
Contemporary Symbolic Regression Methods and their Relative
Performance

William La Cava*,
Boston Children’s Hospital, Harvard Medical School

Bogdan Burlacu,
Josef Ressel Center for Symbolic Regression, University of Applied Sciences Upper Austria

Marco Virgolin§,
Life Sciences and Health Group, Centrum Wiskunde & Informatica

Michael Kommenda,
Josef Ressel Center for Symbolic Regression, University of Applied Sciences Upper Austria

Patryk Orzechowski†,
Institute for Biomedical Informatics, University of Pennsylvania

Fabrício Olivetti de França‡,
Federal University of ABC, Santo Andre

Ying Jin,
Department of Statistics, Stanford University

Jason H. Moore
Institute for Biomedical Informatics, University of Pennsylvania

Abstract

Many promising approaches to symbolic regression have been presented in recent years, yet

progress in the field continues to suffer from a lack of uniform, robust, and transparent

benchmarking standards. We address this shortcoming by introducing an open-source,

reproducible benchmarking platform for symbolic regression. We assess 14 symbolic regression

methods and 7 machine learning methods on a set of 252 diverse regression problems. Our

assessment includes both real-world datasets with no known model form as well as ground-truth

benchmark problems. For the real-world datasets, we benchmark the ability of each method to

learn models with low error and low complexity relative to state-of-the-art machine learning

methods. For the synthetic problems, we assess each method’s ability to find exact solutions in

the presence of varying levels of noise. Under these controlled experiments, we conclude that

the best performing methods for real-world regression combine genetic algorithms with parameter

*corresponding author. Formerly Institute for Biomedical Informatics, University of Pennsylvania.
‡Center for Mathematics, Computation and Cognition | Heuristics, Analysis and Learning Laboratory
§Formerly (during preparation of this paper) at Chalmers University of Technology, Sweden
†Department of Automatics and Robotics, AGH University of Science and Technology, Krakow, Poland

This computational experiments were supported by the Penn Medicine Academic Computing Services (PMACS) as well as the
PLGrid Infrastructure. Authors declare no competing interests.

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

Published in final edited form as:
Adv Neural Inf Process Syst. 2021 December ; 2021(DB1): 1–16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

estimation and/or semantic search drivers. When tasked with recovering exact equations in the

presence of noise, we find that several approaches perform similarly. We provide a detailed guide

to reproducing this experiment and contributing new methods, and encourage other researchers to

collaborate with us on a common and living symbolic regression benchmark.

1 Introduction

Symbolic regression (SR) is an approach to machine learning (ML) in which both the

parameters and structure of an analytical model are optimized. SR can be useful when one

wishes to describe a process via a mathematical expression, especially a simple expression;

thus, it is often applied in the hopes of producing a model of a process that, by virtue of

its simplicity, may be easy to interpret. Interpretable ML is becoming increasingly important

as model deployments in high stakes societal applications such as finance and medicine

grow [1, 2]. Moreover, the mathematical expressions produced by SR are well-suited to be

analyzed and controlled for their out-of-distribution behavior (e.g., in terms of asymptotic

behavior, periodicity, etc.). These attractive properties of SR have led to its application in a

number of areas, such as physics [3], biology [4], clinical informatics [5], climate modeling

[6], finance [7], and many fields of engineering [8–10].

SR literature has, in general, fallen short of evaluating and ranking new methods in a way

that facilitates their widespread adoption. Our view is that this shortcoming largely stems

from a lack of standardized, transparent and reproducible benchmarks, especially those that

test a large and diverse array of problems [11]. Although community surveys [11, 12] have

led to suggestions for improving benchmarking standards, and even black-listed certain

problems, contemporary literature continues to be published that violates those standards.

Absent these standards, it is difficult to assess which methods or family of methods should

be considered “state-of-the-art” (SotA).

Achieving a fleeting sense of SotA is certainly not the singular pursuit of methods research,

yet without common, robust benchmarking studies, promising avenues of investigation

cannot be well-informed by empirical evidence. We hope the benchmarking platform

introduced in this paper improves the cross-pollination between research communities

interested in SR, which include evolutionary computation, physics, engineering, statistics,

and more traditional machine learning disciplines.

In this paper, we describe a large benchmarking effort that includes a dataset repository

curated for SR, as well as a benchmarking library designed to allow researchers to easily

contribute methods. To achieve this, we incorporated 130 datasets with ground truth forms

into the Penn Machine Learning Benchmark (PMLB) [13], including metadata describing

the underlying equations, their units, and various summary statistics. Furthermore, we

created a SR benchmark repository called SRBench5 and sought contributions from

researchers in this area. Here we describe this process and the results, which consist of

comparisons of 14 contemporary SR methods on hundreds of regression problems.

5 https://github.com/cavalab/srbench

La Cava et al. Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cavalab/srbench

To our knowledge, this is by far the largest and most comprehensive SR benchmark

effort to date, which allows us to make claims concerning current SotA methods for SR

with better certainty. Importantly, and in contrast to many previous efforts, the datasets,

methods, benchmarking code, and results are completely open-source, reproducible, and

revision-controlled, which should allow SRBench to exist as a living benchmark for future

studies.

2. Background and Motivation

The goal of SR is to learn a mapping y(x) = ϕ(x, θ):ℝd ℝ using a dataset of paired

examples D = xi, yi i = 1
N , with features x ∈ ℝd and target y. SR assumes the existence of an

analytical model of the form y(x) = ϕ∗ x, θ∗ + ϵ that would generate the observations in D,

and seeks to estimate this model by searching the space of expressions, ϕ, and parameters, θ,

in the presence of white noise,ϵ.

Koza [14] introduced SR as an application of genetic programming (GP), a field that

investigates the use of genetic algorithms (GAs) to evolve executable data structures, i.e.

programs. In the case of so-called “Koza-style” GP, the programs to be optimized are syntax

trees consisting of functions/operations over input features and constants. Like in other GAs,

GP is a process that evolves a population of candidate solutions (e.g., syntax trees) by

iteratively producing offspring from parent solutions (e.g., by swapping parents’ subtrees)

and eliminating unfit solutions (e.g., programs with sub-par behavior). Most SR research to

date has emerged from within this sub-field and its associated conferences.6

Despite the availability of post-hoc methods for explaining black-box model predictions

[15], there have been recent calls to focus on learning interpretable/transparent models

explicitly [2]. Perhaps due to this renewed interest in model interpretability, entirely different

methods for tackling SR have been proposed [16–22]. These include methods based in

Bayesian optimization [16], recurrent neural networks (RNNs) [17], and physics-inspired

divide-and-conquer strategies [18, 23]. Some of these papers refer to Eureqa, a commercial,

GP-based SR method used to re-discover known physics equations [3], as the “gold

standard” for SR [17] and/or the best method for SR “by far” [18]. However, Schmidt

and Lipson [24] make no claim to being the SotA method for SR, nor is this hypothesis

tested in the body of work on which Eureqa is based [25].

Although commercial platforms like Eureqa and Wolfram [26] are successful tools for

applying SR, they are not designed to support controlled benchmark experiments, and

therefore experiments utilizing them have serious caveats. Due to the design of the front-end

API for both tools, it is not possible to benchmark either method against others while

holding important parameters of such an experiment constant, including the computational

effort, number of model evaluations, CPU/memory limits, and final solution assessment.

More generally, researchers cannot uniquely determine which features of the software and/or

experiment lead to observed differences in performance, given that these commercial tools

6A non-exhaustive list: GECCO, EuroGP, FOGA, PPSN, and IEEE CEC.

La Cava et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are closed-source. In this light, it is not clear what insights are to be gained when comparing

to Eureqa and Wolfram beyond a simple head-to-head comparison. Therefore, rather than

benchmark against Eureqa in this paper, we implement its underlying algorithms in an

open-source package, which allows our experiment to remain transparent, reproducible,

accessible, and controlled. We discuss the algorithms underlying Eureqa in detail in Sec.

A.3.

A close reading of SR literature since 2009 implies that a number of proposed methods

would outperform Eureqa in controlled tests, and are therefore suitable choices for

benchmarking (e.g. [27, 28]). Unfortunately, the widespread adoption of these promising

SR approaches is hamstrung by a lack of consensus on good benchmark problems, testing

frameworks, and experimental designs. Our effort to establish a common benchmark is

motivated by our view that common, robust, standardized benchmarks for SR could speed

progress in the field by providing a clear baseline from which to assert the quality of new

approaches. Consider the NN community’s focus on common benchmarks (e.g. ImageNet

[29]), frameworks (e.g. TensorFlow, PyTorch) and experiment designs. By contrast, it is

common to observe results in SR literature that are based on a small number of low

dimensional, easy and unrealistic problems, comparing only to very basic GP systems such

as those described in [14] nearly thirty years ago. Despite detailed descriptions of these

issues [11], community surveys and proposals to “black-list” toy problems [12], toy datasets

and comparisons to out-dated SR methods continue to appear in contemporary literature.

The aspects of performance assessment for SR differ from typical regression benchmarking

due to the interest in obtaining concise, symbolic expressions. In general, the trade-off

between accuracy and simplicity must be considered when evaluating the merits of different

models. Furthermore, model simplicity, typically measured as sparsity or model size, is

but a proxy for model interpretability; a simple model may still be un-interpretable, or

simply wrong [30–32]. With these concerns in mind, datasets with ground truth solutions are

useful, in that they allow researchers to assess whether or not the symbolic model regressed

by a given method corresponds to a known analytical solution. Nevertheless, benchmarks

utilizing synthetic datasets with ground-truth solutions are not sufficient for assessing real-

world performance, and so we consider it essential to also evaluate the performance of SR

on real-world or otherwise black-box regression problems, relative to SotA ML methods.

There have been a few recent efforts to benchmark SR algorithms [33], including a precursor

to this work benchmarking four SR methods on 94 regression problems [34]. In both cases,

SR methods were assessed solely on their ability to make accurate predictions. In contrast,

Udrescu and Tegmark [18] proposed 120 new synthetic, physics-based datasets for SR, but

compared only to Eureqa and only in terms of solution rates. A major contribution of our

work is its significantly more comprehensive scope than previous studies. We include 14

SR methods on 252 datasets in comparison to 7 ML methods. Our metrics of comparison

are also more comprehensive, and include 1) accuracy, 2) simplicity, and 3) exact or

approximate symbolic matches to the ground truth process. Furthermore, we have made

the benchmark openly available, reproducible, and open for contributions supported by

continuous integration [35].

La Cava et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 SRBench

We created SRBench to be a reproducible, open-source benchmarking project by pulling

together a large set of diverse benchmark datasets, contemporary SR methods, and ML

methods around a shared model evaluation and analysis environment. SRBench overcomes

several of the issues in current benchmarking literature as described in Sec. 2. For example,

it makes it easy for methodologists to benchmark new algorithms over hundreds of

problems, in comparison to strong, contemporary reference methods. These improvements

allow us to reason with more certainty than in previous work about the SotA methods for

SR.

In order to establish common datasets, we extended PMLB, a repository of standardized

regression and classification problems [13, 36], by adding 130 SR datasets with

known model forms. PMLB provides utilities for fetching and handling data, recording

and visualizing dataset metadata, and contributing new datasets. The SR methods we

benchmarked are all contemporary implementations (2011 – 2020) from several method

families, as shown in Table 1. We required contributors to implement a minimal, Scikit-learn

compatible [37], Python API for their method. In addition, contributors were required to

provide the final fitted model as a string that was compatible with the symbolic mathematics

library sympy. Note that although we require a Python wrapper, SR implementations in

many different languages are supported, as long as the Python API is available and the

language environment can be managed via Anaconda7.

To ensure reproducibility, we defined a common environment (via Anaconda) with fixed

versions of packages and their dependencies. In contrast to most SR studies, the full

installation code, experiment code, results and analysis are available via the repository for

use in future studies. To make SRBench as extensible as possible, we automated the process

of incorporating new methods and results into the analysis pipeline. The repository accepts

rolling contributions of new methods that meet the minimal API requirements. To achieve

this, we created a continuous integration (CI) [35] framework that assures contributions are

compatible with the benchmark code as they arrive. CI also supports continuous updates to

results reporting and visualization whenever new experiments are available, allowing us to

maintain a standing leader-board of contemporary SR methods. Ideally these features will

quicken the adoption of SotA approaches throughout the SR research community. Further

details on how to use and contribute to SRBench are provided in Sec. A.1.

4 Experiment Design

We evaluated SR methods on two separate tasks. First, we assessed their ability to make

accurate predictions on “black-box” regression problems (in which the underlying data

generating function remains unknown) while minimizing the complexity of the discovered

models. Second, we tested the ability of each method to find exact solutions to synthetic

datasets with known, ground-truth functions, originating from physics and various fields of

engineering.

7 https://www.anaconda.com/

La Cava et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.anaconda.com/

The basic experiment settings are summarized in Table 2. Each algorithm was trained on

each dataset (and level of noise, for ground-truth problems) in 10 repeated trials with a

different random state that controlled both the train/test split and the seed of the algorithm.

Datasets were split 75/25% in training and testing. For black-box regression problems,

each algorithm was tuned using 5-fold cross validation with halving grid search. The SR

algorithms were limited to 6 hyperparameter combinations; the ML methods were allowed

more, as shown in Table 4–6. The best hyperparameter settings were used to tune a final

estimator and evaluate it according to the metrics described above. Details for running the

experiment are given in Sec. A.1.

4.1 Symbolic Regression Methods

Here we characterize the SR methods summarized in Table 1 by describing how they fit

into broader research trends within the SR field. The most traditional implementation of

GP-based SR we test is gplearn, which initializes a random population of programs/models,

and then iterates through the steps of tournament selection, mutation and crossover.

Pareto optimization methods [8, 47–49] are popular evolutionary strategies that exploit

Pareto dominance relations to drive the population of models towards a set of efficient trade-

offs between competing objectives. Half of the SR methods we test use Pareto optimization

in some form during training. Age-Fitness Pareto optimization (AFP), proposed by Eureqa’s

authors Schmidt and Lipson [38], uses a model’s age as an objective in order to reduce

premature convergence as well as bloat [50]. AFP_FE combines AFP with Eureqa’s method

for fitness estimation [51]. Thus we expect AFP_FE and AFP to perform similarly to Eureqa

as described in literature.

Another promising line of research has been to leverage program semantics (in this case,

the equation’s intermediate and final outputs over training samples) more heavily during

optimization, rather than compressing that information into aggregate fitness values [52].

-lexicase selection (EPLEX) [27] is a parent selection method that utilizes semantics to

conduct selection by filtering models through randomized subsets of cases, which rewards

models that perform well on difficult regions of the training data. EPLEX is also used as the

parent selection method in FEAT [40]. Semantic backpropagation (SBP) is another semantic

technique to compute, for a given target value and a tree node position, that value which

makes the output of the model match the target (i.e., the label) [53–55]. Here, we evaluate

the (SBP-GP) algorithm by Virgolin et al. [46] which improves SBP-based recombination

by dynamically adapting intermediate outputs using affine transformations.

Backpropagation-based gradient descent was proposed for GP-SR by Topchy and Punch

[56], but tends to appear less often than stochastic hill climbing (e.g. [3, 57]). More recent

studies [45, 58] have made a strong case for the use of gradient-based constant optimization

as an improvement over stochastic and evolutionary approaches. The aforementioned studies

are embodied by Operon, a GP method that incorporates non-linear least squares constant

optimization using the Levenberg-Marquadt algorithm [59].

In addition to the question of how to best optimize constants, a line of research has proposed

different ways of defining program and/or model encodings. The methods FEAT, MRGP,

La Cava et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ITEA, and FFX each impose additional structural assumptions on the models being evolved.

In FEAT, each model is a linear combination of a set of evolved features, the parameters

of which are encoded as edges and optimized via gradient descent. In MRGP [44], the

entire program trace (i.e., each subfunction of the model) is decomposed into features and

used to train a Lasso model. In ITEA, each model is an affine combination of interaction-
transformation expressions, which compose a unary function (the transformation) and a

polynomial function (the interaction) [43, 60]. Finally, FFX [41] simply initializes a

population of equations, selects the Pareto optimal set, and returns a single linear model

by treating the population of equations as features.

GP-GOMEA is a GP algorithm where recombination is adapted over time [42, 61]. Every

generation, GP-GOMEA builds a statistical model of interdependencies within the encoding

of the evolving programs, and then uses this information to recombine interdependent blocks

of components, as to preserve their concerted action.

Jin et al. [16] recently proposed Bayesian Symbolic Regression (BSR), in which a prior is

placed on tree structures and the posterior distributions are sampled using a Markov Chain

Monte Carlo (MCMC) method. As in GP-based SR, arithmetic expressions are expressed

with symbolic trees, although BSR explicitly defines the final model form as a linear

combination of several symbolic trees. Model parsimony is encouraged by specifying a prior

that presumes additive, linear combinations of small components.

Deep Symbolic Regression (DSR) [17] uses reinforcement learning to train a generative

RNN model of symbolic expressions. Expressions sampled from the model distribution are

assessed to create a reward signal. DSR introduces a variant of the Monte Carlo policy

gradient algorithm [62] dubbed a “risk-seeking policy gradient” in an effort to bias the

generative model towards exact expressions.

AIFeynman is a divide-and-conquer approach that recursively applies a set of solvers and

problem decomposition heuristics to build a symbolic model [18]. If the problem is not

directly solve-able by polynomial fitting or brute-force search, AIFeynman trains a NN on

the data and uses it to estimate functional modularities (e.g., symmetry and/or separability),

which are used to partition the data into simpler problems and recurse. An updated version

of the algorithm, which we test here, integrates Pareto optimization with an information-

theoretic complexity metric to improve robustness to noise [23].

4.2 Datasets

All of the benchmark datasets are summarized by number of instances and number of

features in Fig. 5. The problems range from 47 to 1 million instances, and two to 124

features. We used 122 black-box regression problems available in PMLB v.1.0. These

problems are pulled from, and overlap with, various open-source repositories, including

OpenML [63] and the UCI repository [64]. PMLB standardizes these datasets to a

common format and provides fetching functions to load them into Python (and R). The

black-box regression datasets consist of 46 “real-world” problems (i.e., observational

data collected from physical processes) and 76 synthetic problems (i.e., data generated

computationally from static functions or simulations). The black-box problems cover diverse

La Cava et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

domains, including health informatics (11), business (10), technology (10), environmental

science (11) and government (12); in addition, they are derived from varied data sources,

including human subjects (14), environmental observations (11), government studies

(12), and economic markets (7). The datasets can be browsed by their properties at

epistasislab.github.io/pmlb. Each dataset includes metadata describing source information

as well as a detailed profile page summarizing the data distributions and interactions (here is

an example).

We extended PMLB with 130 datasets with known, ground-truth model forms. These

datasets were used to assess the ability of SR methods to recover known process physics.

The 130 datasets came from two sources: the Feynman Symbolic Regression Database,

and the ODE-Strogatz repository. Both sets of data come from first principles models of

physical systems. The Feynman problems originate in the Feynman Lectures on Physics
[65], and the datasets were recently created and proposed as SR benchmarks [18]. Whereas

the Feynman datasets represent static systems, the Strogatz problems are non-linear and

chaotic dynamical processes [66]. Each dataset is one state of a 2-state system of first-order,

ordinary differential equations (ODEs). They were used to benchmark SR methods in

previous work [25, 67], and are described in more detail in Sec. A.4 and Table 3.

4.3 Metrics

Accuracy—We assessed accuracy using the coefficient of determination, defined as

R2 = 1 −
∑

i

N

yi − yi
2

∑
i

N

yi − yi
2

.

Complexity—A number of different complexity measures have been proposed for SR,

including those based on syntactic complexity (i.e. related to the complexity of the symbolic

model); those based on semantic complexity (i.e. related to the behavior of the model over

the data) [23, 68]; those using both definitions [69]; and those estimating complexity via

meta-learning [70]. The pros and cons of these methods and their relation to notions of

interpretability is a point of discussion [71]. For the sake of simplicity, we opted to define

complexity as the number of mathematical operators, features and constants in the model,

where the mathematical operators are in the set {+,−,*,/,sin, cos, arcsin, arccos, exp, log,

pow, max, min}. In addition to calculating the complexity of the raw model forms returned

by each method, we calculated the complexity of the models after simplifying via sympy.

Solution Criteria—For the ground-truth regression problems, we used the following

solution definition.

La Cava et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 4.1 (Symbolic Solution).

A model ϕ(x, θ) is a Symbolic Solution to a problem with ground-truth model

y = ϕ∗ x, θ∗ + ϵ, if ϕ does not reduce to a constant, and if either of the following conditions

are true: 1)ϕ∗ − ϕ = a; or 2) ϕ∗/ϕ = b, b ≠ 0, for some constants a and b.

This definition is designed to capture models that differ from the true model by a constant

or scalar. Prior to assessing symbolic solutions, each model underwent sympy simplification,

as did the conditions above. Relative to accuracy metrics, the Symbolic Solution metric is

a more faithful evaluation of the ability of an SR method to discover the data generating

process. However, because models can be represented in myriad ways, and sympy’s

simplification procedure is non-optimal, we cannot guarantee that all symbolic solutions

are captured with perfect fidelity by this metric.

5 Results

The median test set performance on all problems and methods for the black-box benchmark

problems is summarized in Fig. 1. Across the problems, we find that the models generated

by Operon are significantly more accurate than any other method’s models in terms of test

set R2 (p ≤6.5e-05). SBP-GP and FEAT rank second and third and attain similar accuracies,

although the models produced by FEAT are significantly smaller (p =9.2e-22).

We note that four of the top five methods (Operon, SBP-GP, FEAT, EPLEX) and six of the

top ten methods (GP-GOMEA, ITEA) are GP-based SR methods. The other top methods

are ensemble tree-based methods, including two popular gradient-boosting algorithms,

XGBoost and LightGBM [72, 73]); Random Forest [74]; and AdaBoost [75]. Among these

methods, Operon, FEAT and SBP-GP significantly outperform and LightGBM (p ≤1.3e-07)

and Operon and SBP-GP outperform XGBoost (p ≤1.3e-04). We also note ITEA’s overall

accuracy is not significantly different from Random Forest or AdaBoost. Of note, the models

produced by the top five SR methods (aside from SBP-GP) are 1–3 orders of magnitude

smaller than models produced by the ensemble tree-based approaches (p ≤1.3e-21).

Among the non-GP-based SR algorithms, FFX and DSR perform similarly to each other

(p =0.76) and significantly better than BSR and AIFeynman (p ≤6.1e-05). FFX trains more

quickly than DSR, although DSR produces some of the smallest solutions, akin to penalized

regression. We note that AIFeynman performs poorly on these problems, suggesting that not

many of them exhibit the qualities of physical systems (rotational/translational invariance,

symmetry, etc.) that AIFeynman was designed to exploit. Additional statistical comparisons

are given in Figs. 9–11.

In Fig. 2, we illustrate the performance of the methods on the black-box problems when

accuracy and simplicity are considered simultaneously. The Pareto front for these two

objectives (solid line) is composed of three methods: Operon, GP-GOMEA, and DSR,

which taken together give the set of best trade-offs between accuracy and simplicity across

the black-box regression problems.

La Cava et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Performance on the ground-truth regression problems is summarized in Fig. 3, with methods

sorted by their median solution rate and grouped by data source (Feynman or Strogatz).

On average, when the target is free of noise, we observe that AIFeynman identifies exact

solutions 53% of the time, nearly twice as often as the next closest method (GP-GOMEA,

27%). However, at noise levels of 0.01 and above, four other methods recover exact

solutions more often: DSR, gplearn, AFP_FE, and AFP. Taken together, the black-box

and ground-truth regression results suggest AIFeynman may be brittle in application to

real-world and/or noisy data, yet its performance with little to no noise is significant for the

Feynman problems. On the Strogatz datasets, AIFeynman’s performance is not significantly

different than other methods, and indeed there are few significant differences in performance

between the top 10 methods at any noise level. We note that the top-ranked method on

real-world data, Operon, struggles to recover solutions to these problems, despite finding

many candidate solutions with near prefect test set scores. See Sec. A.6–A.7 for additional

analysis.

6 Discussion and Conclusions

This paper introduces a SR benchmarking framework that allows objective comparisons of

contemporary SR methods on a wide range of diverse regression problems. We have found

that, on real-world and black-box regression tasks, contemporary GP-based SR methods

(e.g. Operon) outperform new SR methods based in other fields of optimization, and can

also perform as well as or better than gradient boosted trees while producing simpler

models. On synthetic ground-truth physics and dynamical systems problems, we have

verified that AIFeynman finds exact solutions significantly better than other methods when

noise is minimal; otherwise, both deep learning-based methods (DSR) and GP-based SR

methods (e.g. AFP_FE) perform best.

We see clear ways to improve SRBench by improving the dataset curation, experiment

design and analysis. For one, we have not benchmarked the methods in a setting that allows

them to exploit parallelism, which may change relative run-times. There are also many

promising SR methods not included in this study that we hope to add in future revisions.

In addition, whereas our benchmark includes real-world data as well as simulated data

with ground-truth models, it does not include real-world data from phenomena with known,

first principles models (e.g., observations of a massspring-damper system). Data such as

these could help us better evaluate the ability of SR methods to discover relations under

real-world conditions. We intend to include these data in future versions, given the evidence

that SR models can sometimes discover unexpected analytical models that outperform the

expert models in a field (e.g., in studies of yeast metabolism [76] and fluid tank systems

[67]). As a final note, our current study highlights orthogonal approaches to SR that show

promise, and in future work we hope to explore whether combinations of proposed methods

(e.g., non-linear parameter optimization plus semantic search drivers) would have synergistic

effects.

La Cava et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Acknowledgments

William La Cava was supported by the National Library of Medicine and National Institutes of Health under awards
K99LM012926 and R00LM012926. He would like to thank Curt Calafut, members of the Epistasis Lab, and Joseph
D. Romano for coming through in a pinch.

Ying Jin would like to thank Doctor Jian Guo for hosting an internship for the project and Professor Jian Kang for
helpful and inspiring guidance in Bayesian statistics.

Fabricio Olivetti de França was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP),
grant number 2018/14173-8.

Patryk Orzechowski and Jason H. Moore were supported by NIH grant LM010098.

The authors would also like to thank contributors to the SRBench repository, including James McDermott and
Aurélie Boisbunon. They additionally thank Randal Olson and Weixuan Fu for their initial push to integrate
regression benchmarking into PMLB.

A: Appendix

Please refer to https://github.com/cavalab/srbench/ for the most up-to-date guide to

SRBench.

A.1 Running the Benchmark

The README in our Github repository includes the full set of commands to reproduce

the benchmark experiment, which are summarized here. Experiments are launched from

the experiments/ folder via the script analyze.py. The script can be configured to run the

experiment in parallel locally, on an LSF job scheduler, or on a SLURM job scheduler. To

see the full set of options, run python analyze.py -h.

After installing and configuring the conda environment, the complete black-box experiment

can be started via the command:

python analyze.py /path/to/pmlb/datasets -n_trials 10 -results

../results -time_limit 48:00

Similarly, the ground-truth regression experiment for Strogatz datasets and a target noise of

0.0 are run by the command:

python analyze.py -results ../results_sym_data -target_noise

0.0 “/path/to/pmlb/datasets/strogatz*” -sym_data -n_trials 10

-time_limit 9:00 -tuned

A.2 Contributing a Method

A living version of the method contribution instructions are described in the Contribution

Guide. To illustrate the simplicity of contributing a method, Figure 4 shows the script

submitted for Bayesian Symbolic Regression [16]. In addition to the code snippet, authors

may either add their code package to the conda/pip environment, or provide an install script.

When a pull request is issued by a contributor, new methods and installs are automatically

tested on a minimal version of the benchmark. Once the tests pass and the method is

La Cava et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cavalab/srbench/

approved by the benchmark maintainers, the contribution becomes part of the resource and

can be tested via the commands above.

A.3 Additional Background and Motivation

Eureqa

Eureqa is a commercial GP-based SR software that was acquired by DataRobot in 20178.

Due to its closed-source nature and incorporation into the DataRobot platform, it is

impossible to benchmark its performance while controlling for important experimental

variables such as number of evaluations, space and time limits, population size, and so

forth. However, the novel algorithmic aspects of Eureqa are rooted in a number of ablation

studies [38, 51, 77] that we summarize here. First is its use of directed acyclic graphs

for representing equations in lieu of trees, which resulted in more space-efficient model

encoding relative to trees, without a significant difference in accuracy [77]. The most

significant improvement over traditional tournament-based selection is Eureqa’s use of

age-fitness Pareto optimization (AFP), a method in which random restarts are incorporated

each generation as new offspring, and are protected from competing with older, more fit

equations by including age as an objective to be minimized [38]. Eureqa also includes the

co-evolution of fitness predictors, in which fitness assignment is sped up by optimizing

a second population of training sample indices that best distinguish between equations in

the population [51]. Unfortunately we cannot guarantee that Eureqa currently uses any of

these reported algorithms for SR, due to its closed-source nature. We chose instead to

benchmark known algorithms (AFP, AFP_FE) with open-source implementations, hoping

that the resulting study’s conclusions may better inform future methods development.

We note that AFP has been outperformed by a number of other optimization methods in

controlled studies since its release (e.g., [27, 28]).

8 https://www.datarobot.com/nutonian/

La Cava et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.datarobot.com/nutonian/

Figure 4:
An example code contribution, defining the estimator, its hyperparameters, and functions to

return the complexity and symbolic model.

Constant optimization in Genetic Programming

One of the clearest improvements over Kozastyle GP has been the adoption of local search

methods to handle constant optimization distinctly from evolutionary learning. Regarding

the optimization of constants in GP, several reasons can explain why backpropagation and

gradient descent can be considered to be relatively under-used in GP (compared to, e.g.,

evolutionary neural architecture search). For example, early works often ignored the use of

feature standardization (e.g., by z-scoring), the lack of which can harm gradient propagation

[78]. Next to this, GP relies on crafting compositions out of a multitude of operations, some

of which are prone to cause vanishing or exploding gradients. Last but not least, to the

best of our knowledge, the field lacks a comprehensive study that provides guidelines for

the appropriate hyperparameters for constant optimization (learning rate schedule, iterations,

batch size, etc.), and how to effectively balance parameter learning with the evolutionary

process.

La Cava et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A.4 Additional Dataset Information

All datasets, including metadata, are available from PMLB. Each dataset is stored using Git

Large File Storage and PMLB is planned for long-term maintenance. PMLB is available

under an MIT license, and is described in detail in Romano et al. [36]. The authors bear all

responsibility in case of violation of rights.

Figure 5:
Distribution of dataset sizes in PMLB.

Dataset Properties

The distribution of dataset sizes by samples and features are shown in Fig. 5. Datasets vary

in size from tens to millions of samples, and up to thousands of features. The datasets can be

navigated and inspected in the repository documentation.

Ethical Considerations and Intended Uses

PMLB is intended to be used as a framework for benchmarking ML and SR algorithms and

as a resource for investigating the structure of datasets. This paper does not contribute new

datasets, but rather collates and standardizes datasets that were already publicly available.

In that regard, we do not foresee SRBench as creating additional ethical issues around their

use. Nevertheless, it is worth noting that PMLB contains well-known, real-world datasets

from UCI and OpenML for which ethical considerations are important, such as the USCrime

dataset. Whereas we would view the risk of harm arising specifically from this dataset to

be low (the data is from 1960), it is exemplary of a task for which algorithmic decision

making could exacerbate existing biases in the criminal justice system. As such it is used as

a benchmark in a number of papers in the ML fairness literature (e.g. [79, 80]). None of the

datasets herein contain personally identifiable information.

Feynman datasets

The Feynman benchmarks were sourced from the Feynman Symbolic Regression Database.

We standardized the Feynman and Bonus equations to PMLB format and included metadata

La Cava et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

detailing the model form and the units for each variable. We used the version of the

equations that were not simplified by dimensional analysis. Udrescu and Tegmark [18]

describe each dataset as containing 105 rows, but each actually contains 106. Given this

discrepancy and after noting that sub-sampling did not significantly change the correlation

structure of any of the problems, each dataset was down-sampled from 1 million samples to

100,000 to lower the computational burden. We also observed that Eqn. II.11.17 was missing

from the database. Finally, we excluded three datasets from our analysis that contained

arcsin and arccos functions, as these were not implemented in the majority of SR algorithms

we tested.

Strogatz datasets

The Strogatz datasets were sourced from the ODE-Strogatz repository [67]. Each dataset is

one state of a 2-state system of first-order, ordinary differential equations (ODEs). The goal

of each problem is to predict rate of change of the state given the current two states on which

it depends. Each represents natural processes that exhibit chaos and non-linear dynamics.

The problems were originally adapted from [66] by Schmidt [25]. In order to simulate their

behavior, initial conditions were chosen within stable basins of attraction. Each system was

simulated using Simulink, and the simulation code is available in the repository above. The

equations for each of these datasets are shown in Table 3.

Table 3:

The Strogatz ODE problems.

Name Target

Bacterial Respiration ẋ = 20 − x − x ⋅ y
1 + 0.5 ⋅ x2

ẏ = 20 − x ⋅ y
1 + 0.5 ⋅ x2

Bar Magnets θ̇ = 0.5 ⋅ sin θ − ϕ − sin θ
ϕ̇ = 0.5 ⋅ sin ϕ − θ − sin ϕ

Glider v̇ = − 0.05 ⋅ v2 − sin θ
θ̇ = v − cos θ /v

Lotka-Volterra interspecies dynamics ẋ = 3 ⋅ x − 2 ⋅ x ⋅ y − x2
ẏ = 2 ⋅ y − x ⋅ y − y2

Predator Prey ẋ = x ⋅ 4 − x − y
1 + x

ẏ = y ⋅ x
1 + x − 0.075˙y

Shear Flow θ̇ = cot ϕ ⋅ cos θ
ϕ̇ = cos2 ϕ + 0.1 ⋅ sin2 ϕ ⋅ sin θ

La Cava et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Name Target

van der Pol oscillator ẋ = 10 ⋅ y − 1
3 ⋅ x3 − x

ẏ = − 1
10 ⋅ x

Adding Noise

White gaussian noise was added to the target as a fraction of the signal root mean square

value. In other words, for target noise level γ,

ynoise = y + ϵ, ϵ ∼ N 0, γ 1
N ∑yi

2

A.5 Additional Experiment Details

Experiments were run in a heterogeneous cluster computing environment composed of hosts

with 24–28 core Intel(R) Xeon(R) CPU E5–2690 v4 @ 2.60GHz processors and 250 GB of

RAM. Jobs consisted of the training of each method on a single dataset for a fixed random

seed. Each job received one CPU core and up to 16GB of RAM, and was time-limited

as shown in Table 2. For the ground-truth problems, the final models from each method

were given an additional hour of computing time with 8GB of RAM to be simplified with

sympy and assessed by the solution criteria (see Def. 4.1). For the black-box problems, if

a job was killed due to the time limit, we re-ran the experiment without hyperparameter

tuning, thereby only requiring a single training iteration to complete within 48 hours. To

ease the computational burden for large datasets, training data exceeding 10,000 samples

was randomly subset to 10,000 rows; test set predictions were still evaluated over the entire

test fold.

The hyperparameter settings for each method are shown in Tables 4–6. Each SR method was

tuned from a set of six hyperparameter combinations. The most common parameter setting

chosen during the black-box regression experiments was then used as the “tuned” version of

each algorithm for the ground-truth problems, with updates to 1) include any mathematical

operators needed for those problems and 2) double the evaluation budget.

Table 4:

ML methods and the hyperparameter spaces used in tuning.

Method Hyperparameters

AdaBoost {‘learning_rate’: (0.01, 0.1, 1.0, 10.0), ‘n_estimators’: (10, 100, 1000)}

KernelRidge {‘kernel’: (‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’), ‘alpha’: (0.0001, 0.01, 0.1, 1), ‘gamma’: (0.01, 0.1, 1,
10)}

LassoLars {‘alpha’: (0.0001, 0.001, 0.01, 0.1, 1)}

LGBM {‘n_estimators’: (10, 50, 100, 250, 500, 1000), ‘learning_rate’: (0.0001, 0.01, 0.05, 0.1, 0.2),
‘subsample’: (0.5, 0.75, 1), ‘boosting_type’: (‘gbdt’, ‘dart’, ‘goss’)}

La Cava et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Method Hyperparameters

LinearRegression {‘fit_intercept’: (True,)}

MLP {‘activation’: (‘logistic’, ‘tanh’, ‘relu’), ‘solver’: (‘lbfgs’, ‘adam’, ‘sgd’), ‘learning_rate’:
(‘constant’, ‘invscaling’, ‘adaptive’)}

RandomForest {‘n_estimators’: (10, 100, 1000), ‘min_weight_fraction_leaf’: (0.0, 0.25, 0.5), ‘max_features’:
(‘sqrt’, ‘log2’, None)}

SGD {‘alpha’: (1e-06, 0.0001, 0.01, 1), ‘penalty’: (‘l2’, ‘l1’, ‘elasticnet’)}

XGB {‘n_estimators’: (10, 50, 100, 250, 500, 1000), ‘learning_rate’: (0.0001, 0.01, 0.05, 0.1, 0.2),
‘gamma’: (0, 0.1, 0.2, 0.3, 0.4), ‘subsample’: (0.5, 0.75, 1)}

A.6 Additional Results

A.6.1 Subgroup analysis of black-box regression results

Many of the black-box problems for regression in PMLB were originally sourced from

OpenML. A few authors have noted that several of these datasets are sourced from Friedman

[81]’s synthetic benchmarks. These datasets are generated by non-linear functions that vary

in degree of noise, variable interactions, variable importance, and degree of non-linearity.

Due to their number, they may have an out-sized effect on results reporting in PMLB. In

Fig. 6, we separate out results on this set of problems relative to the rest of PMLB. We do

find that, relative to the rest of PMLB, the results on the Friedman datasets distinguish top-

ranked methods more strongly than among the rest of the benchmark, on which performance

between top-performing methods is more similar. In general, although we do see methods

rankings change somewhat when looking at specific data groupings, we do not observe

large differences. An exception is Kernel ridge regression, which performs poorly on the

Friedman datasets but very well on the rest of PMLB. We recommend that future revisions

to PMLB expand the dataset collection to minimize the effect of any one source of data, and

include subgroup analysis to identify which types of problems are best solved by specific

methods.

To get a better sense of the performance variability across methods and datasets, method

rankings on each dataset are bi-clustered and visualized in Fig. 7. Methods that perform

most similarly across the benchmark are placed adjacent to each other, and likewise datasets

that induce similar method rankings are grouped. We note some expected groupings first:

AFP and AFP_FE, which differ only in fitness estimation, and FEAT and EPLEX, which

use the same selection method, perform similarly. We also observe clustering among the

Friedman datasets (names beginning with “fri_”), and again note stark differences between

methods that perform well on these problems, e.g. Operon, SBP-GP, and FEAT, and those

that do not, e.g. MLP. This view of the results also reveals a cluster of SR methods

(AFP, AFP_FE, DSR, gplearn) that perform well on a subset of real-world problems

(analcatdata_neavote_523 - vineyard_192) for which linear models also perform well.

Interestingly, for that problem subset, Operon’s performance is mediocre relative to its

strong performance on other datasets. We also note with surprise that DSR and gplearn

exhibit performance similarity on par with AFP/AFP_FE, and are the next most similar-

performing methods (note the dendrogram connecting these columns).

La Cava et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Table 5:

Part 1: SR methods and the hyperparameter spaces used in tuning on the black-box

regression problems.

Method Hyperparameters

AFP {‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’,
‘sin’, ‘cos’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’,
‘sin’, ‘cos’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’, ‘sin’, ‘cos’]}

AIFeynman {‘BF_try_time’: 60, ‘NN_epochs’: 4000, ‘BF_ops_file_type’=“10ops.txt”}
{‘BF_try_time’: 60, ‘NN_epochs’: 4000, ‘BF_ops_file_type’=“14ops.txt”}
{‘BF_try_time’: 60, ‘NN_epochs’: 4000, ‘BF_ops_file_type’=“19ops.txt”}
{‘BF_try_time’: 600, ‘NN_epochs’: 400, ‘BF_ops_file_type’=“10ops.txt”}
{‘BF_try_time’: 600, ‘NN_epochs’: 400, ‘BF_ops_file_type’=“14ops.txt”}
{‘BF_try_time’: 600, ‘NN_epochs’: 400, ‘BF_ops_file_type’=“19ops.txt”}</di>

BSR {‘treeNum’: 6, ‘itrNum’: 500, ‘val’: 1000}
{‘treeNum’: 6, ‘itrNum’: 1000, ‘val’: 500}
{‘treeNum’: 3, ‘itrNum’: 500, ‘val’: 1000}
{‘treeNum’: 6, ‘itrNum’: 5000, ‘val’: 100}
{‘treeNum’: 3, ‘itrNum’: 5000, ‘val’: 100}
{‘treeNum’: 3, ‘itrNum’: 1000, ‘val’: 500}

DSR {‘batch_size’: array([10, 100, 1000, 10000, 100000])}

EPLEX {‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}

FEAT {‘pop_size’: 100, ‘gens’: 2500, ‘lr’: 0.1}
{‘pop_size’: 100, ‘gens’: 2500, ‘lr’: 0.3}
{‘pop_size’: 500, ‘gens’: 500, ‘lr’: 0.1}
{‘pop_size’: 500, ‘gens’: 500, ‘lr’: 0.3}
{‘pop_size’: 1000, ‘gens’: 250, ‘lr’: 0.1}
{‘pop_size’: 1000, ‘gens’: 250, ‘lr’: 0.3}

FE_AFP {‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 1000, ‘g’: 250, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}
{‘popsize’: 100, ‘g’: 2500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’,
‘3’, ‘sqrt’]}
{‘popsize’: 500, ‘g’: 500, ‘op_list’: [‘n’, ‘v’, ‘+’, ‘-’, ‘*’, ‘/’, ‘sin’, ‘cos’, ‘exp’, ‘log’, ‘2’, ‘3’, ‘sqrt’]}

A.6.2 Extended analysis of ground-truth regression results

As noted in Sec. 6, despite Operon’s good performance on black-box regression, it finds

few models with symbolic equivalence. An alternative (and weaker) notion of solution is

based on test set accuracy, which we show in Fig. 8; by this metric, the relative method

performance corresponds more closely to that seen for black-box regression. We also note

that methods that impose structural assumptions on the model (BSR, FEAT, ITEA, FFX) are

La Cava et al. Page 18

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

worse at finding symbolic solutions, most of which do not match those assumptions (e.g.

most processes in Table 3).

Table 6:

Part 2: SR methods and the hyperparameter spaces used in tuning on the black-box

regression problems.

Method Hyperparameters

GPGOMEA {‘initmaxtreeheight’: (4,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,),
‘linearscaling’: (True,)}
{‘initmaxtreeheight’: (6,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,),
‘linearscaling’: (True,)}
{‘initmaxtreeheight’: (4,), ‘functions’: (‘+_-_*_p/’,), ‘popsize’: (1000,), ‘linearscaling’:
(True,)}
{‘initmaxtreeheight’: (6,), ‘functions’: (‘+_-_*_p/’,), ‘popsize’: (1000,), ‘linearscaling’:
(True,)}
{‘initmaxtreeheight’: (4,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,),
‘linearscaling’: (False,)}
{‘initmaxtreeheight’: (6,), ‘functions’: (‘+_-_*_p/_plog_sqrt_sin_cos’,), ‘popsize’: (1000,),
‘linearscaling’: (False,)}

ITEA {‘exponents’: ((−5, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Tanh, Sin, Cos, Log, Exp,
SqrtAbs]’,)}
{‘exponents’: ((−5, 5),), ‘termlimit’: ((2, 5),), ‘transfunctions’: (‘[Id, Tanh, Sin, Cos, Log, Exp,
SqrtAbs]’,)}
{‘exponents’: ((−5, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Sin]’,)}
{‘exponents’: ((0, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Sin]’,)}
{‘exponents’: ((0, 5),), ‘termlimit’: ((2, 5),), ‘transfunctions’: (‘[Id, Sin]’,)}
{‘exponents’: ((0, 5),), ‘termlimit’: ((2, 15),), ‘transfunctions’: (‘[Id, Tanh, Sin, Cos, Log, Exp,
SqrtAbs]’,)}

MRGP {‘popsize’: 1000, ‘g’: 250, ‘rt_cross’: 0.8, ‘rt_mut’: 0.2}
{‘popsize’: 100, ‘g’: 2500, ‘rt_cross’: 0.2, ‘rt_mut’: 0.8}
{‘popsize’: 100, ‘g’: 2500, ‘rt_cross’: 0.8, ‘rt_mut’: 0.2}
{‘popsize’: 500, ‘g’: 500, ‘rt_cross’: 0.2, ‘rt_mut’: 0.8}
{‘popsize’: 500, ‘g’: 500, ‘rt_cross’: 0.8, ‘rt_mut’: 0.2}
{‘popsize’: 1000, ‘g’: 250, ‘rt_cross’: 0.2, ‘rt_mut’: 0.8}

Operon {‘population_size’: (500,), ‘pool_size’: (500,), ‘max_length’: (50,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,),
‘tournament_size’: (5,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (500,), ‘pool_size’: (500,), ‘max_length’: (25,), ‘allowed_symbols’:
(‘add,mul,aq,exp,log,sin,tanh,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’:
(‘basic’,), ‘tournament_size’: (5,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (500,), ‘pool_size’: (500,), ‘max_length’: (25,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,),
‘tournament_size’: (5,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (100,), ‘pool_size’: (100,), ‘max_length’: (50,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,),
‘tournament_size’: (3,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (100,), ‘pool_size’: (100,), ‘max_length’: (25,), ‘allowed_symbols’:
(‘add,mul,aq,exp,log,sin,tanh,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’:
(‘basic’,), ‘tournament_size’: (3,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}
{‘population_size’: (100,), ‘pool_size’: (100,), ‘max_length’: (25,), ‘allowed_symbols’:
(‘add,mul,aq,constant,variable’,), ‘local_iterations’: (5,), ‘offspring_generator’: (‘basic’,),
‘tournament_size’: (3,), ‘reinserter’: (‘keep-best’,), ‘max_evaluations’: (500000,)}

gplearn {‘population_size’: 100, ‘generations’: 5000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’)}
{‘population_size’: 1000, ‘generations’: 500, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’)}
{‘population_size’: 1000, ‘generations’: 500, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’, ‘sin’, ‘cos’)}
{‘population_size’: 500, ‘generations’: 1000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’)}
{‘population_size’: 500, ‘generations’: 1000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’, ‘sin’, ‘cos’)}

La Cava et al. Page 19

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Method Hyperparameters

{‘population_size’: 100, ‘generations’: 5000, ‘function_set’: (‘add’, ‘sub’, ‘mul’, ‘div’, ‘log’,
‘sqrt’, ‘sin’, ‘cos’)}

sembackpropgp {‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (False,), ‘sbrdo’: (0.9,),
‘submut’: (0.1,), ‘tournament’: (4,), ‘maxsize’: (250,), ‘sblibtype’: (‘p_6_9999’,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (4,), ‘maxsize’: (1000,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (8,), ‘maxsize’: (1000,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (4,), ‘maxsize’: (5000,)}
{‘popsize’: (1000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (True,),
‘sbrdo’: (0.9,), ‘submut’: (0.1,), ‘tournament’: (8,), ‘maxsize’: (5000,)}
{‘popsize’: (10000,), ‘functions’: (‘+_-_*_aq_plog_sin_cos’,), ‘linearscaling’: (False,), ‘sbrdo’:
(0.9,), ‘submut’: (0.1,), ‘tournament’: (8,), ‘maxsize’: (250,), ‘sblibtype’: (‘p_6_9999’,)}

Figure 6:

Comparison of normalized R2 test scores on all black-box datasets, just the Friedman

datatasets, and just the non-Friedman datasets.

A.7 Statistical Tests

Figures 9–11 give summary significance levels of pairwise tests of significance between

estimators on the black-box and ground-truth problems. All pair-wise statistical tests are

Wilcoxon signed-rank tests. A Bonferroni correction was applied, yielding the α levels

given in each. This methodology for assessing statistical significance is based on the

recommendations of Demšar [82] for comparing multiple estimators over many datasets.

These figures are intended to complement Figures 1–3 in which effect sizes are shown.

La Cava et al. Page 20

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:

Rankings of methods by R2 test score on the black-box problems (lower/darker is better).

Results are bi-clustered by SR method (columns) and dataset (rows). Darker cells indicate

that a method performs well on that dataset relative to its competitors. Note only a subset of

the datasets are labelled due to space constraints.

La Cava et al. Page 21

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:

Subset comparison of “Accuracy Solutions”, i.e. models with R2 > 0.999 on the Feynman

and Strogatz problems, differentiated by noise level.

Figure 9:
Pairwise statistical comparisons on the black-box regression problems. Wilcoxon signe-

drank tests are used with a Bonferonni correction on α for multiple comparisons. (Left) R2

test scores, (Right) model size.

La Cava et al. Page 22

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10:

Pairwise statistical comparisons of R2 test scores on the ground-truth regression problems.

We report Wilcoxon signed-rank tests with a Bonferonni correction on α for multiple

comparisons. (Left) target noise of 0, (Right) target noise of 0.01.

Figure 11:
Pairwise statistical comparisons of solution rates on the ground-truth regression problems.

We report Wilcoxon signed-rank tests with a Bonferonni correction on α for multiple

comparisons. (Left) target noise of 0, (Right) target noise of 0.01.

References

[1]. Jobin Anna, Ienca Marcello, and Vayena Effy. The global landscape of AI ethics guidelines.
Nature Machine Intelligence, 1(9):389–399, September 2019. ISSN 2522–5839. doi: 10.1038/
s42256-019-0088-2.

[2]. Rudin Cynthia. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

La Cava et al. Page 23

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[3]. Schmidt Michael and Lipson Hod. Distilling free-form natural laws from experimental data.
Science, 324 (5923):81–85, 2009. [PubMed: 19342586]

[4]. Schmidt Michael Douglas and Lipson Hod. Automated modeling of stochastic reactions with
large measurement time-gaps. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, pages 307–314. ACM, 2011.

[5]. La Cava William, Lee Paul C., Ajmal Imran, Ding Xiruo, Solanki Priyanka, Cohen Jordana B.,
Moore Jason H., and Herman Daniel S.. Application of concise machine learning to construct
accurate and interpretable EHR computable phenotypes. medRxiv, page 2020.12.12.20248005,
February 2021. doi: 10.1101/2020.12.12.20248005.

[6]. Stanislawska Karolina, Krawiec Krzysztof, and Kundzewicz Zbigniew W.. Modeling global
temperature changes with genetic programming. Computers & Mathematics with Applications,
64(12):3717–3728, December 2012. ISSN 0898–1221. doi: 10.1016/j.camwa.2012.02.049.

[7]. Chen Shu-Heng. Genetic Algorithms and Genetic Programming in Computational Finance.
Springer Science & Business Media, 2012.

[8]. Smits Guido F. and Kotanchek Mark. Pareto-front exploitation in symbolic regression. In Genetic
Programming Theory and Practice II, pages 283–299. Springer, 2005.

[9]. La Cava William, Danai Kourosh, Spector Lee, Fleming Paul, Wright Alan, and Lackner
Matthew. Automatic identification of wind turbine models using evolutionary multiobjective
optimization. Renewable Energy, 87, Part 2:892–902, March 2016. ISSN 0960–1481. doi:
10.1016/j.renene.2015.09.068.

[10]. Castelli Mauro, Silva Sara, and Vanneschi Leonardo. A C++ framework for geometric semantic
genetic programming. Genetic Programming and Evolvable Machines, 16(1):73–81, March 2015.
ISSN 1389–2576, 1573–7632. doi: 10.1007/s10710-014-9218-0.

[11]. McDermott James, White David R., Luke Sean, Manzoni Luca, Castelli Mauro, Vanneschi
Leonardo, Jaskowski Wojciech, Krawiec Krzysztof, Harper Robin, and De Jong Kenneth.
Genetic programming needs better benchmarks. In Proceedings of the Fourteenth International
Conference on Genetic and Evolutionary Computation Conference, pages 791–798. ACM, 2012.

[12]. White David R., McDermott James, Castelli Mauro, Manzoni Luca, Goldman Brian
W., Kronberger Gabriel, Jaskowski Wojciech, O’Reilly Una-May, and Luke Sean. Better
GP benchmarks: Community surveý results and proposals. Genetic Programming and
Evolvable Machines, 14(1):3–29, December 2012. ISSN 1389–2576, 1573–7632. doi: 10.1007/
s10710-012-9177-2.

[13]. Olson Randal S., La Cava William, Orzechowski Patryk, Urbanowicz Ryan J., and Moore
Jason H.. PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison.
BioData Mining, 2017.

[14]. Koza John R.. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0–262-11170–5.

[15]. Lundberg Scott M and Lee Su-In. A Unified Approach to Interpreting Model Predictions.
Proceedings of the 31st international conference on neural information processing systems, 2017.

[16]. Jin Ying, Fu Weilin, Kang Jian, Guo Jiadong, and Guo Jian. Bayesian Symbolic Regression.
arXiv:1910.08892 [stat], January 2020.

[17]. Petersen Brenden K., Larma Mikel Landajuela, Mundhenk Terrell N., Santiago Claudio Prata,
Kim Soo Kyung, and Kim Joanne Taery. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In International Conference on Learning
Representations, September 2020.

[18]. Udrescu Silviu-Marian and Tegmark Max. AI Feynman: A Physics-Inspired Method for
Symbolic Regression. arXiv:1905.11481 [hep-th, physics:physics], April 2020.

[19]. Panju Maysum. Automated Knowledge Discovery Using Neural Networks. 2021.

[20]. Werner Matthias, Junginger Andrej, Hennig Philipp, and Martius Georg. Informed Equation
Learning. arXiv preprint arXiv:2105.06331, 2021.

[21]. Sahoo Subham, Lampert Christoph, and Martius Georg. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pages 4442–4450. PMLR, 2018.

[22]. Kusner Matt J., Paige Brooks, and Hernández-Lobato José Miguel. Grammar variational
autoencoder. In International Conference on Machine Learning, pages 1945–1954. PMLR, 2017.

La Cava et al. Page 24

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[23]. Udrescu Silviu-Marian, Tan Andrew, Feng Jiahai, Neto Orisvaldo, Wu Tailin, and Tegmark
Max. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity.
arXiv:2006.10782 [physics, stat], December 2020.

[24]. Schmidt Michael and Lipson Hod. Distilling free-form natural laws from experimental data.
Science, 324 (5923):81–85, 2009. [PubMed: 19342586]

[25]. Schmidt Michael Douglas. Machine Science: Automated Modeling of Deterministic and
Stochastic Dynamical Systems. PhD thesis, Cornell University, Ithaca, NY, USA, 2011.

[26]. Fortuna Giorgia. Automatic Formula Discovery in the Wolfram Language – from Wolfram
Library Archive. https://library.wolfram.com/infocenter/Conferences/9329/, 2015.

[27]. La Cava William, Spector Lee, and Danai Kourosh. Epsilon-Lexicase Selection for Regression.
In Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO
‘16, pages 741–748, New York, NY, USA, 2016. ACM. ISBN 978–1-4503–4206-3. doi:
10.1145/2908812.2908898.

[28]. Liskowski Pawe and Krawiec Krzysztof. Discovery of Search Objectives in Continuous
Domains. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
‘17, pages 969–976, New York, NY, USA, 2017. ACM. ISBN 978–1-4503–4920-8. doi:
10.1145/3071178.3071344.

[29]. Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255. Ieee, 2009.

[30]. Lipton Zachary C. The Mythos of Model Interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

[31]. Poursabzi-Sangdeh Forough, Goldstein Daniel G, Hofman Jake M, Vaughan Jennifer
Wortman Wortman, and Wallach Hanna. Manipulating and measuring model interpretability. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–52,
2021.

[32]. Virgolin Marco, De Lorenzo Andrea, Randone Francesca, Medvet Eric, and Wahde Mattias.
Model learning with personalized interpretability estimation (ML-PIE). arXiv:2104.06060 [cs],
2021.

[33]. Žegklitz Jan and Pošík Petr. Benchmarking state-of-the-art symbolic regression algorithms.
Genetic Programming and Evolvable Machines, pages 1–29, 2020.

[34]. Orzechowski Patryk, La Cava William, and Jason H. Moore. Where are we now? A
large benchmark study of recent symbolic regression methods. In Proceedings of the
2018 Genetic and Evolutionary Computation Conference, GECCO ‘18, April 2018. doi:
10.1145/3205455.3205539.

[35]. Fowler Martin. Continuous Integration. https://martinfowler.com/articles/
continuousIntegration.html, 2006.

[36]. Romano Joseph D., Le Trang T., La Cava William, Gregg John T., Goldberg Daniel J., Ray
Natasha L., Chakraborty Praneel, Himmelstein Daniel, Fu Weixuan, and Moore Jason H..
PMLB v1.0: An open source dataset collection for benchmarking machine learning methods.
arXiv:2012.00058 [cs], April 2021.

[37]. Pedregosa Fabian, Varoquaux Gaël, Gramfort Alexandre, Michel Vincent, Thirion Bertrand,
Grisel Olivier, Blondel Mathieu, Prettenhofer Peter, Weiss Ron, Dubourg Vincent, et al. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct):2825–2830,
2011.

[38]. Schmidt Michael and Lipson Hod. Age-fitness pareto optimization. In Genetic Programming
Theory and Practice VIII, pages 129–146. Springer, 2011.

[39]. La Cava William, Helmuth Thomas, Spector Lee, and Moore Jason H.. A probabilistic
and multi-objective analysis of lexicase selection and epsilon-lexicase selection. Evolutionary
Computation, 27(3):377–402, September 2019. ISSN 1063–6560. doi: 10.1162/evco_a_00224.
[PubMed: 29746157]

[40]. La Cava William, Singh Tilak Raj, Taggart James, Suri Srinivas, and Moore Jason H.. Learning
concise representations for regression by evolving networks of trees. In International Conference
on Learning Representations, ICLR, 2019.

La Cava et al. Page 25

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://library.wolfram.com/infocenter/Conferences/9329/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html

[41]. McConaghy Trent. FFX: Fast, scalable, deterministic symbolic regression technology. In Genetic
Programming Theory and Practice IX, pages 235–260. Springer, 2011.

[42]. Virgolin Marco, Alderliesten Tanja, Witteveen Cees, and Bosman Peter A N. Improving
model-based genetic programming for symbolic regression of small expressions. Evolutionary
Computation, page tba, 2020.

[43]. de Franca FO and Aldeia GSI. Interaction-Transformation Evolutionary Algorithm for Symbolic
Regression. Evolutionary Computation, pages 1–25, December 2020. ISSN 1063–6560. doi:
10.1162/evco_a_00285.

[44]. Arnaldo Ignacio, Krawiec Krzysztof, and O’Reilly Una-May. Multiple regression genetic
programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, pages 879–886. ACM, 2014.

[45]. Kommenda Michael, Burlacu Bogdan, Kronberger Gabriel, and Affenzeller Michael. Parameter
identification for symbolic regression using nonlinear least squares. Genetic Programming and
Evolvable Machines, December 2019. ISSN 1573–7632. doi: 10.1007/s10710-019-09371-3.

[46]. Virgolin Marco, Alderliesten Tanja, and Bosman Peter AN. Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1084–1092, 2019.

[47]. Deb Kalyanmoy, Agrawal Samir, Pratap Amrit, and Meyarivan T. A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In Schoenauer Marc,
Deb Kalyanmoy, Rudolph Günther, Yao Xin, Lutton Evelyne, Merelo Juan Julian, and Schwefel
Hans-Paul, editors, Parallel Problem Solving from Nature PPSN VI, volume 1917, pages 849–
858. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. ISBN 978–3-540–41056-0.

[48]. Zitzler Eckart, Laumanns Marco, and Thiele Lothar. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für
Technische Informatik und Kommunikationsnetze (TIK), 2001.

[49]. Bleuler S, Brack M, Thiele L, and Zitzler E. Multiobjective genetic programming: Reducing
bloat using SPEA2. In Proceedings of the 2001 Congress on Evolutionary Computation, 2001,
volume 1, pages 536–543 vol. 1, 2001. doi: 10.1109/CEC.2001.934438.

[50]. Hornby Gregory S.. ALPS: The age-layered population structure for reducing the problem
of premature convergence. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, GECCO ‘06, pages 815–822, New York, NY, USA, 2006. ACM.
ISBN 1–59593-186–4. doi: 10.1145/1143997.1144142.

[51]. Schmidt MD and Lipson H. Coevolution of Fitness Predictors. IEEE Transactions on
Evolutionary Computation, 12(6):736–749, December 2008. ISSN 1941–0026, 1089–778X. doi:
10.1109/TEVC.2008. 919006.

[52]. Azad Raja Muhammad Atif. Krzysztof Krawiec: Behavioral program synthesis with genetic
programming. Genetic Programming and Evolvable Machines, 18(1):111–113, March 2017.
ISSN 1389–2576, 1573–7632. doi: 10.1007/s10710-016-9283-7.

[53]. Wieloch Bartosz and Krawiec Krzysztof. Running programs backwards: Instruction inversion for
effective search in semantic spaces. In Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, pages 1013–1020, 2013.

[54]. Krawiec Krzysztof and Pawlak Tomasz. Approximating geometric crossover by semantic
backpropagation. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation, pages 941–948, 2013.

[55]. Pawlak Tomasz P, Wieloch Bartosz, and Krawiec Krzysztof. Semantic backpropagation
for designing search operators in genetic programming. IEEE Transactions on Evolutionary
Computation, 19(3):326–340, 2014.

[56]. Topchy Alexander and Punch William F.. Faster genetic programming based on local gradient
search of numeric leaf values. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO2001), pages 155–162, 2001.

[57]. Bongard JC and Lipson H. Nonlinear System Identification Using Coevolution of Models
and Tests. IEEE Transactions on Evolutionary Computation, 9(4):361–384, August 2005. ISSN
1089–778X. doi: 10.1109/TEVC.2005.850293.

La Cava et al. Page 26

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[58]. Kommenda Michael, Kronberger Gabriel, Winkler Stephan, Affenzeller Michael, and Wagner
Stefan. Effects of constant optimization by nonlinear least squares minimization in symbolic
regression. In Blum Christian, Alba Enrique, Bartz-Beielstein Thomas, Loiacono Daniele, Luna
Francisco, Mehnen Joern, Ochoa Gabriela, Preuss Mike, Tantar Emilia, and Vanneschi Leonardo,
editors, GECCO ‘13 Companion: Proceeding of the Fifteenth Annual Conference Companion on
Genetic and Evolutionary Computation Conference Companion, pages 1121–1128, Amsterdam,
The Netherlands, 6. ACM. doi: doi:10.1145/2464576.2482691.

[59]. Burlacu Bogdan, Kronberger Gabriel, and Kommenda Michael. Operon C++ an efficient genetic
programming framework for symbolic regression. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pages 1562–1570, 2020.

[60]. de França Fabrício Olivetti. A greedy search tree heuristic for symbolic regression. Information
Sciences, 442:18–32, 2018.

[61]. Virgolin Marco, Alderliesten Tanja, Witteveen Cees, and Bosman Peter A N. Scalable genetic
programming by gene-pool optimal mixing and input-space entropy-based building-block
learning. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1041–
1048, 2017.

[62]. Williams Ronald J.. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3–4):229–256, 1992.

[63]. Vanschoren Joaquin, van Rijn Jan N., Bischl Bernd, and Torgo Luis. OpenML:
Networked Science in Machine Learning. SIGKDD Explorations, 15(2):49–60, 2013. doi:
10.1145/2641190.2641198.

[64]. Lichman M. UCI Machine Learning Repository. University of California, Irvine, School of
Information and Computer Sciences, 2013.

[65]. Feynman Richard P., Leighton Robert B., and Sands Matthew. The Feynman Lectures on Physics,
Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat. Basic Books,
September 2015. ISBN 978–0-465–04085-8.

[66]. Strogatz Steven H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Westview press, 2014.

[67]. La Cava William, Danai Kourosh, and Spector Lee. Inference of compact nonlinear dynamic
models by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–
306, October 2016. ISSN 0952–1976. doi: 10.1016/j.engappai.2016.07.004.

[68]. Vladislavleva EJ, Smits GF, and den Hertog D. Order of Nonlinearity as a Complexity
Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming.
IEEE Transactions on Evolutionary Computation, 13(2):333–349, 2009. ISSN 1089–778X. doi:
10.1109/TEVC.2008.926486.

[69]. Kommenda Michael, Kronberger Gabriel, Affenzeller Michael, Winkler Stephan M., and
Burlacu Bogdan. Evolving Simple Symbolic Regression Models by Multi-objective Genetic
Programming. In Genetic Programming Theory and Practice, volume XIV of Genetic and
Evolutionary Computation. Springer, Ann Arbor, MI, 2015.

[70]. Virgolin Marco, De Lorenzo Andrea, Medvet Eric, and Randone Francesca. Learning a formula
of interpretability to learn interpretable formulas. In International Conference on Parallel
Problem Solving from Nature, pages 79–93. Springer, 2020.

[71]. James Murdoch W, Singh Chandan, Kumbier Karl, Abbasi-Asl Reza, and Yu Bin. Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences, 116 (44):22071–22080, 10 2019–10-29. ISSN 0027–8424, 1091–6490.
doi: 10.1073/pnas.1900654116.

[72]. Chen Tianqi and Guestrin Carlos. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining,
pages 785–794. ACM, 2016.

[73]. Ke Guolin, Meng Qi, Finley Thomas, Wang Taifeng, Chen Wei, Ma Weidong, Ye Qiwei, and
Liu Tie-Yan. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146–3154, 2017.

[74]. Breiman Leo. Random forests. Machine learning, 45(1):5–32, 2001.

La Cava et al. Page 27

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[75]. Schapire Robert E.. The boosting approach to machine learning: An overview. In Nonlinear
Estimation and Classification, pages 149–171. Springer, 2003.

[76]. Schmidt Michael D, Vallabhajosyula Ravishankar R, Jenkins Jerry W, Hood Jonathan E, Soni
Abhishek S, Wikswo John P, and Lipson Hod. Automated refinement and inference of analytical
models for metabolic networks. Physical Biology, 8(5):055011, October 2011. ISSN 1478–3975.
doi: 10.1088/1478-3975/8/5/055011.

[77]. Schmidt Michael and Lipson Hod. Comparison of Tree and Graph Encodings As Function of
Problem Complexity. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, GECCO ‘07, pages 1674–1679, New York, NY, USA, 2007. ACM. ISBN 978–
1-59593–697-4. doi:10.1145/1276958.1277288.

[78]. Dick Grant, Owen Caitlin A., and Whigham Peter A.. Feature standardisation and
coefficient optimisation for effective symbolic regression. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference, GECCO ‘20, pages 306–314, Cancún,
Mexico, June 2020. Association for Computing Machinery. ISBN 978–1-4503–7128-5. doi:
10.1145/3377930.3390237.

[79]. Kearns Michael, Neel Seth, Roth Aaron, and Wu Zhiwei Steven. Preventing Fairness
Gerrymandering: Auditing and Learning for Subgroup Fairness. arXiv:1711.05144 [cs],
December 2018.

[80]. La Cava William and Moore Jason H.. Genetic programming approaches to learning fair
classifiers. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference,
GECCO ‘20, 2020. doi: 10.1145/3377930.3390157.

[81]. Friedman Jerome H. Greedy function approximation: A gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[82]. Demšar Janez. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine
Learning Research, 7(Jan):1–30, 2006. ISSN ISSN 1533–7928.

La Cava et al. Page 28

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Results on the black-box regression problems. Points indicate the mean of the median test

set performance on all problems, and bars show the 95% confidence interval. “*”: SR

methods.

La Cava et al. Page 29

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:

Pareto plot comparing the rankings of all methods in terms of model size and R2 score on

the black-box problems. Points denote median rankings and the bars denote 95% confidence

intervals. Connecting lines and color denote Pareto dominance rankings. “*”: SR methods.

La Cava et al. Page 30

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Solution rates for the ground-truth regression problems. Color/shape indicates level of noise

added to the target variable.

La Cava et al. Page 31

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava et al. Page 32

Table 1:

Short descriptions of the SR methods benchmarked in our experiment, including references and links to

implementations.

Method Year Description Method Family Implementation

AFP [38] 2011 Age-fitness Pareto Optimization GP C++/Python (link)

AFP_FE [24] 2011 AFP with co-evolved fitness estimates; Eureqa-esque GP C++/Python (link)

AIFeynman [23] 2020 Physics-inspired method Divide and conquer Fortran/Python (link)

BSR [16] 2020 Bayesian Symbolic Regression Markov Chain Monte Carlo Python (link)

DSR [17] 2020 Deep Symbolic Regression Recurrent neural networks Python (PyTorch) (link)

EPLEX [39] 2016 ϵ-lexicase selection GP C++/Python (link)

FEAT [40] 2019 Feature Engineering Automation Tool GP C++/Python (link)

FFX [41] 2011 Fast function extraction Random search C++/Python (link)

GP-GOMEA [42] 2020 GP version of the Gene-pool Optimal
Mixing Evolutionary Algorithm GP C++/Python (link)

gplearn 2015 Koza-style symbolic regression in Python GP C++/Python (link)

ITEA [43] 2020 Interaction-Transformation EA GP Haskell/Python (link)

MRGP [44] 2014 Multiple Regression Genetic Programming GP Java (link)

Operon [45] 2019 SR with Non-linear least squares GP C++/Python (link)

SBP-GP [46] 2019 Semantic Back-propagation Genetic Programming GP C++/Python (link)

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn
https://github.com/cavalab/ellyn

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava et al. Page 33

Table 2:

Settings used in the benchmark experiments. “Total comparisons” refers to the total evaluatons of an algorithm

on a dataset for a given noise level and random seed.

Setting Black-box Problems Ground-truth Problems

No. of datasets 122 130

No. of algorithms 21 (14 SR, 7 ML) 14

No. of trials per dataset 10 10

Train/test split .75/.25 .75/.25

Hyperparameter tuning 5-fold Halving Grid Search CV Tuned set from black-box problems

Termination criteria 500k evaluations/train or 48 hours 1M evaluations or 8 hours

Levels of target noise None 0, 0.001, 0.01, 0.1

Total comparisons 26840 54600

Computing budget 1.29M core hours 436.8K core hours

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 07.

	Abstract
	Introduction
	Background and Motivation
	SRBench
	Experiment Design
	Symbolic Regression Methods
	Datasets
	Metrics
	Accuracy
	Complexity
	Solution Criteria

	Definition 4.1 (Symbolic Solution).

	Results
	Discussion and Conclusions
	Appendix
	Figure 4:
	Figure 5:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:

