Skip to main content
. 2023 Aug 4;27(2):83–90. doi: 10.1016/j.cjtee.2023.08.001

Table 2.

Logistic regression to identify predictors of heatstroke in patients with heat illness.

Variables Univariate analysis
Multivariate analysis
OR (95% CI) p value OR (95% CI) p value
Core temperature (°C) 2.086 (1.686 – 2.581) < 0.001 1.681 (1.291 – 2.189) < 0.001
PT (sec) 1.518 (1.301 – 1.773) < 0.001 1.427 (1.175 – 1.733) < 0.001
D-dimer (μg/mL) 1.425 (1.196 – 1.697) < 0.001 1.242 (1.049 – 1.471) 0.012
AST (U/L) 1.005 (1.002 − 1.008) 0.001 1.004 (1.001 – 1.007) 0.005
Heart rate (beats/min) 1.042 (1.027 – 1.057) < 0.001
WBC (1 × 109/L) 1.081 (1.025 − 1.140) 0.004
Platelet count (1 × 109/L) 0.994 (0.990 – 0.998) 0.002
ALT (U/L) 1.002 (1.001 − 1.005) 0.002
Total bilirubin (μmol/L) 1.022 (1.002 − 1.043) 0.030
Creatinine (mmol/L) 1.013 (1.007 − 1.019) < 0.001
Creatine kinase (U/L) 1.000 (1.000 − 1.000) 0.986
INR 3.733 (1.609 – 8.661) 0.002
APTT (sec) 1.053 (1.020 – 1.087) 0.001
Fibrinogen (g/L) 0.867 (0.671 – 1.119) 0.272

OR: odds ratios; CI: confidence intervals; PT: prothrombin time; AST: aspartate aminotransferase; WBC: white blood cell count; ALT: alanine aminotransferase; INR: international normalized ratio; APTT: activated partial thromboplastin time.