DTx clinical trial locations were California (n=135), New York (n=58), Florida (n=55), 

Pennsylvania (n=52), and Texas (n=50; figure 3). Five states—South Dakota, Wyoming, 

Hawaii, Delaware, and West Virginia—had no listed locations. Overall, the mean number of 

locations for each completed trial was 2·33 (SD 5·75). Four trials were completed without 

any listed facilities. The number of clinical trial locations was strongly correlated with state 

population (r=0·89, p<0·001; appendix p 4). We also analysed whether the reported clinical 

trial locations included socioeconomically disadvantaged neighbour hoods, measured with 

the ADI. In the five states with the largest number of clinical trial locations, the number of 

clinical trials was inversely correlated with both the national (r=−0·52, p<0·001) and state 

(r=−0·66, p=0·037) ADI (appendix p 4).

To characterise the types of sponsors and collaborators funding or supporting clinical trials 

for DTx, we looked at the listed lead sponsor and collaborator classes for the 449 trials. 

The most common sponsor type was other (n=290 [65%]), which generally referred to 

academic medical centres (figure 3). Industry was the next most common sponsor type, 

with 146 (33%) trials. Most studies were done by a single sponsor with no collaborators 

(n=236, 53%), 131 (29%) had one collaborator, 45 (10%) had two, and 37 (8%) had three 

or more. For studies with a single collaborator, 26 were sponsored by other or academic 

institutions and had an industry collaborator and 14 were sponsored by industry with another 

or academic collaborator.

To establish the distribution of DTx trials by medical specialty, we mapped conditions listed 

as free text by each clinical trial to MeSH terms using a SciSpacy pipeline and MeSH 

EntityLinker. The three most common headings tested in DTx clinical trials were nervous 

system diseases (n=82 [19%]; figure 4), nutritional and metabolic diseases (n=45 [10%]), 

and pathological conditions, signs, and symptoms (n=41 [9%]), followed by behaviour 

and behaviour mechanisms (n=37 [8%]), cardiovascular diseases (n=34 [8%]), and mental 

disorders (n=31 [7%]). Conditions that mapped to the heading of nervous system diseases 
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included stroke and Parkinson’s disease, nutritional and metabolic diseases included both 

diabetes type 1 and 2, and respiratory tract diseases included conditions such as asthma 

and COPD. The MeSH category pathological conditions, signs, and symptoms contained 

“abnormal anatomical or physiological conditions…not classified as disease”, and included 

conditions such as chronic pain. Manual review of MeSH terms also showed that this 

approach mapped conditions to appropriate categories for 95% of conditions (appendix pp 

5–6). Of the six studies in which conditions did not map to MeSH terms and were excluded 

from analysis, four described treatments or device characteristics (eg, device latency) rather 

than medical conditions and two described generic symptoms that did not map to specific 

headings (nasal congestion and prenatal stress; appendix p 7).

With conditions classified into standardised clusters, we compared enrolment counts within 

each MeSH heading, focusing on non-phase 1, interventional trials in groups with fewer 

than ten studies. Trials targeting cardiovascular diseases had the highest number of actual 

and anticipated participants, with a combined median of 200 participants (IQR 100–350, 

range 40–450 000; 24 trials), followed by trials for nutritional and metabolic diseases with a 

combined median of 100 participants (IQR 30–197, range 6–6006; 41 trials) and behaviour 

and behaviour mechanisms again with a combined median of 100 participants (IQR 40–

234, range 7–4500; 35 trials; figure 4). The category with the fewest median number of 

participants was nervous system diseases, which had a median of 40 participants (IQR 

22–100; 70 trials), although the largest trial in this category listed an anticipated enrolment 

of 100 000 participants. Comparing anticipated and actual enrolment information within 

each MeSH group, median anticipated enrolment was only significantly higher than actual 

enrolment for nutritional and metabolic disease DTx trials, with a median difference of 211 

participants (p=0·035).

Previous studies of drug therapeutic clinical trials have shown that eligibility criteria are 

often overly strict and can skew trial cohorts away from real-world patient populations.10,11 

The top five inclusion criteria topics identified by BERTopic from DTx studies were defined 

by terms related to clinical factors, ability to provide informed consent, age, smartphone and 

data access, and English fluency (figure 5). Criteria associated with clinical factors were 

most frequently found in 21 (55%) of 38 pathological condition trials, 31 (47%) of 66 trials 

for nervous system diseases, and 11 (46%) of 24 trials for mental health disorders. Age 

criteria were most likely to be found in trials for behavioural disorders (23 [72%] of 32) and 

nutritional and metabolic diseases (25 [66%] of 38). Inclusion criteria detailing smartphone 

access were also found in several trials, occurring most frequently in DTx intended for 

nutritional and metabolic diseases (18 [47%] of 38) and neoplasms (8 [47%] of 17), and 

least frequently in trials for nervous system diseases (11 [17%] of 66) and pathological 

conditions (2 [5%] of 38). The topic related to smartphones and data access also contained 

other keywords associated with device compatibility, cellular data plans, and Wi-Fi access. 

Manual review of DTx studies with eligibility criteria in this topic showed that patients 

could be excluded if they did not have a PayPal account (NCT04857515), were not willing 

to use a smartphone and personal data plan, (NCT04159480), or did not show technological 

literacy (NCT04136626). This topic was most frequently found in trials for nutritional and 

metabolic diseases (18 [47%] of 38). The ability to provide informed consent was also 

most frequently found in trials for nutritional and metabolic diseases (24 [63%] of 38) 
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and English fluency criteria occurred most frequently in trials for behaviour and behaviour 

mechanisms (11 [34%] of 32).

The top topics generated from the exclusion criteria were associated with medical history 

(varying between trials), pregnancy, allergies or other skin conditions, blood pressure, and, 

as with the inclusion criteria, the ability to provide informed consent (figure 5). 23 (96%) 

of 24 DTx clinical trials targeting mental health disorders, 33 (87%) of 38 trials targeting 

nervous system diseases, and 20 (83%) of 24 trials targeting cardiovascular disease had 

exclusion criteria associated with medical history. Component analysis showed that some 

trials specifically excluded patients with a history of smoking or suicidal behaviour, cardiac 

disorders, or use of insulin (appendix p 9). Analysis of the topic associated with pregnancy 

showed that nutritional and metabolic disease DTx trials were most likely to contain this 

exclusion criterion (21 [55%] of 38), but only five (21%) of 24 trials for mental health 

disorders and three (13%) of 24 trials for cardiovascular diseases listed such criteria. Manual 

review was done on a subset of inclusion and exclusion eligibility criteria to ensure that 

topics were highly coherent and accurately described each criterion. Topics were appropriate 

in 95% (n=200) of inclusion criteria and 94% (n=200) of exclusion criteria (appendix pp 

10–11).

Although ClinicalTrials.gov has filters and other data analysis tools that enable research into 

the structured data, there are few publicly available visual tools for the analysis of DTx 

clinical trials. We provide an interactive dashboard—available from Github—for the analysis 

of DTx clinical trials data by use of the methods described in this Review.

Discussion

Digital therapeutics are a unique method of delivery for treating disease and have the 

potential to provide new treatment options for patients at an unprecedented scale. Here, we 

used NLP pipelines to characterise 449 DTx clinical trials identified on ClinicalTrials.gov. 

With more than 150 of these trials having expected completion dates by 2023, DTx are 

becoming rapidly available for patient care, making it essential to characterise the quality of 

evidence being gathered for these novel therapeutics and to better understand their benefits 

for real-world patient populations.

We showed that the majority of DTx trials are sponsored by academic institutions or 

industry with no collaborators and are primarily being developed for nervous system 

diseases and nutritional and metabolic diseases, which aligns with a previous review of 

DTx clinical trials.14 However, the review relied on manual extraction of DTx and did not 

filter for FDA-regulated devices with the ClinicalTrial.gov data field. Although we were 

able to quantify the distribution of sponsor categories, this study did not investigate any 

funding sources for these sponsors or the cost of DTx trials. ClinicalTrials.gov does provide 

an optional field for sponsors to include information regarding grants and funding sources, 

but its completeness and accuracy is dependent on transparent reporting from sponsors, and 

future studies might be necessary to quantify funding and costs for these trials.
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Our results also indicated that DTx trials were often of short duration, with interventional 

studies lasting an average of only 1 year, which points to a need for additional studies 

to understand the long-term usage and efficacy of DTx. Although these trials are short, 

the largest DTx trials were able to enrol more than 400 000 patients in only one or two 

locations, suggesting that either these trials can be effectively scaled, or that they have 

alternative patient recruitment strategies that ClinicalTrials.gov does not capture. However, 

we also showed that DTx clinical trial facilities tend to be in the most populated states. 

Few are done in socioeconomically disadvantaged neighbourhoods, but further research is 

necessary to understand the true geographical and demographic distributions of users.

Analysis of DTx clinical trial eligibility criteria showed that these trials frequently exclude 

patients with comorbidities, who are pregnant, who are children, and who are not fluent 

in English. Eligibility criteria for drug therapeutics frequently cause clinical trial cohorts 

to deviate from real-world populations,10,11 and analogous research into DTx usage might 

be necessary to ensure trial results are applicable to general patient populations. We also 

identified criteria specific to digital determinants of health, which describe factors related to 

the accessibility or availability of technology that contribute to health outcomes and quality 

of life.26,27 Our geographical analysis of these studies also matched this finding, which 

suggested that fewer facilities in disadvantaged communities in the USA are being used to 

recruit participants. Future initiatives to assess the role of digital determinants of health, 

such as SOLVE Health Tech,28 are necessary to ensure that DTx are effective in promoting 

better outcomes for all patients.

The insights here and in the online interactive dashboard provide a framework for future 

research into DTx clinical trials, although we recognise there are limitations to our study. 

Although we were stringent in limiting our analysis to only FDA-regulated DTx, we might 

have missed DTx regulated outside the USA or inadvertently removed or selected others 

with our search criteria. Some DTx cleared through the 510(K) pathway, which allows 

medical devices to be marketed if they are substantially equivalent to already cleared 

devices, might not have registered preapproval trials,6 but might still require post-marketing 

trials that could be analysed in future studies. Additionally, we were not able to differentiate 

between safety and efficacy studies with the data fields provided by ClinicalTrials.gov. Our 

analysis is also inherently limited to sponsor-provided data, which are not always up to date 

or accurate and might be missing or unstandardised.22 These limitations are particularly 

true for observational studies, for which the investigators are not required to list if they 

are studying an FDA-regulated product or if they accept healthy volunteers,18 although 

requirements could change as regulatory pathways evolve for the use of real-world evidence 

in clinical trials. Finally, we focused on the use of MeSH terminology in our pipelines due to 

the suggested use of such terminology on ClinicalTrials.gov, but other clinical vocabularies 

might be more applicable to capture additional nuances in clinical trial metadata analyses. 

Although we took a conservative approach in mapping DTx clinical trials to broad MeSH 

terms, clinical trials might also involve different indications that could be better captured by 

allowing trials to be mapped to multiple MeSH categories.

Despite the limitations, our application of NLP strategies to ClinicalTrials.gov provides a 

comprehensive overview of the DTx development landscape, and the modular dashboard 

Miao et al. Page 9

Lancet Digit Health. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ClinicalTrials.gov
https://ClinicalTrials.gov
https://ClinicalTrials.gov
https://ClinicalTrials.gov


developed here will serve as an openly available tool for future research into clinical trial 

design and the real-world applicability of DTx.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Study selection
Identification of 449 DTx clinical trial datasets from a search of ClinicalTrials.gov by use of 

27 search terms and additional ClinicalTrials.gov data filters.

DTx=digital therapeutics. FDA=US Food and Drug Administration.
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Figure 2: Overview of DTx clinical trials
(A) Number of trials completed or expected to complete between 2014 and 2030. The 

dashed line indicates the current year. (B) Duration of completed interventional and 

observational trials. DTx=digital therapeutics.
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Figure 3: Characteristics of US-based DTx clinical trial locations and sponsors
(A) Number of facilities doing DTx clinical trials by state. Grey areas represent states with 

no clinical trials.

(B) Distribution of sponsor and collaborator types. DTx=digital therapeutics. NIH=National 

Institutes of Health.
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Figure 4: Interventional DTx clinical trials by medical specialty
(A) Number of clinical trials mapped to each MeSH term by use of a SciSpacy 

EntityLinker.15 (B) Actual and anticipated enrolment by MeSH group. Diamonds represent 

outliers. DTx=digital therapeutics. *Significant (p<0·05)
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Figure 5: Topic analysis of DTx clinical trial eligibility
BERTopic embedding clustering was used for topic modelling of inclusion (A) and 

exclusion (B) criteria of DTx trials within each MeSH term. DTx=digital therapeutics.
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