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Abstract

Many promising approaches to symbolic regression have been presented in recent years, yet 

progress in the field continues to suffer from a lack of uniform, robust, and transparent 

benchmarking standards. We address this shortcoming by introducing an open-source, 

reproducible benchmarking platform for symbolic regression. We assess 14 symbolic regression 

methods and 7 machine learning methods on a set of 252 diverse regression problems. Our 

assessment includes both real-world datasets with no known model form as well as ground-truth 

benchmark problems. For the real-world datasets, we benchmark the ability of each method to 

learn models with low error and low complexity relative to state-of-the-art machine learning 

methods. For the synthetic problems, we assess each method’s ability to find exact solutions in 

the presence of varying levels of noise. Under these controlled experiments, we conclude that 

the best performing methods for real-world regression combine genetic algorithms with parameter 
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estimation and/or semantic search drivers. When tasked with recovering exact equations in the 

presence of noise, we find that several approaches perform similarly. We provide a detailed guide 

to reproducing this experiment and contributing new methods, and encourage other researchers to 

collaborate with us on a common and living symbolic regression benchmark.

1 Introduction

Symbolic regression (SR) is an approach to machine learning (ML) in which both the 

parameters and structure of an analytical model are optimized. SR can be useful when one 

wishes to describe a process via a mathematical expression, especially a simple expression; 

thus, it is often applied in the hopes of producing a model of a process that, by virtue of 

its simplicity, may be easy to interpret. Interpretable ML is becoming increasingly important 

as model deployments in high stakes societal applications such as finance and medicine 

grow [1, 2]. Moreover, the mathematical expressions produced by SR are well-suited to be 

analyzed and controlled for their out-of-distribution behavior (e.g., in terms of asymptotic 

behavior, periodicity, etc.). These attractive properties of SR have led to its application in a 

number of areas, such as physics [3], biology [4], clinical informatics [5], climate modeling 

[6], finance [7], and many fields of engineering [8–10].

SR literature has, in general, fallen short of evaluating and ranking new methods in a way 

that facilitates their widespread adoption. Our view is that this shortcoming largely stems 

from a lack of standardized, transparent and reproducible benchmarks, especially those that 

test a large and diverse array of problems [11]. Although community surveys [11, 12] have 

led to suggestions for improving benchmarking standards, and even black-listed certain 

problems, contemporary literature continues to be published that violates those standards. 

Absent these standards, it is difficult to assess which methods or family of methods should 

be considered “state-of-the-art” (SotA).

Achieving a fleeting sense of SotA is certainly not the singular pursuit of methods research, 

yet without common, robust benchmarking studies, promising avenues of investigation 

cannot be well-informed by empirical evidence. We hope the benchmarking platform 

introduced in this paper improves the cross-pollination between research communities 

interested in SR, which include evolutionary computation, physics, engineering, statistics, 

and more traditional machine learning disciplines.

In this paper, we describe a large benchmarking effort that includes a dataset repository 

curated for SR, as well as a benchmarking library designed to allow researchers to easily 

contribute methods. To achieve this, we incorporated 130 datasets with ground truth forms 

into the Penn Machine Learning Benchmark (PMLB) [13], including metadata describing 

the underlying equations, their units, and various summary statistics. Furthermore, we 

created a SR benchmark repository called SRBench5 and sought contributions from 

researchers in this area. Here we describe this process and the results, which consist of 

comparisons of 14 contemporary SR methods on hundreds of regression problems.

5 https://github.com/cavalab/srbench 
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To our knowledge, this is by far the largest and most comprehensive SR benchmark 

effort to date, which allows us to make claims concerning current SotA methods for SR 

with better certainty. Importantly, and in contrast to many previous efforts, the datasets, 

methods, benchmarking code, and results are completely open-source, reproducible, and 

revision-controlled, which should allow SRBench to exist as a living benchmark for future 

studies.

2. Background and Motivation

The goal of SR is to learn a mapping y(x) = ϕ(x, θ ):ℝd ℝ using a dataset of paired 

examples D = xi, yi i = 1
N , with features x ∈ ℝd and target y. SR assumes the existence of an 

analytical model of the form y(x) = ϕ∗ x, θ∗ + ϵ that would generate the observations in D, 

and seeks to estimate this model by searching the space of expressions, ϕ, and parameters, θ, 

in the presence of white noise,ϵ.

Koza [14] introduced SR as an application of genetic programming (GP), a field that 

investigates the use of genetic algorithms (GAs) to evolve executable data structures, i.e. 

programs. In the case of so-called “Koza-style” GP, the programs to be optimized are syntax 

trees consisting of functions/operations over input features and constants. Like in other GAs, 

GP is a process that evolves a population of candidate solutions (e.g., syntax trees) by 

iteratively producing offspring from parent solutions (e.g., by swapping parents’ subtrees) 

and eliminating unfit solutions (e.g., programs with sub-par behavior). Most SR research to 

date has emerged from within this sub-field and its associated conferences.6

Despite the availability of post-hoc methods for explaining black-box model predictions 

[15], there have been recent calls to focus on learning interpretable/transparent models 

explicitly [2]. Perhaps due to this renewed interest in model interpretability, entirely different 

methods for tackling SR have been proposed [16–22]. These include methods based in 

Bayesian optimization [16], recurrent neural networks (RNNs) [17], and physics-inspired 

divide-and-conquer strategies [18, 23]. Some of these papers refer to Eureqa, a commercial, 

GP-based SR method used to re-discover known physics equations [3], as the “gold 

standard” for SR [17] and/or the best method for SR “by far” [18]. However, Schmidt 

and Lipson [24] make no claim to being the SotA method for SR, nor is this hypothesis 

tested in the body of work on which Eureqa is based [25].

Although commercial platforms like Eureqa and Wolfram [26] are successful tools for 

applying SR, they are not designed to support controlled benchmark experiments, and 

therefore experiments utilizing them have serious caveats. Due to the design of the front-end 

API for both tools, it is not possible to benchmark either method against others while 

holding important parameters of such an experiment constant, including the computational 

effort, number of model evaluations, CPU/memory limits, and final solution assessment. 

More generally, researchers cannot uniquely determine which features of the software and/or 

experiment lead to observed differences in performance, given that these commercial tools 

6A non-exhaustive list: GECCO, EuroGP, FOGA, PPSN, and IEEE CEC.
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are closed-source. In this light, it is not clear what insights are to be gained when comparing 

to Eureqa and Wolfram beyond a simple head-to-head comparison. Therefore, rather than 

benchmark against Eureqa in this paper, we implement its underlying algorithms in an 

open-source package, which allows our experiment to remain transparent, reproducible, 

accessible, and controlled. We discuss the algorithms underlying Eureqa in detail in Sec. 

A.3.

A close reading of SR literature since 2009 implies that a number of proposed methods 

would outperform Eureqa in controlled tests, and are therefore suitable choices for 

benchmarking (e.g. [27, 28]). Unfortunately, the widespread adoption of these promising 

SR approaches is hamstrung by a lack of consensus on good benchmark problems, testing 

frameworks, and experimental designs. Our effort to establish a common benchmark is 

motivated by our view that common, robust, standardized benchmarks for SR could speed 

progress in the field by providing a clear baseline from which to assert the quality of new 

approaches. Consider the NN community’s focus on common benchmarks (e.g. ImageNet 

[29]), frameworks (e.g. TensorFlow, PyTorch) and experiment designs. By contrast, it is 

common to observe results in SR literature that are based on a small number of low 

dimensional, easy and unrealistic problems, comparing only to very basic GP systems such 

as those described in [14] nearly thirty years ago. Despite detailed descriptions of these 

issues [11], community surveys and proposals to “black-list” toy problems [12], toy datasets 

and comparisons to out-dated SR methods continue to appear in contemporary literature.

The aspects of performance assessment for SR differ from typical regression benchmarking 

due to the interest in obtaining concise, symbolic expressions. In general, the trade-off 

between accuracy and simplicity must be considered when evaluating the merits of different 

models. Furthermore, model simplicity, typically measured as sparsity or model size, is 

but a proxy for model interpretability; a simple model may still be un-interpretable, or 

simply wrong [30–32]. With these concerns in mind, datasets with ground truth solutions are 

useful, in that they allow researchers to assess whether or not the symbolic model regressed 

by a given method corresponds to a known analytical solution. Nevertheless, benchmarks 

utilizing synthetic datasets with ground-truth solutions are not sufficient for assessing real-

world performance, and so we consider it essential to also evaluate the performance of SR 

on real-world or otherwise black-box regression problems, relative to SotA ML methods.

There have been a few recent efforts to benchmark SR algorithms [33], including a precursor 

to this work benchmarking four SR methods on 94 regression problems [34]. In both cases, 

SR methods were assessed solely on their ability to make accurate predictions. In contrast, 

Udrescu and Tegmark [18] proposed 120 new synthetic, physics-based datasets for SR, but 

compared only to Eureqa and only in terms of solution rates. A major contribution of our 

work is its significantly more comprehensive scope than previous studies. We include 14 

SR methods on 252 datasets in comparison to 7 ML methods. Our metrics of comparison 

are also more comprehensive, and include 1) accuracy, 2) simplicity, and 3) exact or 

approximate symbolic matches to the ground truth process. Furthermore, we have made 

the benchmark openly available, reproducible, and open for contributions supported by 

continuous integration [35].
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3 SRBench

We created SRBench to be a reproducible, open-source benchmarking project by pulling 

together a large set of diverse benchmark datasets, contemporary SR methods, and ML 

methods around a shared model evaluation and analysis environment. SRBench overcomes 

several of the issues in current benchmarking literature as described in Sec. 2. For example, 

it makes it easy for methodologists to benchmark new algorithms over hundreds of 

problems, in comparison to strong, contemporary reference methods. These improvements 

allow us to reason with more certainty than in previous work about the SotA methods for 

SR.

In order to establish common datasets, we extended PMLB, a repository of standardized 

regression and classification problems [13, 36], by adding 130 SR datasets with 

known model forms. PMLB provides utilities for fetching and handling data, recording 

and visualizing dataset metadata, and contributing new datasets. The SR methods we 

benchmarked are all contemporary implementations (2011 – 2020) from several method 

families, as shown in Table 1. We required contributors to implement a minimal, Scikit-learn 

compatible [37], Python API for their method. In addition, contributors were required to 

provide the final fitted model as a string that was compatible with the symbolic mathematics 

library sympy. Note that although we require a Python wrapper, SR implementations in 

many different languages are supported, as long as the Python API is available and the 

language environment can be managed via Anaconda7.

To ensure reproducibility, we defined a common environment (via Anaconda) with fixed 

versions of packages and their dependencies. In contrast to most SR studies, the full 

installation code, experiment code, results and analysis are available via the repository for 

use in future studies. To make SRBench as extensible as possible, we automated the process 

of incorporating new methods and results into the analysis pipeline. The repository accepts 

rolling contributions of new methods that meet the minimal API requirements. To achieve 

this, we created a continuous integration (CI) [35] framework that assures contributions are 

compatible with the benchmark code as they arrive. CI also supports continuous updates to 

results reporting and visualization whenever new experiments are available, allowing us to 

maintain a standing leader-board of contemporary SR methods. Ideally these features will 

quicken the adoption of SotA approaches throughout the SR research community. Further 

details on how to use and contribute to SRBench are provided in Sec. A.1.

4 Experiment Design

We evaluated SR methods on two separate tasks. First, we assessed their ability to make 

accurate predictions on “black-box” regression problems (in which the underlying data 

generating function remains unknown) while minimizing the complexity of the discovered 

models. Second, we tested the ability of each method to find exact solutions to synthetic 

datasets with known, ground-truth functions, originating from physics and various fields of 

engineering.

7 https://www.anaconda.com/ 
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The basic experiment settings are summarized in Table 2. Each algorithm was trained on 

each dataset (and level of noise, for ground-truth problems) in 10 repeated trials with a 

different random state that controlled both the train/test split and the seed of the algorithm. 

Datasets were split 75/25% in training and testing. For black-box regression problems, 

each algorithm was tuned using 5-fold cross validation with halving grid search. The SR 

algorithms were limited to 6 hyperparameter combinations; the ML methods were allowed 

more, as shown in Table 4–6. The best hyperparameter settings were used to tune a final 

estimator and evaluate it according to the metrics described above. Details for running the 

experiment are given in Sec. A.1.

4.1 Symbolic Regression Methods

Here we characterize the SR methods summarized in Table 1 by describing how they fit 

into broader research trends within the SR field. The most traditional implementation of 

GP-based SR we test is gplearn, which initializes a random population of programs/models, 

and then iterates through the steps of tournament selection, mutation and crossover.

Pareto optimization methods [8, 47–49] are popular evolutionary strategies that exploit 

Pareto dominance relations to drive the population of models towards a set of efficient trade-

offs between competing objectives. Half of the SR methods we test use Pareto optimization 

in some form during training. Age-Fitness Pareto optimization (AFP), proposed by Eureqa’s 

authors Schmidt and Lipson [38], uses a model’s age as an objective in order to reduce 

premature convergence as well as bloat [50]. AFP_FE combines AFP with Eureqa’s method 

for fitness estimation [51]. Thus we expect AFP_FE and AFP to perform similarly to Eureqa 

as described in literature.

Another promising line of research has been to leverage program semantics (in this case, 

the equation’s intermediate and final outputs over training samples) more heavily during 

optimization, rather than compressing that information into aggregate fitness values [52]. 

-lexicase selection (EPLEX) [27] is a parent selection method that utilizes semantics to 

conduct selection by filtering models through randomized subsets of cases, which rewards 

models that perform well on difficult regions of the training data. EPLEX is also used as the 

parent selection method in FEAT [40]. Semantic backpropagation (SBP) is another semantic 

technique to compute, for a given target value and a tree node position, that value which 

makes the output of the model match the target (i.e., the label) [53–55]. Here, we evaluate 

the (SBP-GP) algorithm by Virgolin et al. [46] which improves SBP-based recombination 

by dynamically adapting intermediate outputs using affine transformations.

Backpropagation-based gradient descent was proposed for GP-SR by Topchy and Punch 

[56], but tends to appear less often than stochastic hill climbing (e.g. [3, 57]). More recent 

studies [45, 58] have made a strong case for the use of gradient-based constant optimization 

as an improvement over stochastic and evolutionary approaches. The aforementioned studies 

are embodied by Operon, a GP method that incorporates non-linear least squares constant 

optimization using the Levenberg-Marquadt algorithm [59].

In addition to the question of how to best optimize constants, a line of research has proposed 

different ways of defining program and/or model encodings. The methods FEAT, MRGP, 
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ITEA, and FFX each impose additional structural assumptions on the models being evolved. 

In FEAT, each model is a linear combination of a set of evolved features, the parameters 

of which are encoded as edges and optimized via gradient descent. In MRGP [44], the 

entire program trace (i.e., each subfunction of the model) is decomposed into features and 

used to train a Lasso model. In ITEA, each model is an affine combination of interaction-
transformation expressions, which compose a unary function (the transformation) and a 

polynomial function (the interaction) [43, 60]. Finally, FFX [41] simply initializes a 

population of equations, selects the Pareto optimal set, and returns a single linear model 

by treating the population of equations as features.

GP-GOMEA is a GP algorithm where recombination is adapted over time [42, 61]. Every 

generation, GP-GOMEA builds a statistical model of interdependencies within the encoding 

of the evolving programs, and then uses this information to recombine interdependent blocks 

of components, as to preserve their concerted action.

Jin et al. [16] recently proposed Bayesian Symbolic Regression (BSR), in which a prior is 

placed on tree structures and the posterior distributions are sampled using a Markov Chain 

Monte Carlo (MCMC) method. As in GP-based SR, arithmetic expressions are expressed 

with symbolic trees, although BSR explicitly defines the final model form as a linear 

combination of several symbolic trees. Model parsimony is encouraged by specifying a prior 

that presumes additive, linear combinations of small components.

Deep Symbolic Regression (DSR) [17] uses reinforcement learning to train a generative 

RNN model of symbolic expressions. Expressions sampled from the model distribution are 

assessed to create a reward signal. DSR introduces a variant of the Monte Carlo policy 

gradient algorithm [62] dubbed a “risk-seeking policy gradient” in an effort to bias the 

generative model towards exact expressions.

AIFeynman is a divide-and-conquer approach that recursively applies a set of solvers and 

problem decomposition heuristics to build a symbolic model [18]. If the problem is not 

directly solve-able by polynomial fitting or brute-force search, AIFeynman trains a NN on 

the data and uses it to estimate functional modularities (e.g., symmetry and/or separability), 

which are used to partition the data into simpler problems and recurse. An updated version 

of the algorithm, which we test here, integrates Pareto optimization with an information-

theoretic complexity metric to improve robustness to noise [23].

4.2 Datasets

All of the benchmark datasets are summarized by number of instances and number of 

features in Fig. 5. The problems range from 47 to 1 million instances, and two to 124 

features. We used 122 black-box regression problems available in PMLB v.1.0. These 

problems are pulled from, and overlap with, various open-source repositories, including 

OpenML [63] and the UCI repository [64]. PMLB standardizes these datasets to a 

common format and provides fetching functions to load them into Python (and R). The 

black-box regression datasets consist of 46 “real-world” problems (i.e., observational 

data collected from physical processes) and 76 synthetic problems (i.e., data generated 

computationally from static functions or simulations). The black-box problems cover diverse 
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domains, including health informatics (11), business (10), technology (10), environmental 

science (11) and government (12); in addition, they are derived from varied data sources, 

including human subjects (14), environmental observations (11), government studies 

(12), and economic markets (7). The datasets can be browsed by their properties at 

epistasislab.github.io/pmlb. Each dataset includes metadata describing source information 

as well as a detailed profile page summarizing the data distributions and interactions (here is 

an example).

We extended PMLB with 130 datasets with known, ground-truth model forms. These 

datasets were used to assess the ability of SR methods to recover known process physics. 

The 130 datasets came from two sources: the Feynman Symbolic Regression Database, 

and the ODE-Strogatz repository. Both sets of data come from first principles models of 

physical systems. The Feynman problems originate in the Feynman Lectures on Physics 
[65], and the datasets were recently created and proposed as SR benchmarks [18]. Whereas 

the Feynman datasets represent static systems, the Strogatz problems are non-linear and 

chaotic dynamical processes [66]. Each dataset is one state of a 2-state system of first-order, 

ordinary differential equations (ODEs). They were used to benchmark SR methods in 

previous work [25, 67], and are described in more detail in Sec. A.4 and Table 3.

4.3 Metrics

Accuracy—We assessed accuracy using the coefficient of determination, defined as

R2 = 1 −
∑

i

N

yi − yi
2

∑
i

N

yi − yi
2

.

Complexity—A number of different complexity measures have been proposed for SR, 

including those based on syntactic complexity (i.e. related to the complexity of the symbolic 

model); those based on semantic complexity (i.e. related to the behavior of the model over 

the data) [23, 68]; those using both definitions [69]; and those estimating complexity via 

meta-learning [70]. The pros and cons of these methods and their relation to notions of 

interpretability is a point of discussion [71]. For the sake of simplicity, we opted to define 

complexity as the number of mathematical operators, features and constants in the model, 

where the mathematical operators are in the set {+,−,*,/,sin, cos, arcsin, arccos, exp, log, 

pow, max, min}. In addition to calculating the complexity of the raw model forms returned 

by each method, we calculated the complexity of the models after simplifying via sympy.

Solution Criteria—For the ground-truth regression problems, we used the following 

solution definition.
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Definition 4.1 (Symbolic Solution).

A model ϕ(x, θ ) is a Symbolic Solution to a problem with ground-truth model 

y = ϕ∗ x, θ∗ + ϵ, if ϕ does not reduce to a constant, and if either of the following conditions 

are true: 1)ϕ∗ − ϕ = a; or 2) ϕ∗/ϕ = b, b ≠ 0, for some constants a and b.

This definition is designed to capture models that differ from the true model by a constant 

or scalar. Prior to assessing symbolic solutions, each model underwent sympy simplification, 

as did the conditions above. Relative to accuracy metrics, the Symbolic Solution metric is 

a more faithful evaluation of the ability of an SR method to discover the data generating 

process. However, because models can be represented in myriad ways, and sympy’s 

simplification procedure is non-optimal, we cannot guarantee that all symbolic solutions 

are captured with perfect fidelity by this metric.

5 Results

The median test set performance on all problems and methods for the black-box benchmark 

problems is summarized in Fig. 1. Across the problems, we find that the models generated 

by Operon are significantly more accurate than any other method’s models in terms of test 

set R2 (p ≤6.5e-05). SBP-GP and FEAT rank second and third and attain similar accuracies, 

although the models produced by FEAT are significantly smaller (p =9.2e-22).

We note that four of the top five methods (Operon, SBP-GP, FEAT, EPLEX) and six of the 

top ten methods (GP-GOMEA, ITEA) are GP-based SR methods. The other top methods 

are ensemble tree-based methods, including two popular gradient-boosting algorithms, 

XGBoost and LightGBM [72, 73]); Random Forest [74]; and AdaBoost [75]. Among these 

methods, Operon, FEAT and SBP-GP significantly outperform and LightGBM (p ≤1.3e-07) 

and Operon and SBP-GP outperform XGBoost (p ≤1.3e-04). We also note ITEA’s overall 

accuracy is not significantly different from Random Forest or AdaBoost. Of note, the models 

produced by the top five SR methods (aside from SBP-GP) are 1–3 orders of magnitude 

smaller than models produced by the ensemble tree-based approaches (p ≤1.3e-21).

Among the non-GP-based SR algorithms, FFX and DSR perform similarly to each other 

(p =0.76) and significantly better than BSR and AIFeynman (p ≤6.1e-05). FFX trains more 

quickly than DSR, although DSR produces some of the smallest solutions, akin to penalized 

regression. We note that AIFeynman performs poorly on these problems, suggesting that not 

many of them exhibit the qualities of physical systems (rotational/translational invariance, 

symmetry, etc.) that AIFeynman was designed to exploit. Additional statistical comparisons 

are given in Figs. 9–11.

In Fig. 2, we illustrate the performance of the methods on the black-box problems when 

accuracy and simplicity are considered simultaneously. The Pareto front for these two 

objectives (solid line) is composed of three methods: Operon, GP-GOMEA, and DSR, 

which taken together give the set of best trade-offs between accuracy and simplicity across 

the black-box regression problems.
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Performance on the ground-truth regression problems is summarized in Fig. 3, with methods 

sorted by their median solution rate and grouped by data source (Feynman or Strogatz). 

On average, when the target is free of noise, we observe that AIFeynman identifies exact 

solutions 53% of the time, nearly twice as often as the next closest method (GP-GOMEA, 

27%). However, at noise levels of 0.01 and above, four other methods recover exact 

solutions more often: DSR, gplearn, AFP_FE, and AFP. Taken together, the black-box 

and ground-truth regression results suggest AIFeynman may be brittle in application to 

real-world and/or noisy data, yet its performance with little to no noise is significant for the 

Feynman problems. On the Strogatz datasets, AIFeynman’s performance is not significantly 

different than other methods, and indeed there are few significant differences in performance 

between the top 10 methods at any noise level. We note that the top-ranked method on 

real-world data, Operon, struggles to recover solutions to these problems, despite finding 

many candidate solutions with near prefect test set scores. See Sec. A.6–A.7 for additional 

analysis.

6 Discussion and Conclusions

This paper introduces a SR benchmarking framework that allows objective comparisons of 

contemporary SR methods on a wide range of diverse regression problems. We have found 

that, on real-world and black-box regression tasks, contemporary GP-based SR methods 

(e.g. Operon) outperform new SR methods based in other fields of optimization, and can 

also perform as well as or better than gradient boosted trees while producing simpler 

models. On synthetic ground-truth physics and dynamical systems problems, we have 

verified that AIFeynman finds exact solutions significantly better than other methods when 

noise is minimal; otherwise, both deep learning-based methods (DSR) and GP-based SR 

methods (e.g. AFP_FE) perform best.

We see clear ways to improve SRBench by improving the dataset curation, experiment 

design and analysis. For one, we have not benchmarked the methods in a setting that allows 

them to exploit parallelism, which may change relative run-times. There are also many 

promising SR methods not included in this study that we hope to add in future revisions. 

In addition, whereas our benchmark includes real-world data as well as simulated data 

with ground-truth models, it does not include real-world data from phenomena with known, 

first principles models (e.g., observations of a massspring-damper system). Data such as 

these could help us better evaluate the ability of SR methods to discover relations under 

real-world conditions. We intend to include these data in future versions, given the evidence 

that SR models can sometimes discover unexpected analytical models that outperform the 

expert models in a field (e.g., in studies of yeast metabolism [76] and fluid tank systems 

[67]). As a final note, our current study highlights orthogonal approaches to SR that show 

promise, and in future work we hope to explore whether combinations of proposed methods 

(e.g., non-linear parameter optimization plus semantic search drivers) would have synergistic 

effects.

La Cava et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

William La Cava was supported by the National Library of Medicine and National Institutes of Health under awards 
K99LM012926 and R00LM012926. He would like to thank Curt Calafut, members of the Epistasis Lab, and Joseph 
D. Romano for coming through in a pinch.

Ying Jin would like to thank Doctor Jian Guo for hosting an internship for the project and Professor Jian Kang for 
helpful and inspiring guidance in Bayesian statistics.

Fabricio Olivetti de França was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), 
grant number 2018/14173-8.

Patryk Orzechowski and Jason H. Moore were supported by NIH grant LM010098.

The authors would also like to thank contributors to the SRBench repository, including James McDermott and 
Aurélie Boisbunon. They additionally thank Randal Olson and Weixuan Fu for their initial push to integrate 
regression benchmarking into PMLB.

A: Appendix

Please refer to https://github.com/cavalab/srbench/ for the most up-to-date guide to 

SRBench.

A.1 Running the Benchmark

The README in our Github repository includes the full set of commands to reproduce 

the benchmark experiment, which are summarized here. Experiments are launched from 

the experiments/ folder via the script analyze.py. The script can be configured to run the 

experiment in parallel locally, on an LSF job scheduler, or on a SLURM job scheduler. To 

see the full set of options, run python analyze.py -h.

After installing and configuring the conda environment, the complete black-box experiment 

can be started via the command:

python analyze.py /path/to/pmlb/datasets -n_trials 10 -results

../results -time_limit 48:00

Similarly, the ground-truth regression experiment for Strogatz datasets and a target noise of 

0.0 are run by the command:

python analyze.py -results ../results_sym_data -target_noise

0.0 “/path/to/pmlb/datasets/strogatz*” -sym_data -n_trials 10 

-time_limit 9:00 -tuned

A.2 Contributing a Method

A living version of the method contribution instructions are described in the Contribution 

Guide. To illustrate the simplicity of contributing a method, Figure 4 shows the script 

submitted for Bayesian Symbolic Regression [16]. In addition to the code snippet, authors 

may either add their code package to the conda/pip environment, or provide an install script. 

When a pull request is issued by a contributor, new methods and installs are automatically 

tested on a minimal version of the benchmark. Once the tests pass and the method is 
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approved by the benchmark maintainers, the contribution becomes part of the resource and 

can be tested via the commands above.

A.3 Additional Background and Motivation

Eureqa

Eureqa is a commercial GP-based SR software that was acquired by DataRobot in 20178. 

Due to its closed-source nature and incorporation into the DataRobot platform, it is 

impossible to benchmark its performance while controlling for important experimental 

variables such as number of evaluations, space and time limits, population size, and so 

forth. However, the novel algorithmic aspects of Eureqa are rooted in a number of ablation 

studies [38, 51, 77] that we summarize here. First is its use of directed acyclic graphs 

for representing equations in lieu of trees, which resulted in more space-efficient model 

encoding relative to trees, without a significant difference in accuracy [77]. The most 

significant improvement over traditional tournament-based selection is Eureqa’s use of 

age-fitness Pareto optimization (AFP), a method in which random restarts are incorporated 

each generation as new offspring, and are protected from competing with older, more fit 

equations by including age as an objective to be minimized [38]. Eureqa also includes the 

co-evolution of fitness predictors, in which fitness assignment is sped up by optimizing 

a second population of training sample indices that best distinguish between equations in 

the population [51]. Unfortunately we cannot guarantee that Eureqa currently uses any of 

these reported algorithms for SR, due to its closed-source nature. We chose instead to 

benchmark known algorithms (AFP, AFP_FE) with open-source implementations, hoping 

that the resulting study’s conclusions may better inform future methods development. 

We note that AFP has been outperformed by a number of other optimization methods in 

controlled studies since its release (e.g., [27, 28]).

8 https://www.datarobot.com/nutonian/ 
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Figure 4: 
An example code contribution, defining the estimator, its hyperparameters, and functions to 

return the complexity and symbolic model.

Constant optimization in Genetic Programming

One of the clearest improvements over Kozastyle GP has been the adoption of local search 

methods to handle constant optimization distinctly from evolutionary learning. Regarding 

the optimization of constants in GP, several reasons can explain why backpropagation and 

gradient descent can be considered to be relatively under-used in GP (compared to, e.g., 

evolutionary neural architecture search). For example, early works often ignored the use of 

feature standardization (e.g., by z-scoring), the lack of which can harm gradient propagation 

[78]. Next to this, GP relies on crafting compositions out of a multitude of operations, some 

of which are prone to cause vanishing or exploding gradients. Last but not least, to the 

best of our knowledge, the field lacks a comprehensive study that provides guidelines for 

the appropriate hyperparameters for constant optimization (learning rate schedule, iterations, 

batch size, etc.), and how to effectively balance parameter learning with the evolutionary 

process.

La Cava et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A.4 Additional Dataset Information

All datasets, including metadata, are available from PMLB. Each dataset is stored using Git 

Large File Storage and PMLB is planned for long-term maintenance. PMLB is available 

under an MIT license, and is described in detail in Romano et al. [36]. The authors bear all 

responsibility in case of violation of rights.

Figure 5: 
Distribution of dataset sizes in PMLB.

Dataset Properties

The distribution of dataset sizes by samples and features are shown in Fig. 5. Datasets vary 

in size from tens to millions of samples, and up to thousands of features. The datasets can be 

navigated and inspected in the repository documentation.

Ethical Considerations and Intended Uses

PMLB is intended to be used as a framework for benchmarking ML and SR algorithms and 

as a resource for investigating the structure of datasets. This paper does not contribute new 

datasets, but rather collates and standardizes datasets that were already publicly available. 

In that regard, we do not foresee SRBench as creating additional ethical issues around their 

use. Nevertheless, it is worth noting that PMLB contains well-known, real-world datasets 

from UCI and OpenML for which ethical considerations are important, such as the USCrime 

dataset. Whereas we would view the risk of harm arising specifically from this dataset to 

be low (the data is from 1960), it is exemplary of a task for which algorithmic decision 

making could exacerbate existing biases in the criminal justice system. As such it is used as 

a benchmark in a number of papers in the ML fairness literature (e.g. [79, 80]). None of the 

datasets herein contain personally identifiable information.

Feynman datasets

The Feynman benchmarks were sourced from the Feynman Symbolic Regression Database. 

We standardized the Feynman and Bonus equations to PMLB format and included metadata 
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detailing the model form and the units for each variable. We used the version of the 

equations that were not simplified by dimensional analysis. Udrescu and Tegmark [18] 

describe each dataset as containing 105 rows, but each actually contains 106. Given this 

discrepancy and after noting that sub-sampling did not significantly change the correlation 

structure of any of the problems, each dataset was down-sampled from 1 million samples to 

100,000 to lower the computational burden. We also observed that Eqn. II.11.17 was missing 

from the database. Finally, we excluded three datasets from our analysis that contained 

arcsin and arccos functions, as these were not implemented in the majority of SR algorithms 

we tested.

Strogatz datasets

The Strogatz datasets were sourced from the ODE-Strogatz repository [67]. Each dataset is 

one state of a 2-state system of first-order, ordinary differential equations (ODEs). The goal 

of each problem is to predict rate of change of the state given the current two states on which 

it depends. Each represents natural processes that exhibit chaos and non-linear dynamics. 

The problems were originally adapted from [66] by Schmidt [25]. In order to simulate their 

behavior, initial conditions were chosen within stable basins of attraction. Each system was 

simulated using Simulink, and the simulation code is available in the repository above. The 

equations for each of these datasets are shown in Table 3.

Table 3:

The Strogatz ODE problems.

Name Target

Bacterial Respiration ẋ = 20 − x − x ⋅ y
1 + 0.5 ⋅ x2

ẏ = 20 − x ⋅ y
1 + 0.5 ⋅ x2

Bar Magnets θ̇ = 0.5 ⋅ sin θ − ϕ − sin θ
ϕ̇ = 0.5 ⋅ sin ϕ − θ − sin ϕ

Glider v̇ = − 0.05 ⋅ v2 − sin θ
θ̇ = v − cos θ /v

Lotka-Volterra interspecies dynamics ẋ = 3 ⋅ x − 2 ⋅ x ⋅ y − x2
ẏ = 2 ⋅ y − x ⋅ y − y2

Predator Prey ẋ = x ⋅ 4 − x − y
1 + x

ẏ = y ⋅ x
1 + x − 0.075˙y

Shear Flow θ̇ = cot ϕ ⋅ cos θ
ϕ̇ = cos2 ϕ + 0.1 ⋅ sin2 ϕ ⋅ sin θ
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Name Target

van der Pol oscillator ẋ = 10 ⋅ y − 1
3 ⋅ x3 − x

ẏ = − 1
10 ⋅ x

Adding Noise

White gaussian noise was added to the target as a fraction of the signal root mean square 

value. In other words, for target noise level γ,

ynoise = y + ϵ, ϵ ∼ N 0, γ 1
N ∑yi

2

A.5 Additional Experiment Details

Experiments were run in a heterogeneous cluster computing environment composed of hosts 

with 24–28 core Intel(R) Xeon(R) CPU E5–2690 v4 @ 2.60GHz processors and 250 GB of 

RAM. Jobs consisted of the training of each method on a single dataset for a fixed random 

seed. Each job received one CPU core and up to 16GB of RAM, and was time-limited 

as shown in Table 2. For the ground-truth problems, the final models from each method 

were given an additional hour of computing time with 8GB of RAM to be simplified with 

sympy and assessed by the solution criteria (see Def. 4.1). For the black-box problems, if 

a job was killed due to the time limit, we re-ran the experiment without hyperparameter 

tuning, thereby only requiring a single training iteration to complete within 48 hours. To 

ease the computational burden for large datasets, training data exceeding 10,000 samples 

was randomly subset to 10,000 rows; test set predictions were still evaluated over the entire 

test fold.

The hyperparameter settings for each method are shown in Tables 4–6. Each SR method was 

tuned from a set of six hyperparameter combinations. The most common parameter setting 

chosen during the black-box regression experiments was then used as the “tuned” version of 

each algorithm for the ground-truth problems, with updates to 1) include any mathematical 

operators needed for those problems and 2) double the evaluation budget.

Table 4:

ML methods and the hyperparameter spaces used in tuning.

Method Hyperparameters

AdaBoost {‘learning_rate’: (0.01, 0.1, 1.0, 10.0), ‘n_estimators’: (10, 100, 1000)}

KernelRidge {‘kernel’: (‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’), ‘alpha’: (0.0001, 0.01, 0.1, 1), ‘gamma’: (0.01, 0.1, 1, 
10)}

LassoLars {‘alpha’: (0.0001, 0.001, 0.01, 0.1, 1)}

LGBM {‘n_estimators’: (10, 50, 100, 250, 500, 1000), ‘learning_rate’: (0.0001, 0.01, 0.05, 0.1, 0.2), 
‘subsample’: (0.5, 0.75, 1), ‘boosting_type’: (‘gbdt’, ‘dart’, ‘goss’)}
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Method Hyperparameters

LinearRegression {‘fit_intercept’: (True,)}

MLP {‘activation’: (‘logistic’, ‘tanh’, ‘relu’), ‘solver’: (‘lbfgs’, ‘adam’, ‘sgd’), ‘learning_rate’: 
(‘constant’, ‘invscaling’, ‘adaptive’)}

RandomForest {‘n_estimators’: (10, 100, 1000), ‘min_weight_fraction_leaf’: (0.0, 0.25, 0.5), ‘max_features’: 
(‘sqrt’, ‘log2’, None)}

SGD {‘alpha’: (1e-06, 0.0001, 0.01, 1), ‘penalty’: (‘l2’, ‘l1’, ‘elasticnet’)}

XGB {‘n_estimators’: (10, 50, 100, 250, 500, 1000), ‘learning_rate’: (0.0001, 0.01, 0.05, 0.1, 0.2), 
‘gamma’: (0, 0.1, 0.2, 0.3, 0.4), ‘subsample’: (0.5, 0.75, 1)}

A.6 Additional Results

A.6.1 Subgroup analysis of black-box regression results

Many of the black-box problems for regression in PMLB were originally sourced from 

OpenML. A few authors have noted that several of these datasets are sourced from Friedman 

[81]’s synthetic benchmarks. These datasets are generated by non-linear functions that vary 

in degree of noise, variable interactions, variable importance, and degree of non-linearity. 

Due to their number, they may have an out-sized effect on results reporting in PMLB. In 

Fig. 6, we separate out results on this set of problems relative to the rest of PMLB. We do 

find that, relative to the rest of PMLB, the results on the Friedman datasets distinguish top-

ranked methods more strongly than among the rest of the benchmark, on which performance 

between top-performing methods is more similar. In general, although we do see methods 

rankings change somewhat when looking at specific data groupings, we do not observe 

large differences. An exception is Kernel ridge regression, which performs poorly on the 

Friedman datasets but very well on the rest of PMLB. We recommend that future revisions 

to PMLB expand the dataset collection to minimize the effect of any one source of data, and 

include subgroup analysis to identify which types of problems are best solved by specific 

methods.

To get a better sense of the performance variability across methods and datasets, method 

rankings on each dataset are bi-clustered and visualized in Fig. 7. Methods that perform 

most similarly across the benchmark are placed adjacent to each other, and likewise datasets 

that induce similar method rankings are grouped. We note some expected groupings first: 

AFP and AFP_FE, which differ only in fitness estimation, and FEAT and EPLEX, which 

use the same selection method, perform similarly. We also observe clustering among the 

Friedman datasets (names beginning with “fri_”), and again note stark differences between 

methods that perform well on these problems, e.g. Operon, SBP-GP, and FEAT, and those 

that do not, e.g. MLP. This view of the results also reveals a cluster of SR methods 

(AFP, AFP_FE, DSR, gplearn) that perform well on a subset of real-world problems 

(analcatdata_neavote_523 - vineyard_192) for which linear models also perform well. 

Interestingly, for that problem subset, Operon’s performance is mediocre relative to its 

strong performance on other datasets. We also note with surprise that DSR and gplearn 

exhibit performance similarity on par with AFP/AFP_FE, and are the next most similar-

performing methods (note the dendrogram connecting these columns).
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Table 5:

Part 1: SR methods and the hyperparameter spaces used in tuning on the black-box 

regression problems.

Method Hyperparameters

AFP {‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’,
‘sin’, ‘cos’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’,
‘sin’, ‘cos’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’, ‘sin’, ‘cos’]}

AIFeynman {‘BF_try_time’: 60, ‘NN_epochs’: 4000, ‘BF_ops_file_type’=“10ops.txt”}
{‘BF_try_time’: 60, ‘NN_epochs’: 4000, ‘BF_ops_file_type’=“14ops.txt”}
{‘BF_try_time’: 60, ‘NN_epochs’: 4000, ‘BF_ops_file_type’=“19ops.txt”}
{‘BF_try_time’: 600, ‘NN_epochs’: 400, ‘BF_ops_file_type’=“10ops.txt”}
{‘BF_try_time’: 600, ‘NN_epochs’: 400, ‘BF_ops_file_type’=“14ops.txt”}
{‘BF_try_time’: 600, ‘NN_epochs’: 400, ‘BF_ops_file_type’=“19ops.txt”}</di>

BSR {‘treeNum’: 6, ‘itrNum’: 500, ‘val’: 1000}
{‘treeNum’: 6, ‘itrNum’: 1000, ‘val’: 500}
{‘treeNum’: 3, ‘itrNum’: 500, ‘val’: 1000}
{‘treeNum’: 6, ‘itrNum’: 5000, ‘val’: 100}
{‘treeNum’: 3, ‘itrNum’: 5000, ‘val’: 100}
{‘treeNum’: 3, ‘itrNum’: 1000, ‘val’: 500}

DSR {‘batch_size’: array([ 10, 100, 1000, 10000, 100000])}

EPLEX {‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}

FEAT {‘pop_size’: 100, ‘gens’: 2500, ‘lr’: 0.1}
{‘pop_size’: 100, ‘gens’: 2500, ‘lr’: 0.3}
{‘pop_size’: 500, ‘gens’: 500, ‘lr’: 0.1}
{‘pop_size’: 500, ‘gens’: 500, ‘lr’: 0.3}
{‘pop_size’: 1000, ‘gens’: 250, ‘lr’: 0.1}
{‘pop_size’: 1000, ‘gens’: 250, ‘lr’: 0.3}

FE_AFP {‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}

A.6.2 Extended analysis of ground-truth regression results

As noted in Sec. 6, despite Operon’s good performance on black-box regression, it finds 

few models with symbolic equivalence. An alternative (and weaker) notion of solution is 

based on test set accuracy, which we show in Fig. 8; by this metric, the relative method 

performance corresponds more closely to that seen for black-box regression. We also note 

that methods that impose structural assumptions on the model (BSR, FEAT, ITEA, FFX) are 
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worse at finding symbolic solutions, most of which do not match those assumptions (e.g. 

most processes in Table 3).

Table 6:

Part 2: SR methods and the hyperparameter spaces used in tuning on the black-box 

regression problems.

Method Hyperparameters

GPGOMEA {‘initmaxtreeheight’: (4,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,), 
‘linearscaling’: (True,)}
{‘initmaxtreeheight’: (6,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,), 
‘linearscaling’: (True,)}
{‘initmaxtreeheight’: (4,), ‘functions’: (‘+_-_*_p/’,), ‘popsize’: (1000,), ‘linearscaling’:
(True,)}
{‘initmaxtreeheight’: (6,), ‘functions’: (‘+_-_*_p/’,), ‘popsize’: (1000,), ‘linearscaling’:
(True,)}
{‘initmaxtreeheight’: (4,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,),
‘linearscaling’: (False,)}
{‘initmaxtreeheight’: (6,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,), 
‘linearscaling’: (False,)}

ITEA {‘exponents’: ((−5, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Tanh, Sin, Cos, Log, Exp, 
SqrtAbs]’,)}
{‘exponents’: ((−5, 5),), ‘termlimit’: ((2, 5),), ‘transfunctions’: (‘[Id, Tanh, Sin, Cos, Log, Exp, 
SqrtAbs]’,)}
{‘exponents’: ((−5, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Sin]’,)}
{‘exponents’: ((0, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Sin]’,)}
{‘exponents’: ((0, 5),), ‘termlimit’: ((2, 5),), ‘transfunctions’: (‘[Id, Sin]’,)}
{‘exponents’: ((0, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Tanh, Sin, Cos, Log, Exp, 
SqrtAbs]’,)}

MRGP {‘popsize’: 1000, ‘g’: 250, ‘rt_cross’: 0.8, ‘rt_mut’: 0.2}
{‘popsize’: 100, ‘g’: 2500, ‘rt_cross’: 0.2, ‘rt_mut’: 0.8}
{‘popsize’: 100, ‘g’: 2500, ‘rt_cross’: 0.8, ‘rt_mut’: 0.2}
{‘popsize’: 500, ‘g’: 500, ‘rt_cross’: 0.2, ‘rt_mut’: 0.8}
{‘popsize’: 500, ‘g’: 500, ‘rt_cross’: 0.8, ‘rt_mut’: 0.2}
{‘popsize’: 1000, ‘g’: 250, ‘rt_cross’: 0.2, ‘rt_mut’: 0.8}

Operon {‘population_size’: (500,), ‘pool_size’: (500,), ‘max_length’: (50,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,), 
‘tournament_size’: (5,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (500,), ‘pool_size’: (500,), ‘max_length’: (25,), ‘allowed_symbols’: 
(‘add,mul,aq,exp,log,sin,tanh,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: 
(‘basic’,), ‘tournament_size’: (5,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (500,), ‘pool_size’: (500,), ‘max_length’: (25,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,), 
‘tournament_size’: (5,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (100,), ‘pool_size’: (100,), ‘max_length’: (50,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,), 
‘tournament_size’: (3,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (100,), ‘pool_size’: (100,), ‘max_length’: (25,), ‘allowed_symbols’: 
(‘add,mul,aq,exp,log,sin,tanh,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: 
(‘basic’,), ‘tournament_size’: (3,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (100,), ‘pool_size’: (100,), ‘max_length’: (25,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,), 
‘tournament_size’: (3,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}

gplearn {‘population_size’: 100, ‘generations’: 5000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’)}
{‘population_size’: 1000, ‘generations’: 500, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’)}
{‘population_size’: 1000, ‘generations’: 500, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’, ‘sin’, ‘cos’)}
{‘population_size’: 500, ‘generations’: 1000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’)}
{‘population_size’: 500, ‘generations’: 1000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’, ‘sin’, ‘cos’)}
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Method Hyperparameters

{‘population_size’: 100, ‘generations’: 5000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’, ‘sin’, ‘cos’)}

sembackpropgp {‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (False,), ‘sbrdo’: (0.9,), 
‘submut’: (0.1,), ‘tournament’: (4,), ‘maxsize’: (250,), ‘sblibtype’: (‘p_6_9999’,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (4,), ‘maxsize’: (1000,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (8,), ‘maxsize’: (1000,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (4,), ‘maxsize’: (5000,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (8,), ‘maxsize’: (5000,)}
{‘popsize’: (10000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (False,), ‘sbrdo’: 
(0.9,), ‘submut’: (0.1,), ‘tournament’: (8,), ‘maxsize’: (250,), ‘sblibtype’: (‘p_6_9999’,)}

Figure 6: 

Comparison of normalized R2 test scores on all black-box datasets, just the Friedman 

datatasets, and just the non-Friedman datasets.

A.7 Statistical Tests

Figures 9–11 give summary significance levels of pairwise tests of significance between 

estimators on the black-box and ground-truth problems. All pair-wise statistical tests are 

Wilcoxon signed-rank tests. A Bonferroni correction was applied, yielding the α levels 

given in each. This methodology for assessing statistical significance is based on the 

recommendations of Demšar [82] for comparing multiple estimators over many datasets. 

These figures are intended to complement Figures 1–3 in which effect sizes are shown.
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Figure 7: 

Rankings of methods by R2 test score on the black-box problems (lower/darker is better). 

Results are bi-clustered by SR method (columns) and dataset (rows). Darker cells indicate 

that a method performs well on that dataset relative to its competitors. Note only a subset of 

the datasets are labelled due to space constraints.
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Figure 8: 

Subset comparison of “Accuracy Solutions”, i.e. models with R2 > 0.999 on the Feynman 

and Strogatz problems, differentiated by noise level.

Figure 9: 
Pairwise statistical comparisons on the black-box regression problems. Wilcoxon signe-

drank tests are used with a Bonferonni correction on α for multiple comparisons. (Left) R2

test scores, (Right) model size.
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Figure 10: 

Pairwise statistical comparisons of R2 test scores on the ground-truth regression problems. 

We report Wilcoxon signed-rank tests with a Bonferonni correction on α for multiple 

comparisons. (Left) target noise of 0, (Right) target noise of 0.01.

Figure 11: 
Pairwise statistical comparisons of solution rates on the ground-truth regression problems. 

We report Wilcoxon signed-rank tests with a Bonferonni correction on α for multiple 

comparisons. (Left) target noise of 0, (Right) target noise of 0.01.
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Figure 1: 
Results on the black-box regression problems. Points indicate the mean of the median test 

set performance on all problems, and bars show the 95% confidence interval. “*”: SR 

methods.
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Figure 2: 

Pareto plot comparing the rankings of all methods in terms of model size and R2 score on 

the black-box problems. Points denote median rankings and the bars denote 95% confidence 

intervals. Connecting lines and color denote Pareto dominance rankings. “*”: SR methods.
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Figure 3: 
Solution rates for the ground-truth regression problems. Color/shape indicates level of noise 

added to the target variable.
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Table 1:

Short descriptions of the SR methods benchmarked in our experiment, including references and links to 

implementations.

Method Year Description Method Family Implementation

AFP [38] 2011 Age-fitness Pareto Optimization GP C++/Python (link)

AFP_FE [24] 2011 AFP with co-evolved fitness estimates; Eureqa-esque GP C++/Python (link)

AIFeynman [23] 2020 Physics-inspired method Divide and conquer Fortran/Python (link)

BSR [16] 2020 Bayesian Symbolic Regression Markov Chain Monte Carlo Python (link)

DSR [17] 2020 Deep Symbolic Regression Recurrent neural networks Python (PyTorch) (link)

EPLEX [39] 2016 ϵ-lexicase selection GP C++/Python (link)

FEAT [40] 2019 Feature Engineering Automation Tool GP C++/Python (link)

FFX [41] 2011 Fast function extraction Random search C++/Python (link)

GP-GOMEA [42] 2020 GP version of the Gene-pool Optimal
Mixing Evolutionary Algorithm GP C++/Python (link)

gplearn 2015 Koza-style symbolic regression in Python GP C++/Python (link)

ITEA [43] 2020 Interaction-Transformation EA GP Haskell/Python (link)

MRGP [44] 2014 Multiple Regression Genetic Programming GP Java (link)

Operon [45] 2019 SR with Non-linear least squares GP C++/Python (link)

SBP-GP [46] 2019 Semantic Back-propagation Genetic Programming GP C++/Python (link)
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Table 2:

Settings used in the benchmark experiments. “Total comparisons” refers to the total evaluatons of an algorithm 

on a dataset for a given noise level and random seed.

Setting Black-box Problems Ground-truth Problems

No. of datasets 122 130

No. of algorithms 21 (14 SR, 7 ML) 14

No. of trials per dataset 10 10

Train/test split .75/.25 .75/.25

Hyperparameter tuning 5-fold Halving Grid Search CV Tuned set from black-box problems

Termination criteria 500k evaluations/train or 48 hours 1M evaluations or 8 hours

Levels of target noise None 0, 0.001, 0.01, 0.1

Total comparisons 26840 54600

Computing budget 1.29M core hours 436.8K core hours
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