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Abstract

Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses 

against dead cell-associated antigens, provided that (1) said antigens are not perfectly 

covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of 

immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively 

engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells 

is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can 

only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells 

enable immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing 

(ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and 

adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited 

by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells 

succumbing to clinically available radiation strategies.
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Introduction

Dying cells can initiate antigen-specific immune responses, admitting that cell death occurs 

in immunocompetent syngeneic hosts, a process that has been dubbed “immunogenic cell 

death” (ICD).1–3 The ability of regulated cell death (RCD) to elicit adaptive immunity 
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coupled with effector functions and immunological memory relies upon three critical 

determinants: (1) antigenicity, i.e., the fact that dying (cancer) cells express antigens that 

are not perfectly covered by central tolerance, implying that T cell clones specific for 

such antigens are available in the mature T cell repertoire of the host;4 (2) adjuvanticity, 

i.e., the ability of stressed and dying cells to secrete chemokines and cytokines as well 

as immunostimulatory damage-associated molecular patterns (DAMPs) that overall recruit 

and activate professional antigen-presenting cells (APCs) such as dendritic cells (DCs) to 

sites of cell death;5,6 and (3) microenvironmental features that not only are permissive for 

the recruitment and activation of APCs or precursors thereof by ICD-associated cytokines 

and DAMPs (at sites of cell death), but also enable antigen-specific immune effector cells, 

notably CD8+ cytotoxic T lymphocytes (CTLs) primed by said APCs to reach their targets 

and execute antigen-specific immune responses (Figure 1).7–10 Importantly, none of these 

requirements is truly intrinsic to dying cells.1,11 Indeed, not only the composition of the 

mature T cell repertoire, but also the productive recognition of cytokines and DAMPs 

as well as the microenvironment of the initiators (dying cells) or target (living cells 

resisting death) of adaptive immunity is largely dictated by the host.1,11,12 Moreover, the 

immunogenicity of dying cells is not necessarily dictated by RCD modality.13 Indeed, 

while caspase-dependent apoptosis generally occurs in an immunologically silent or even 

tolerogenic manner,14–17 multiple instances of apoptosis have been shown to constitute bona 
fide cases of ICD.18

DAMP emission by dying cells is generally elicited in the context of failing adaptation 

to stress.3 Thus, cells initially respond to ICD-inducing conditions by activating a 

panoply of cytoprotective mechanisms aimed at restoring cellular homeostasis, including 

(but not limited to): (1) the unfolded protein response (UPR) in the context of the so-

called “integrated stress response” (ISR),19–22 (2) the DNA damage response,23–25 (3) 

autophagy,26–28 and (4) the mitochondrial stress response.29–31 Once exposed on the surface 

of dying cells or released in their extracellular microenvironment, DAMPs are detected by 

pattern recognition receptors (PRRs) expressed by immune effector cells including APCs 

and precursors thereof, other myeloid cells and both innate and adaptive lymphoid cell 

populations.5,32–34

A number of conditions have been shown to elicit bona fide ICD especially (but not 

exclusively) in cancer cells. These include: (1) numerous intracellular pathogens, notably 

oncolytic viruses,35,36 (2) a wide panel of conventional chemotherapeutics,37–39 (3) targeted 

anticancer agents,40–45 (4) oncolytic peptides,46–49 as well as (5) numerous physical 

stressors encompassing (but not limited to) high hydrostatic pressure,50,51 extracorporeal 

photochemotherapy,52–54 photodynamic therapy,55–57 nanopulse stimulation,58 near‐infrared 

photoimmunotherapy,59–62 as well as various forms of ionizing and non-ionizing 

radiation.63–65

Among these physical agents, radiation therapy (RT) has been consistently investigated for 

its potential to elicit ICD in cancer cells and hence synergize with commonly employed 

immunotherapeutics such as immune checkpoint inhibitors (ICIs).66–69 This reflects clinical 

considerations linked to RT safety12,70 and availability,71 as well as the ability of RT 

to elicit ICD and other immunostimulatory effects, at least when delivered focally and 
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according to specific dose and fractionation schedules.69,72,73 In line with this notion, mouse 

cancer cells exposed to multiple forms of RT (including RT with charged particles) ex 
vivo can be successfully employed to establish prophylactic immunity upon inoculation into 

immunocompetent syngeneic hosts.63,74,75 Moreover, RT has been shown to synergize with 

various forms of immunotherapy including immune checkpoint inhibitors (ICIs) in a variety 

of preclinical tumor models, resulting not only in the inhibition of irradiated lesions, but 

also in (at least some degree) of immunological control of distant, non-irradiated tumors (the 

so-called abscopal response).76

Here, we review molecular determinants of ICD as driven by RT and other radiation 

strategies as we critically discuss potential approaches to boost the immunogenicity of 

irradiated cancer cells.

CALR

Calreticulin (CALR) is an endoplasmic reticulum (ER) chaperone involved in many 

biological processes that include (among others) the regulation of calcium homeostasis, 

the folding of newly synthesized glycoproteins and the trafficking of properly loaded MHC 

I molecules.77,78 Anthracyclines as well as many other chemical and physical ICD inducers 

elicit the rapid translocation of CALR to the outer leaflet of the plasma membrane, a 

process that occurs prior to the apoptosis-related (and generally tolerogenic) externalization 

of phosphatidylserine.19,38 Surface-exposed CALR operates as a potent pro-phagocytic 

signal upon binding to LDL receptor related protein 1 (LRP1, best known as CD91) 

on the surface of immature APCs.79–81 Moreover, externalized CALR has been shown 

to promote natural killer (NK) cell activation both directly, through natural cytotoxicity 

triggering receptor 1 (NCR1, best known as NKp46),82 and indirectly, via a mechanism 

that involves CD11c+CD14high myeloid cells trans-presenting interleukin 15 (IL15).83–86 

Supporting the key role of CALR exposure in the immunogenicity of RCD, various genetic 

and pharmacological strategies blocking CALR exposure and/or preventing its interaction 

with CD91 have been shown to limit the ability of cancer cells succumbing to ICD inducers 

to generate prophylactic immunity upon inoculation in immunocompetent syngeneic hosts.3

CALR exposures as elicited by ionizing irradiation in vitro has been documented in mouse 

mammary adenocarcinoma TS/A cells (RT dose: 2–20 Gy),64 mouse colorectal carcinoma 

(CRC) CT26 cells (RT dose: 75 Gy),63 mouse melanoma B16 and S91 cells (RT dose: 

5Gy),75 human osteosarcoma U2OS cells (RT dose: 5 Gy),75 human prostate cancer LNCaP 

cells (RT dose: 10 Gy),87 human triple negative breast cancer (TNBC) MD-MBA-231 cells 

(RT dose: 10 Gy),87 and human lung adenocarcinoma H522 cells (RT dose: 10 Gy).87 

Importantly, the ability of irradiated CT26 cells to protect immunocompetent BALB/c 

(syngeneic) mice from the subsequent inoculation of living cells of the same type could 

be abrogated by the RNA interference (RNAi)-mediated knockdown of CALR, an effect that 

could be rescued with recombinant CALR absorption.63

Intriguingly, CALR exposure on the surface of irradiated LNCaP and MD-MBA-231 was 

accompanied not only by eIF2α phosphorylation as a marker of an ongoing ISR, but also 

by the upregulation of multiple components of the antigen-presenting machinery including 
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CALR itself as well as low molecular mass protein 2 (LMP2), LMP7 and transporter 2, ATP 

binding cassette subfamily B member (TAP2), ultimately rendering cancer cells surviving 

irradiation more susceptible to lysis by CTLs.87,88 While technically more challenging, the 

ability of RT to drive CALR exposure has also been documented in vivo, both in LNCaP 

tumors established in immunodeficient mice upon the delivery of a single RT dose of 10 

Gy,87 and in patients with metastatic renal cell carcinoma (RCC) receiving stereotactic body 

radiotherapy (SBRT) in a single fraction of 15 Gy.89

Intriguingly, CALR may also modulate the intrinsic radiosensitivity of cancer cells. Indeed, 

the transgene-enforced overexpression of CALR has been shown to sensitize radioresistant 

human glioblastoma U251MG and T98G to ionizing radiation, at least partially via a 

mechanism that involves reduced pro-survival signaling via AKT serine/threonine kinase 

1 (AKT1) coupled with disruption of intracellular Ca2+ homeostasis.90–94

Taken together, these observations suggest that irradiated cancer cells may experience 

perturbations of reticular homeostasis coupled with the activation of an adaptive response 

culminating with the upregulation of CALR and its exposure to the cell surface in support 

of increased adjuvanticity. Moreover, CALR appears to promote intrinsic radiosensitivity, at 

least in some experimental settings.

ATP

While ATP exists intracellularly at concentrations of 1–10 μM, extracellular ATP levels 

in healthy tissues are extremely low, at least in part owing to the existence of 

plasma membrane-associated enzymes that catalyze the sequential conversion of ATP 

into the immunosuppressive molecule adenosine, including ectonucleoside triphosphate 

diphosphohydrolase 1 (ENTPD1, best known as CD39) and 5’-nucleotidase ecto (NT5E, 

best known as CD73).95–97 At odds with adenosine, extracellular ATP mediates potent 

chemotactic and immunostimulatory effects (which culminate with NLRP3 inflammasome 

activation and consequent IL1B and IL18 secretion) upon binding to purinergic receptor 

P2Y2 (P2RY2)98–100 and purinergic receptor P2X 7 (P2RX7),101 respectively, on the 

surface of APCs or their precursors. Importantly, the ICD-associated release of ATP in 

the extracellular microenvironment appears to require proficient pre-mortem autophagic 

responses, as these enable dying cells to preserve ATP stores which ultimately are 

released via a dual mechanism involving lysosomal exocytosis and pannexin 1 (PANX1) 

channels.26,102–104

In line with the ability of autophagy-dependent ATP release to support danger signaling 

in the context of ICD, CT26 cells overexpressing CD39 or depleted of key components of 

the molecular machinery for autophagy including autophagy related 5 (ATG5), ATG7, and 

beclin 1 (BECN1) fails to provide immunological protection to BALB/c mice when used as 

a prophylactic vaccine upon exposure to ICD-inducing chemotherapeutics.26,105 Similarly, 

ATG5-deficient CT26 tumors growing in immunocompetent BALB/c mice partially lose 

their ability to respond to ICD-inducing chemotherapeutics such as mitoxantrone,26 as well 

as to RT (delivered as a single dose of 8 Gy),106 two therapeutic approaches that been 

shown to trigger ATP release from various human and murine cancer cell lines in vitro 
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and/or in vivo.26,64,87 Importantly, such a defect could be rescued by the concomitant 

administration of a CD39 inhibitor, suggesting it indeed reflected limited ATP release 

downstream of defective autophagy.106,107 Further corroborating the importance of this 

pathway for ICD as driven by RT, systemic autophagy activation by alternate-day feeding 

or caloric restriction,108–112 has been shown to considerably improve the ability of a single 

RT dose of 6–8 Gy to limit local disease progression and metastatic dissemination of 

mouse TNBC 4T1 and 67NR lesions established in immunocompetent BALB/c mice.113,114 

Altogether, these findings suggest that autophagy activation may support ICD induction by 

RT.

However, it is important to note that autophagy mediates considerable cytoprotective effects 

on malignant cells, hence rendering them less sensitive to the cytostatic and cytotoxic 

activity of RT, as demonstrated in a multitude of in vitro experimental tumor models as 

well as in vivo, in immunodeficient mice bearing human or mouse malignant lesions.115 

Moreover, proficient autophagic responses have been shown to: (1) limited oxidative stress 

and hence impair ICD-associated CALR exposure as driven by photodynamic therapy,116,117 

(2) promote the lysosomal degradation of MHC Class I molecules by cancer cells, hence 

rendering them poorly visible by the adaptive immune system,118 and (3) inhibit type 

I interferon (IFN) by malignant cells undergoing ICD in response to RT (see below).74 

In line with this notion, genetic signatures of proficient autophagy in diagnostic biopsies 

correlate with inhibited type I IFN and interferon gamma (IFNG) signaling as well as with 

poor disease outcomes in patients with breast cancer.74,119 That said, the vast majority 

of clinical trials testing lysosomal inhibitors such as chloroquine and hydroxychloroquine 

(which potently inhibit autophagy) along with standard-of-care (SOC) chemotherapy or 

RT failed to document a clinical benefit for combinatorial regimens over SOC only.115,120 

While the reasons underlying these largely negative clinical observations remain to be fully 

elucidated, it is tempting to speculate that systemic autophagy inhibition may not represent 

an optimal therapeutic strategy in view of the fact that autophagy is required for the optimal 

function of many immune cell types, including (but not limited to) DCs, NK cells and 

CTLs.121

In summary, autophagy appears to influence the immunogenicity of cancer cells succumbing 

to RT (and other ICD inducers) in a context-dependent manner. The precise reasons 

underlying such apparently discrepant observations may relate to features of the tumor 

microenvironment (TME) potentially including baseline infiltration by specific immune cells 

and/or the expression levels of ATP receptors, extracellular ATP-degrading enzymes and 

other components of the type I IFN signaling machinery. Additional work is required to 

deconvolute the contribution of ATP secretion (which is generally promoted by autophagy) 

vs MHC Class I presentation and type I IFN signaling (which are inhibited by autophagy) in 

the immunogenicity of RT in specific oncological settings.

HMGB1

High mobility group box 1 (HMGB1) is a non-histone chromatin-binding protein that 

translocates first from the nucleus to the cytoplasm and then from the cytoplasm to 

the extracellular microenvironment in the context of multiple RCD instances, including 
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ICD.122 Depending on oxidation status, extracellular HMGB1 can exert mostly chemotactic 

effects (fully reduced form), upon forming a complex with C-X-C motif chemokine 

ligand 12 (CXCL12) and binding to C-X-C motif chemokine receptor 4 (CXCR4), 

mostly immunostimulatory effects (partially oxidized form), upon binding to advanced 

glycosylation end-product specific receptor (AGER) or Toll-like receptor 4 (TLR4), or 

be virtually inactive or even tolerogenic (fully oxidized form).123–126 That said, the TLR4-

dependent activation of MYD88 innate immune signal transduction adaptor (MYD88) 

appears to represent the most relevant signaling pathways elicited by HMGB1, ultimately 

resulting in DC maturation and increased antigen processing and cross-presentation 

to CTLs.125,127 Indeed, while HMGB1-driven AGER signaling has been implicated 

in DC activation,128 the perception of anthracycline-driven RCD as immunogenic is 

largely compromised in Tlr4−/− hosts.125 Moreover, pharmacological TLR4 activation with 

dendrophilin restores at least some degree of immune control against mouse CRCs and 

fibrosarcomas expressing low HMGB1 levels.129,130

Akin to CALR exposure and ATP secretion, HMGB1 release has been documented to occur 

in a dose-dependent when TS/A cells are exposed to ionizing radiation in vitro.64 Similar 

results have been obtained in human breast and prostate cancer cell lines exposed to a 

single RT dose of 10 Gy in vitro,87 as well as in a panel of mouse and human cancer cell 

lines subjected to carbon ion RT in a single dose of 5 Gy.75 Suggesting a relevance for 

this mechanism in the therapeutic activity of RT, CT26 CRCs as well as mammary TS/A 

lesions established subcutaneously in immunocompetent BALB/c mice have been shown to 

exhibit reduced sensitivity to a single RT dose of 10 Gy when developing in Tlr4−/− vs 

wild-type hosts.125 However, blocking extracellular HGMB1 with a neutralizing antibody 

failed to influence the control of mouse CRC MC38 lesions subcutaneously developing in 

immunocompetent syngeneic C57BL/6 mice as enabled by a single RT dose of 20 Gy.131 

Similar results were obtained upon the establishment of MC38 tumors in Myd88−/− mice as 

well as in mice lacking the alternative TLR signal transducer TIR domain containing adaptor 

molecule 1 (TICAM1, best known as TRIF).131 Whether such an apparent discrepancy 

relates to tumor type, RT dose or other variables remains to be clarified.

Lending additional support to the clinical relevance of these findings, patients with breast 

cancer carrying a loss-of-function TLR4 allele experience inferior disease outcome on 

ICD-inducing chemotherapy or RT than individual carrying wild-type TLR4.125 Along 

similar lines, circulating HGMB1 levels have been linked with improved disease outcome 

and/or signs of ongoing anticancer immune responses in patients with breast cancer, rectal 

cancer, head and neck squamous cell carcinoma (HNSCC) and esophageal squamous cell 

carcinoma (ESCC) receiving RT alone and/or combined with chemotherapy.132–136 That 

said, circulating and/or intratumoral levels of HMGB1 have also been associated with 

poor disease outcome upon irradiation in a variety of clinical cohorts, including patients 

with bladder carcinoma,137 nasopharyngeal cancer,138 CRC,139 hepatocellular carcinoma,140 

HNSCC,141 prostate carcinoma,142 and ESCC.143 In this latter setting, it was found that 

the RNAi-mediated depletion of HMGB1 increases the radiosensitivity of human ESCC 

cell lines, both in vitro and in vivo (upon establishment in immunodeficient hosts).143 At 

least partially, this may reflect the ability of HMGB1 to elicit radioprotective autophagic 

responses143,144
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In conclusion, RT has been consistently shown to drive the relocation of HMGB1 from the 

nucleus to the cytoplasm and ultimately the extracellular space of cancer cells, a process 

that is required for RCD to be perceived as immunogenic but may also elicit cytoprotective 

autophagic responses that limit cell-intrinsic radiosensitivity.

Type I IFN

In human, type I IFN is encoded by a large family of homologous genes encompassing 13 

genes coding for IFNα (IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, 

IFNA13, IFNA14, IFNA16, IFNA17 and IFNA21), as well as individual genes coding 

for IFNβ (IFNB1), IFNɛ (IFNE), IFNк (IFNK) and IFNω (IFNW1).145 Besides playing 

a central role in antiviral immune immunity,146 type I IFN secretion is crucial for cancer 

cells succumbing to chemotherapy or RT to be perceived as immunogenic.147 In the former 

setting, type I IFN is initiated downstream of double-stranded RNA (dsRNA) sensing by 

TLR3, resulting in the abundant secretion of the T cell chemoattractant CXCL10 by cancer 

cells.148 In the latter setting instead, type I IFN responses appear to be largely mediated 

by cyclic GMP-AMP synthase (CGAS) and stimulator of interferon response cGAMP 

interactor 1 (STING1), upon recognition of micronuclear149–151 or mitochondrial DNA 

(mtDNA),74 both via cancer cell intrinsic mechanisms,74,149,150 or upon the uptake of dying 

cells or extracellular vesicles therefrom by cross-presenting basic leucine zipper ATF-like 

transcription factor 3 (BATF3)-dependent DCs.131,152–154

Regardless of source, type I IFN mediates potent immunostimulatory effects upon binding to 

ubiquitously expressed, generally heterodimeric receptors composed of interferon alpha and 

beta receptor subunit 1 (IFNAR1) and IFNAR2.155 In particular, type I IFN promotes DC 

cross-priming,156 boosts the cytotoxic functions of NK cells157–159 promotes the functional 

competence of naïve T cells,160 triggers the secretion of pro-inflammatory mediators by 

macrophages161,162 and inhibits the immunosuppressive functions of CD4+CD25+FOXP3+ 

regulatory T (TREG) cells.163,164

Supporting the clinical relevance of ICD-associated type I IFN signaling, a type I IFN-

related transcriptional signature has been shown to predict disease outcome in breast cancer 

patients treated with neoadjuvant anthracycline-based chemotherapy.148 Similarly, single 

nucleotide polymorphisms (SNPs) in IFNAR1 have been associated with poor clinical 

outcome in patients with glioma receiving SOC temozolomide-based chemoradiation.165 

That said, transcriptional signature of type I signaling signatures have also been correlated 

with resistance to chemotherapy and RT in patients with breast carcinoma166–168 and 

melanoma,169 potentially reflecting the ability of weak, indolent and non-resolving type 

I IFN responses, as opposed to their robust, acute and resolving counterparts,170,171 to 

promote cancer stemness and suppress anticancer immunity.155,172,173

Importantly, type I IFN secretion as elicited by RT is under negative control by a number 

of inducible mechanisms. Specifically, the RT-driven cytosolic accumulation of double-

stranded DNA (dsDNA) is actively counteracted by autophagy, which actively disposes of 

permeabilized and hence mtDNA-spilling mitochondria,74 as well as by the dose-dependent 

upregulation of three prime repair exonuclease 1 (TREX1), which degrades dsDNA.174 
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Moreover, the rapid execution of apoptosis by caspase 9 (CASP9) and CASP3 also prevent 

mtDNA-driven type I IFN secretion in cancer cells by converting dying cells, which retain 

metabolic functions, into terminally inactive cell corpses.166,175 In line with this notion, 

various signatures of apoptotic proficiency have been correlated with poor disease outcome 

in patients with breast cancer.166 In the same setting, though, proficient type I IFN signaling 

was also linked to detrimental disease outcome,166 pointing to a type I IFN-independent 

impact of apoptotic defects on the survival of patients with breast cancer.

Taken together, these observations suggest that type I IFN production by irradiated 

malignant cells and/or tumor-infiltrating immune cells is crucial for the initiation of 

innate and adaptive anticancer immunity through RT-driven ICD. However, RT also elicits 

immunosuppressive pathways that need to be targeted to maximize its immunogenicity, as 

discussed below.

Strategies to boost RT-driven ICD

As amply discussed above, the immunogenicity of RT-driven cell death relies on 

antigenicity, adjuvanticity and microenvironmental features, all of which are dictated by 

dying cells as well as by their host.13 This implies that defects in any of these features 

at least a priori limit the ability of RT to elicit adaptive anticancer immunity via ICD. 

That said, cancer cells tend to express per se a number of neoantigens not covered 

by central tolerance, be them genetically encoded or emerging post-transcriptionally/post-

translationally.176,177 Moreover, RT is known to boost MHC Class I exposure on cancer 

cells,178,179 promote the expression of genes encoding neoantigenic determinants,180 

and aggravate stress conditions generally linked to the generation of posttranslational 

neoantigens, such as oxidative stress.181,182 Thus, the immunogenicity of RT-driven ICD 

is generally limited at the levels of cancer cell adjuvanticity and microenvironment. 

Accumulating preclinical evidence has defined a number of translationally relevant 

strategies to circumvent such defects and hence enable superior immune responses to RT 

(Figure 2).

For example, defective phagocytosis of irradiated cells has been efficiently targeted with 

monoclonal antibodies specific for CD47, which potently suppresses pro-phagocytic signals 

delivered by CD91.183–185 More specifically, CD47-targeting antibodies have been shown 

to synergize with RT at the induction of systemic anticancer immunity in mouse models of 

CRC (RT dose: 5 Gy × 3), an effect that could be potentiated by programmed cell death 1 

(PDCD1, best known as PD-1) inhibitors,186,187 glioblastoma, along with an inhibitor of the 

PD-L1 ligand CD274 (best known as PD-L1),188,189 and small cell lung cancer.190

Poor extracellular ATP accumulation can be efficiently targeted with CD73-specific 

monoclonal antibodies, which have been shown to improve both the local and the abscopal 

efficacy of RT in immunocompetent mouse models of rectal cancer (RT dose: 4Gy × 3)191 

and mammary adenocarcinoma (RT dose: 8Gy × 3),192 as well as with a CD39 inhibitor, 

which has been shown to improve the efficacy of RT in immunocompetent mouse models of 

CRC (RT dose: 8Gy x1).106 Along similar lines, superior ATP (and HMGB1) release after 

irradiation has been documented in human lung cancer and osteosarcoma cell lines exposed 
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in vitro to a single RT dose of 5 Gy in the presence of ATR serine/threonine kinase (ATR) 

inhibitors, an effect that (for ATP only) was maximized by caspase inhibition.193 Moreover, 

short-course (but not prolonged) ATR inhibition has been shown to improve tumor-targeting 

immunity as elicited by 2 RT fractions of 2 Gy each in mouse immunocompetent models of 

CRC.194

Limited type I IFN signaling in response to RT has been efficiently restored with TLR3 

agonists administered i.t. in wild-type C57BL/6 or BALB/c mice baring subcutaneous 

MC38, B16 or TS/A lesions (RT dose: 8Gy × 3),195 as well as with TLR9 agonists delivered 

i.t. in preclinical models of colorectal and lung cancer (RT dose: 12Gy × 3). Importantly, a 

similar therapeutic strategy has been assessed in patients with lymphoma who were allocated 

to a single RT fraction of 4 Gy in combination with an intratumorally administered TLR9 

agonists, an approach that was safe, elicited systemic signs of anticancer immunity and was 

associated with at least some efficacy.196–198

While not immediately translatable to clinical settings (see above), both autophagy inhibitors 

and post-mitochondrial caspase blockers have also been shown to increase the ability of 

cancer cells to elicit systemic anticancer immunity upon irradiation (RT dose: 8Gy × 3) in 

immunocompetent mouse models of breast carcinoma.74,166,175 Along similar lines, TREX1 

inhibition holds promise as a combinatorial partner for RT-driven RCD to exert maximal 

immunostimulatory effects,174 but to the best of our knowledge no pharmacological TREX1 

inhibitors are currently available to formally address this possibility.

Importantly, a number of preclinical approaches have been successfully tested for their 

ability to restore microenvironmental conditions permissive for the perception of RT-driven 

RCD as immunogenic as well as for the execution of the consequence adaptive immune 

responses. These approaches include (but are not limited to): (1) monoclonal antibodies 

targeting transforming growth factor beta (TGF-β), as shown in mouse models of TNBC (RT 

dose: 6Gy × 5 or 8 Gy × 3),199–201 an effect that could be further potentiated with PD-1 

blockers plus tumor necrosis factor receptor superfamily, member 9 (TNFRSF9, best known 

as CD137) agonists;202,203 (2) TNFRSF4 (best known as OX40) agonists, as demonstrated 

in BALB/c mice bearing syngeneic 4T1 cells (RT dose: 8Gy × 3), which could also be 

boosted by PD-1 blockade;204,205 as well as (3) conventional, FDA-approved ICIs targeting 

cytotoxic T lymphocyte-associated protein 4 (CTLA4) and PD-1 signaling, as demonstrated 

in a wide panel of immunocompetent tumor models.68,206–210 Importantly, while multiple 

randomized clinical trials combining RT with FDA-approved ICIs have been completed (and 

many others are ongoing), results have been disappointing in some instances, calling for the 

careful reconsideration of conventional RT approaches in support of improved cooperativity 

with ICIs.69,211

Despite these and other obstacles against the rapid implementation of preclinical findings 

into the clinical practice, multiple strategies that can be harnessed for restoring or 

reinforcing RT-driven ICD exist, including a large number of approaches with direct 

translational relevance.
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Concluding remarks

In summary, RT is a potent inducer of ICD, an immunostimulatory cell death modality 

with clinical implications extending largely beyond radiation oncology.212 However, RT 

(especially when delivered according to standard fractional schedules and to conventional 

target volumes) can also elicit a number of immunosuppressive mechanisms that ultimately 

counteract ICD-driven immunostimulation.67,213,214 In line with this notion, while some 

randomized clinical trials testing RT in combination with FDA-approved ICIs documented 

a good cooperativity in the absence of unexpected side effects,215–218 many other 

randomized clinical studies failed to highlight superior therapeutic effects for RT/ICI 

combinations as compared to SOC RT-based therapeutic regimens.219–222 In this setting, 

it will be crucial not only to adapt conventional RT approaches to limit local and systemic 

immunosuppression, but also identify novel, therapeutically relevant targets to extend the 

intrinsic immunostimulatory effects of RT. Additional work is therefore required to fully 

harness the ability of RT to elicit ICD for the development of novel, safe and efficient 

therapeutic strategies against cancer.
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Figure 1. Core determinants of ICD.
The immunogenicity of regulated cell death (RCD), i.e., the ability of dying cells to elicit 

antigen-specific immunity coupled with effector and memory functions (as opposed to 

mere inflammation), relies on three core determinants: (1) antigenicity, i.e., dying cells 

must express antigenic determinants that can be recognized by circulating T cells; (2) 

adjuvanticity, i.e., dying cells must emit chemotactic and immunostimulatory signals that 

enable antigen-presenting cell (APC) recruitment, activation and migration to lymphoid 

organs for T cell cross-priming; and (3) a permissive microenvironment, i.e., cells must die 

in an environment that enables APC recruitment and functions. Moreover, cells targeted by 

immunogenic cell death (ICD)-driven immunity must reside in a microenvironment that is 

permissive for cytotoxic T lymphocyte (CTL) infiltration and effector functions. CALR, 

calreticulin; CXCL10, C-X-C motif chemokine ligand 10; DAMP, damage-associated 

molecular pattern; HMGB1, high mobility group box 1; IFN, interferon.
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Figure 2. Strategies to enhance immunogenic cell death induced by RT.
Depending on multiple variables, radiation therapy (RT) may kill cancer cells in the context 

of suboptimal immunostimulation, resulting in a variant of regulated cell death (RCD) 

with limited immunogenicity. A number of strategies have been investigated to circumvent 

these defects and restore superior immunogenic cell death (ICD)-driven adaptive immune 

responses against non-irradiated or radioresistant cancer cells. APC, antigen-presenting 

cell; ATR, ATR serine/threonine kinase; CD39 (official name: ENTPD1), ectonucleoside 

triphosphate diphosphohydrolase 1; CASP3, caspase 3; CD73 (official name: NT5E), 

5’-nucleotidase ecto; CD137 (official name: TNFRSF9), tumor necrosis factor receptor 

superfamily, member 9; CTL, cytotoxic T lymphocyte; CTLA4, cytotoxic T lymphocyte-

associated protein 4; mAb, monoclonal antibody; OX40 (official name: TNFRSF4), tumor 

necrosis factor receptor superfamily, member 4; PD-1 (official name: PDCD1), programmed 

cell death 1, PD-L1 (official name: CD274); TGF-β, transforming growth factor beta; TLR, 

Toll-like receptor; TREX1, three prime repair exonuclease 1.
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