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ABSTRACT Traditional folk treatments for the prevention and management of urinary 
tract infections (UTIs) and other infectious diseases often include plants and plant 
extracts that are rich in phenolic compounds. These have been ascribed a variety of 
activities, including inhibition of bacterial interactions with host cells. Here, we tested 
a panel of four well-studied phenolic compounds—caffeic acid phenethyl ester (CAPE), 
resveratrol, catechin, and epigallocatechin gallate—for the effects on host cell adherence 
and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the 
leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via 
an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often 
protected from antibiotics and host defenses and likely contribute to the development 
of chronic and recurrent infections. In cell culture-based assays, only resveratrol had 
a notable negative effect on UPEC adherence to bladder cells. However, both CAPE 
and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with 
attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or 
PTK2) and marked increases in the numbers of focal adhesion structures. We further 
show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder 
mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability 
of other invasive pathogens to enter host cells. Together, these results highlight the 
therapeutic potential of molecules like CAPE and resveratrol, which could be used to 
augment antibiotic treatments by restricting pathogen access to protective intracellular 
niches.

IMPORTANCE Urinary tract infections (UTIs) are exceptionally common and increasingly 
difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. 
Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid 
antibiotic exposure and many host defenses by invading the epithelial cells that line the 
bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt 
activation of the host machinery needed for UPEC entry into bladder cells. One of these 
compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a 
mouse UTI model, and both phenolic compounds significantly reduced host cell entry by 
other invasive pathogens. These findings suggest that select phenolic compounds could 
be used to supplement existing antibacterial therapeutics by denying uropathogens 
shelter within host cells and tissues and help explain some of the benefits attributed to 
traditional plant-based medicines.

KEYWORDS UPEC, urinary tract infection, invasion, FAK, phenolic, actin, Salmonella, 
Shigella, UTI, bladder

P lants produce thousands of phenolic compounds, which are defined as secondary 
metabolites comprised of at least one aromatic ring with one or more hydroxyl 
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groups (1, 2). These diverse molecules can serve a variety of functions, which include 
the protection of plants from ultraviolet radiation, oxidative stress, herbivores, and 
microbial pathogens (2–4). The dietary consumption of plant phenolic compounds 
is linked to an array of health benefits ranging from antitumorigenesis to antimicro
bial effects (2, 5–7). Especially interesting are reports that phenolic and polyphenolic 
compounds derived from cranberry (Vaccinium macrocarpon) and other botanical 
sources may help protect against urinary tract infections (UTIs) in some individuals 
(8–12). These infections, which are most often caused by strains of uropathogenic 
Escherichia coli (UPEC), are exceptionally common and prone to recur (13). About 
one-quarter of women will have at least one recurrent UTI (rUTI) within 6 months of 
a primary infection, and many individuals suffer multiple rUTIs per year. The rampant 
dissemination and amplification of antibiotic-resistant UPEC strains and other uropatho
genic bacteria over the past two decades have greatly complicated the treatment of UTIs 
and stimulated widespread interest in alternate, supplemental therapies (14–18).

There have been multiple clinical studies aimed at defining the effects of cran
berry on UTI, but results have been mixed and difficult to compare due to hetero
geneity in the types and quantities of cranberry products used, variations in study 
population characteristics, and disparate means of defining UTI [e.g., (19–22)]. Despite 
these complications, recent systemic reviews and meta-analyses of published studies 
concluded that the consumption of cranberry products could significantly lower the risk 
of UTI in patients with a history of rUTIs (23–25). However, this conclusion is controver
sial. Oftentimes, bacteria that cause a rUTI are similar, or identical, to the bacteria that 
were responsible for the initial UTI (26–28). These and other observations suggest that 
environmental or in-host bacterial reservoirs may repetitively seed symptomatic UTIs 
in some people. Studies in mice and humans indicate the existence of UPEC reservoirs 
both within the gut and within the host cells that comprise the mucosal surfaces of the 
genitourinary tract (26, 28–33).

By using adhesive organelles known as type 1 pili to bind key host receptors, 
UPEC can trigger actin cytoskeletal rearrangements that promote the envelopment and 
internalization of bound bacteria [reviewed in reference (26)]. Within bladder epithe
lial cells, bacteria that are not immediately expelled can either enter the cytosol and 
rapidly proliferate to form large but transitory intracellular bacterial communities, or 
the pathogens can establish small and seemingly quiescent, long-lived reservoirs within 
endosomal compartments. Once in place, intracellular UPEC reservoirs are well protected 
from host defenses and multiple frontline antibiotics and are consequently difficult to 
eradicate (26, 29, 32, 34–39). The inhibition of host cell invasion by UPEC could short 
circuit cycles of rUTI that may be caused, in some individuals, by the repeated resurgence 
of intracellular bacterial reservoirs.

Several phenolic compounds derived from cranberry can inhibit UPEC adherence to 
host cells in vitro, but few have been examined for their effects on host cell invasion 
by uropathogenic bacteria (8, 11, 12, 40–42). A class of polyphenols known as proantho
cyanidins (PACs), which are found in cranberry and many other plants, are well-studied 
inhibitors of UPEC adherence to host cells and can interfere with bacterial invasion of 
intestinal epithelial and HeLa cells (43–49). Within the gut, PACs may inhibit host cell 
invasion by both inducing bacterial aggregation and by disrupting the actin cytoskele
ton (47, 48). PACs may also impact UPEC colonization of the host via effects on bacterial 
stress response pathways, motility, biofilm development, iron metabolism, and toxin 
expression (42, 49–52). However, PACs likely have limited direct effects on either host 
cells or UPEC within the urinary tract, as these compounds are not well absorbed within 
the intestinal tract following consumption and are extensively metabolized by the gut 
microbiota (53–57). Some PAC-derived metabolites are absorbed within the gut and can 
later be detected in urine where in vitro assays suggest that they may protect against UTI 
by multiple mechanisms, including the inhibition bacterial adhesion to host cells (55). 
It is not yet clear if any of these PAC-derived metabolites can also impact bladder cell 
invasion independent of effects on bacterial adherence.
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In this study, we probed the anti-invasion properties of four well-studied plant-
derived phenolics: caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and 
epigallocatechin gallate (EGCG). These phenolics are similar to many compounds found 
in extracts from cranberry and a variety of other medicinal plants and have been linked, 
at least tentatively, with protection against UTI (10, 53, 56, 58–63). Results presented 
here show that select phenolics can inhibit host cell invasion by UPEC, as well as other 
invasive pathogens. This inhibitory effect correlates with suppressed activation of Focal 
Adhesion Kinase (FAK), a key host regulator of F-actin dynamics.

RESULTS

CAPE and resveratrol inhibit host cell invasion by UPEC

The structures of CAPE, resveratrol, catechin, and EGCG, as well as representative sources 
of each of these phenolics, are shown in Fig. 1A. To examine the potential effects of 
these compounds on UPEC-host cell interactions, we utilized standard cell association 
and gentamicin protection invasion assays with the reference UPEC isolate UTI89 and the 
human bladder epithelial cell (BEC) line designated 5637 (64). BECs were treated with 
each compound or carrier alone (dimethyl sulfoxide, DMSO) for 1 h prior to infection and 
maintained in the culture medium throughout the 2-h cell association assays. During the 
course of these assays, the BEC monolayers remained alive and intact based on trypan 
blue exclusion assays. None of the tested phenolic compounds altered the viability 
of UTI89, as determined by dilution plating (Fig. S1), and only resveratrol caused a 
significant reduction in the numbers of cell-associated (intra- and extracellular) bacteria 
(Fig. 1B). In contrast, CAPE, resveratrol, and EGCG treatments significantly decreased the 
ability of UTI89 to invade the BECs relative to controls treated with only DMSO (Fig. 1C).

BEC invasion by UPEC does not require de novo host transcription or transla
tion

Previous studies indicated that CAPE, resveratrol, and ECGC can each inhibit activation of 
the host transcription factor NF-κB, which controls the expression of numerous genes, 
including many associated with inflammation and host responses to infection (65–67). 
With this information, we reasoned that if the inhibitory effects of CAPE, resveratrol, and 
ECGC on UPEC invasion of BECs were attributable to the repression of NF-κB activation, 
then preventing downstream host transcriptional or translational processes should also 
interfere with UPEC entry into BECs. To test this idea, BECs were treated with actinomycin 
D (ActD) or cycloheximide (CHX), which ablate host transcription and translation, 
respectively (68). Neither drug impaired the ability of UTI89 to bind to or invade BECs 
(Fig. 2), indicating that the anti-invasion effects of CAPE, resveratrol, and ECGC are not 
due to the disruption of host transcription or translation downstream of NF-κB or other 
host transcription factors.

CAPE and resveratrol inhibit FAK phosphorylation and increase focal adhe
sion numbers

Binding of the type 1 pilus-associated adhesin FimH to mannosylated glycoprotein 
receptors, including α3 and β1 integrins, activates host signaling cascades that drive the 
actin-dependent envelopment and internalization of bound UPEC (26). To examine the 
phenolic effects on host signaling processes that might affect UPEC entry into BECs, we 
utilized an antibody microarray approach (Kinexus) to quantify changes in the phosphor
ylation of specific host proteins. For this assay, we focused on CAPE, which had the 
greatest inhibitory effect on UPEC invasion (see Fig. 1C). Following a 15-min infection 
with UTI89, phosphorylated residues within several host factors that were previously 
linked with UPEC invasion were notably reduced by >25% in CAPE-treated BECs relative 
to those that were treated with carrier alone (Fig. 3A) (26, 69–72). These factors included 
the FimH receptor β1 integrin, Akt (protein kinase B), vinculin, and FAK (protein tyrosine 
kinase 2), with phosphorylation of tyrosine 576 in FAK being the most diminished. 
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Western blot analyses confirmed that CAPE treatment ablated FAK phosphorylation at 
Y576 [denoted as pFAK(Y576)] within UTI89-infected BECs and showed that resveratrol 
had a similar, though less pronounced, effect (Fig. 3B). ECGC and catechin had more 
subtle, but still discernable, effects on pFAK(Y576).

FAK acts downstream of integrin receptors, working in concert with various signaling 
and scaffolding factors to modulate actin rearrangements and the maturation and 
turnover of focal adhesions (FAs) (73). These dynamic structures mediate actin-depend
ent host cell adherence and spreading processes, and a number of FA-associated factors, 

FIG 1 Phenolic compounds can inhibit host cell invasion by UPEC. (A) Skeletal structures of the phenolic compounds used in this study are depicted, with key 

dietary sources indicated via text and illustrations. (B and C) BECs were pretreated with CAPE (25 µg/mL), resveratrol (22.9 µg/mL), EGCG (25 µg/mL), catechin 

(25 µg/mL), or carrier alone (0.1% DMSO) for 1 h prior to infection with UTI89. Cells were then incubated for 2 h in the continued presence of the compounds, 

followed by a final 2-h incubation in medium containing gentamicin. Graphs indicate relative numbers of (B) cell-associated bacteria present prior to the addition 

of gentamicin and (C) intracellular, gentamicin-protected bacteria calculated as a fraction of the cell-associated bacteria. Data are normalized to DMSO-treated 

controls, with bars denoting mean values from at least three independent experiments performed in triplicate. P values were determined by Student’s t tests.
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including FAK itself, are hijacked by UPEC and other pathogens to gain entry into host 
cells (69, 71, 74). Integrin interactions with extracellular matrix proteins lead to the 
autophosphorylation of FAK at Y397, which in turn stimulates the recruitment and 
activation of SH2-domain-containing proteins such as phosphatidylinositol 3-kinase 
(PI3K) and Src kinase (73). Src then phosphorylates multiple sites within FAK, including 
Y576, which is required for maximal activation of FAK and the proper regulation of FA 
dynamics (73, 75). CAPE, more so than the other phenolic compounds that we tested, 
diminished phosphorylation of FAK(Y397) within UTI89-infected BECs (Fig. 3C), but this 
effect was less robust than what was observed with pFAK(Y576) (Fig. 3B).

In fibroblasts, the deletion of FAK increases the numbers of FA-like structures due to 
diminished turnover of integrin-linked adhesion sites (73, 76). By preventing full 
activation of FAK, we hypothesized that CAPE and resveratrol (and to a lesser extent 
EGCG and catechin) would partially mirror the effects of a FAK deletion and alter FA 
numbers. To test this possibility, uninfected BECs were treated with each phenolic 
compound individually or with carrier (DMSO) alone for 3 h and then processed for 
imaging by fluorescence confocal microscopy. Labeling of vinculin was used to visualize 
and quantify FAs, as previously described (77), and the BECs were counterstained to 
highlight nuclei and F-actin (representative images are shown in Fig. 4A). CAPE and 
resveratrol treatments both significantly increased the numbers of FAs per cell (Fig. 4A 
and B) while EGCG and catechin slightly, but significantly, elevated the average size of 
the FAs (Fig. 4C). Together, these observations indicate that CAPE and resveratrol (more 
so than EGCG and catechin) can interfere with FAK activation and the turnover of FA-like 
complexes.

The anti-invasion effects of CAPE are primarily due to FAK inhibition

Previously, the importance of FAK as a mediator of host cell invasion by UPEC was 
demonstrated using FAK-null (FAK−/−) mouse embryonic fibroblasts (MEFs) and siRNA 
with BECs (69). Building on this work, we treated BECs with a pharmacological inhibitor 
of FAK (FAK inhibitor 14, FAK14), which selectively blocks autophosphorylation of Y397 
(78). We found that the treatment of BECs with FAK14 markedly reduced UTI89 internali
zation but did not significantly alter the levels of host cell-associated bacteria (Fig. 5A 
and B) nor bacterial viability in the culture medium (Fig. S1). These results echo those 
obtained using CAPE-, resveratrol-, and, to a lesser extent, EGCG-treated BECs (Fig. 1B and 
C).

FIG 2 Host cell invasion by UPEC does not require active host transcription or protein synthesis. BECs were treated with ActD (5 µg/mL), CHX (26 µM), or carrier 

(ethanol) alone for 30 min and then infected in the continued presence of the inhibitors with UTI89 for 2 h followed by a 2-h incubation in medium containing 

gentamicin. Graphs show levels of (A) host cell-associated bacteria and (B) intracellular, gentamicin-protected bacteria, with bars indicating mean values. Data 

from three independent experiments performed in triplicate are expressed relative to controls that were treated with carrier (EtOH) alone. P values, as calculated 

by Student’s t tests, were all ≥0.28.

Full-Length Text Infection and Immunity

May 2024  Volume 92  Issue 5 10.1128/iai.00080-24 5

https://doi.org/10.1128/iai.00080-24


Because CAPE and other phenolics can alter the phosphorylation patterns of multiple 
host factors [see Fig. 3A, e.g., (79–87)], we reasoned that the inhibitory effects of CAPE 
and resveratrol on UPEC invasion may not be entirely attributable to FAK inactivation. To 
address this possibility, we employed wild-type (FAK+/+) and FAK-null MEFs in combina
tion with CAPE and resveratrol. As expected, UTI89 entry into the FAK-null MEFs was 
greatly impaired, though the bacteria bound the wild-type and FAK−/− host cells at 
similar levels (Fig. 5C and D). Treatment of the wild-type MEFs with either CAPE or 
resveratrol mirrored the effects seen with BECs (see Fig. 1B and C), suppressing host cell 
invasion by UTI89 while causing no significant changes in the total numbers of host cell-
associated bacteria (Fig. 5E and F). Next, we asked if CAPE or resveratrol could further 
inhibit UTI89 entry into FAK-null MEFs, which are already by and large refractory to host 
cell invasion by this pathogen (see Fig. 5D). Treatment of the FAK-null MEFs with CAPE 

FIG 3 CAPE and resveratrol ablate phosphorylation of FAK at Y576. (A) Graph shows results from a Kinetworks Phospho-Site screen (KPSS 7.0), in which 

phosphorylation levels of each of the indicated residues (in parentheses) were quantified in CAPE- and DMSO-treated BECs after a 15-min infection with UTI89. 

Differences between samples are presented as percentages of the DMSO-treated, UTI89-infected controls: [(CAPE-treated – DMSO-treated)/DMSO-treated * 100]. 

Shaded areas denote relative changes of 25% or less, and the red bar highlights FAK(Y576) as the phospho-site most altered by CAPE treatment in this analysis. 

(B and C) BECs were treated with carrier alone (0.1% DMSO), CAPE (25 µg/mL), EGCG (25 µg/mL), catechin (25 µg/mL), or resveratrol (22.9 µg/mL) for 1 h prior to 

a 15-min infection with UTI89 in the continued presence of each reagent. BEC lysates were then collected, resolved by SDS-PAGE, and probed by western blot 

analysis to assess (B) pFAK(Y576) and (C) pFAK(Y397) levels relative to total FAK in each sample. Mean values from at least three independent assays are denoted 

above the representative blots as a percentage (±SD) of the DMSO-treated controls.
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FIG 4 CAPE and resveratrol increase focal adhesion numbers. (A) Confocal microscopy images of BECs 

that were treated for 3 h with carrier alone (DMSO), CAPE (25 µg/mL), resveratrol (22.9 µg/mL), EGCG 

(25 µg/mL), or catechin (25 µg/mL) and then fixed and stained for vinculin (green), F-actin (red), and 

nuclei (blue). Single-channel and merged images are indicated. The final panel in each row shows the 

cell images after processing to highlight focal adhesions for quantification. Scale bar, 10 µm. At least 

30 cells from three independent experiments were processed to determine focal adhesion (B) numbers 

and (C) areas following the indicated treatments. Bars denote mean values (±SEM in C). P values were 

calculated relative to DMSO-treated controls by Student’s t tests.
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FIG 5 FAK inhibition and deletion mirror the effects of CAPE and resveratrol on host cell invasion by UPEC. (A and B) BECs 

or (C–H) FAK+/+ and FAK−/− MEFs were treated with FAK14 (10 µg/mL), CAPE (25 µg/mL), resveratrol (22.9 µg/mL), carrier 

(DMSO) alone, or left untreated, as indicated, for 1 h prior to and during a 2-h infection with UTI89. Monolayers were 

then washed and processed to determine total numbers of host cell-associated bacteria or incubated for an additional 2-h 

period with gentamicin to eradicate extracellular bacteria. Graphs show relative levels of (A, C, E, and G) host cell-associated 

bacteria and (B, D, F, and H) intracellular, gentamicin-protected bacteria. Data were normalized to DMSO-treated controls or to 

wild-type (FAK+/+) MEFs, as applicable, with bars representing mean values from three independent experiments carried out 

in triplicate. P values were determined by Student’s t tests.
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reduced the numbers of bound and internalized bacteria by an average of 30% and 45%, 
respectively, but these effects were not significant in comparison with DMSO-treated 
controls (Fig. 5G and H). In contrast, resveratrol significantly inhibited UTI89 entry into 
the FAK-null MEFs by about 75% (Fig. 5H) without altering the total numbers of bound 
bacteria (Fig. 5G). Together, these results support the hypothesis that both CAPE and 
resveratrol interfere with host cell invasion via inhibitory effects on FAK. However, it 

FIG 6 CAPE and resveratrol can inhibit host cell entry by other invasive bacteria. BECs were treated with the indicated 

phenolic compounds or DMSO alone for 1 h prior to infection with (A and B) AAEC185/pRI203, (C and D) S. flexneri (E and 

F), or S. Typhimurium. Monolayers were then incubated for 2 h in the continued presence of the compounds, followed by 

a 2-h incubation in the presence of gentamicin. Graphs show mean values of (A, C, and E) cell-associated and (B, D, and 

F) gentamicin-protected, intracellular bacteria from at least three independent experiments performed in triplicate. Data are 

expressed relative to DMSO-treated controls. P values were calculated using Student’s t tests.
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appears that resveratrol and, to a lesser degree, CAPE can also limit invasion by disrupt
ing other as-yet undefined host cell activities, independent of effects on FAK.

CAPE and resveratrol impede host cell entry by distinct intracellular patho
gens

Many microbial pathogens, in addition to UPEC, can invade non-phagocytic host cells 
via actin-dependent processes that are facilitated by FAK (74). To determine if CAPE, 
resveratrol, EGCG, or catechin affect host cell entry by other invasive pathogens, we 
employed our standard cell association and invasion assays with Salmonella enterica 
serovar Typhimurium, Shigella flexneri, and a non-pathogenic surrogate for Yersinia 
pseudotuberculosis (AAEC185/pRI203). The latter is a type 1 pilus-negative K-12 E. coli 
strain that expresses the Y. pseudotuberculosis invasin protein, which promotes actin- and 
FAK-dependent host cell entry by binding integrin receptors (88, 89). None of the tested 
phenolics significantly altered the numbers of host cell-associated AAEC185/pRI203, 
though the numbers of adherent bacteria recovered from EGCG- and catechin-treated 
host cells trended higher and had a greater spread (Fig. 6A). As seen with UTI89, CAPE, 
resveratrol, and, to a lesser extent, EGCG significantly impeded host cell invasion by 
AAEC185/pRI203 (Fig. 6B). Similar results were obtained with S. flexneri (Fig. 6C and 
D), which mobilizes multiple type III secretion system effectors that engage integrin 
receptors and associated host factors to promote FAK phosphorylation coordinate with 
actin rearrangements that drive bacterial internalization (90).

S. Typhimurium can also use type III effectors to enter host cells via FAK- and 
actin-dependent processes, but the Salmonella effectors are distinct from those encoded 
by Shigella (91). Furthermore, though S. Typhimurium entry into host cells requires FAK, 
the kinase domain which contains the activating phospho-site Y576 is dispensable for 

FIG 7 Resveratrol inhibits bacterial invasion of the bladder mucosa. Adult female CBA/JCrHsd mice 

were inoculated via trans-urethral catheterization with 107 CFU of UTI89 suspended in PBS containing 

either DMSO or resveratrol (300 µM). Bladders were extracted 1 h later, and the numbers of intracellular, 

gentamicin-protected bacteria were determined. Bars indicate median values; n = 11 mice from two 

independent experiments. P value determined using the Mann-Whitney U test.
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host cell invasion by this pathogen (91). In our assays, none of the tested phenolics 
altered the levels of host cell-bound S. Typhimurium (Fig. 6E), and only resveratrol 
inhibited host cell invasion (Fig. 6F). Together, these findings indicate that the ability of 
CAPE, resveratrol, and EGCG to impede host cell invasion can vary markedly, dependent 
on the pathogen and its specific mechanism of entry.

Resveratrol inhibits UPEC invasion of the murine bladder mucosa

Next, we tested if resveratrol could interfere with UPEC invasion of host cells in an 
established mouse model of UTI (37). For this initial in vivo work, we focused on 
resveratrol as it was much more soluble than CAPE in both DMSO and in aqueous 
solutions and consequently less prone to precipitate out when introduced into the 
bladder (92). Adult female CBA/JCrHsd mice were inoculated via transurethral catheteri
zation with ~107 CFU of UTI89 in PBS containing 300 µM resveratrol or just the carrier 
DMSO. After 1 h, the bladders were collected, rinsed, and treated with gentamicin to kill 
any extracellular bacteria. Over 25-fold fewer intracellular bacteria were recovered from 
the resveratrol-treated bladders relative to those treated with DMSO alone (Fig. 7). These 
results indicate that resveratrol has the capacity to effectively inhibit host cell invasion by 
UPEC within the murine bladder.

DISCUSSION

Results presented here show that the plant phenolics CAPE, resveratrol, and, to a lesser 
extent, EGCG can inhibit UPEC entry into BECs. These phenolics are similar to compounds 
derived from cranberry-associated PACs and other complex polyphenolic biomolecules 
like tannins, which are attributed with a variety of antimicrobial activities including 
bactericidal and antiadhesion effects (42, 45, 59, 93–95). In our assays, none of the tested 
phenolics interfered with bacterial viability (Fig. S1), and only resveratrol had a noticea
ble (though slight) inhibitory effect on UPEC adherence to BECs (Fig. 1B). Furthermore, 
we found that host cell invasion by UPEC did not require de novo host transcription or 
translation, indicating that the inhibitory effects of CAPE, resveratrol, and EGCG are not 
related to the ability of these phenolics to interfere with host transcription factors like 
NF-κB (Fig. 2). Rather, the more pronounced inhibitory effects of CAPE and resveratrol on 
UPEC entry into BECs were linked with the dysregulation of host actin dynamics via the 
suppression of FAK phosphorylation at Y576. The disruption of FAK signaling appears to 
be an effect of many plant-derived phenolic compounds [e.g., curcumin, enterolactone, 
and glabridin (85–87, 96–100)], and may help explain some of the reported benefits 
of these molecules for the prevention or treatment of infections, cancers, and other 
ailments.

Extracts from a variety of medicinal plants, including Citrus reticulata Blanco 
(mandarin seeds), Amaranthus caudatus (a flowering plant that thrives in temperate-trop
ical areas), Clinopodium bolivianum (an aromatic shrub from the Andes region of South 
America), and Lactuca indica (Vietnamese dandelion) have been shown to inhibit both 
UPEC adherence to and invasion of bladder cells in vitro (101–104). Like cranberry, 
these plants are rich in phenolic compounds (103, 105–108), but the specific extract 
components that inhibit UPEC entry into BECs were not defined. Mechanistically, these 
extracts did not have any direct antibacterial activities and instead appeared to interfere 
with the invasion process by downregulating host cell receptors for type 1 pili or by 
suppressing downstream cell signaling events (101–104).

In the case of L. indica extract, the inhibition of BEC invasion by UPEC was partially 
attributable to the attenuation of FAK phosphorylation at Y397 (104). The autophos
phorylation of this site, as noted above, is a proximal step leading to the recruitment 
of other signaling factors like PI3K and Src kinase that precede full activation of FAK 
and the instigation of FAK-modulated actin cytoskeletal rearrangements (73). In our 
assays, the effects of CAPE and resveratrol on the phosphorylation of FAK(Y397) were 
much less pronounced than those observed with FAK(Y576) (see Fig. 3), suggesting 
that these two phenolic compounds act further downstream in the FAK activation 
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pathway than L. indica extract. Our experiments with FAK-null cells confirm that FAK 
is a major, though likely not the sole, host cell target that explains the inhibitory effects 
of CAPE and resveratrol on BEC invasion by UPEC (Fig. 5). This conclusion is corroborated 
by observations showing that CAPE and resveratrol treatments both lead to marked 
increases in the numbers of FAs, coordinate with alterations in the actin cytoskeleton (see 
Fig. 4).

Our observations with S. Typhimurium, S. flexneri, and recombinant E. coli expressing 
the invasin protein from Y. pseudotuberculosis reveal that the anti-invasion effects of 
CAPE and, especially, resveratrol can extend beyond UPEC (see Fig. 6). Of note, FAK 
can modulate host cell entry by each of these microbes (88, 90, 91). However, the 
differential effects of CAPE and resveratrol on host cell entry by a pathogen like S. 
Typhimurium (see Fig. 6F) suggest that these phenolics can have additional, non-over
lapping effects on host cell processes that promote invasion, independent of FAK. This 
possibility is supported by multiple reports indicating that both CAPE and resveratrol 
can disrupt various host factors and signaling cascades that might directly or indirectly 
impact host cell invasion and intracellular trafficking by bacterial pathogens [e.g., (109–
114)]. Furthermore, results from our own phospho-site profiling screen (Fig. 3A) suggest 
that CAPE can alter the phosphorylation status of several host signaling factors, in 
addition to FAK. Among these is the dual-specificity protein kinase MEK2 (MAP2K2), 
the phosphorylation of which appears to be markedly elevated in CAPE-treated BECs. 
MEK2 is implicated as a regulator of various cellular processes, but its role as a modu
lator of host cell invasion by UPEC is not yet defined. The potential of plant-derived 
phenolic compounds to interfere with host cell invasion independent of effects on 
FAK is exemplified by luteolin, a secondary polyphenolic metabolite that is found in 
many fruits, vegetables, and medicinal herbs (115). Luteolin can limit UPEC entry into 
BECs by inhibiting host cAMP-phosphodiesterases, which in turn interferes with actin 
rearrangements driven by the activation of Rac1 GTPase.

There is growing interest in the development of therapeutics that can ameliorate 
disease by targeting host factors that are highjacked by microbial pathogens rather than 
the pathogens themselves (116–118). If effective, such host-directed therapeutics are 
expected to help sidestep the growing challenge of antibiotic resistance. Results with 
resveratrol-treated mice (Fig. 7) indicate that this phenolic, or compounds with similar 
activities, could be valuable therapeutic options that can deny UPEC refuge within host 
cells. Without the ability to hide within host cells, UPEC would be more susceptible to 
clearance by host defenses and antibiotic treatments that are often ineffective against 
intracellular microbes (36, 38). Phenolic compounds derived from cranberry, if able to 
act within the urinary tract in a similar fashion to resveratrol, could help explain the 
potentially beneficial effects of consuming cranberry products by some individuals 
who suffer from rUTI (23–25). The benefits of such phenolics could vary dependent 
on the cause, or source, of the rUTIs. These recurrent infections may arise via repeated 
inoculation of the urinary tract by pathogens acquired from environmental sources, 
from bacterial reservoirs within the gut, or from the resurgence of intracellular popula
tions that can persist within the vaginal or bladder mucosa (28–32). We speculate that 
inhibitors of UPEC invasion like CAPE and resveratrol might primarily aid the latter group, 
by interrupting cycles of intracellular persistence, growth, resurgence, and re-invasion of 
host cells within the genitourinary tract.

Though the use of resveratrol, CAPE, or functionally homologous compounds from 
cranberry or other sources as a means to combat UTI is an appealing notion, it should 
be tempered with an appreciation of the many obstacles associated with such an 
approach. Instillation of phenolic compounds by intravesical catheterization is not facile 
nor cost-effective, and agents delivered in this manner may not remain soluble or might 
not effectively penetrate target host cells within the mucosa. Furthermore, timing of this 
treatment approach may be complicated if the compounds need to be present prior 
to invasion, or re-invasion, of the mucosa by UPEC. Oral administration of anti-invasion 
phenolic compounds faces similar challenges, in addition to potential problems with 
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absorption and modification by metabolic processes and microbes within the gut (40, 
56, 119–121). Furthermore, the intake of very high amounts of plant-derived phenol
ics might have detrimental effects, such as iron depletion, liver and kidney toxicity, 
and irritation of the gastrointestinal tract (10, 12, 122–124). Despite these limitations, 
the work presented here highlights the potential therapeutic utility of plant-derived 
phenolic compounds as a means to inhibit host cell invasion by UPEC which, if opti
mized, could help disrupt cycles of rUTIs in some individuals.

MATERIALS AND METHODS

Bacterial strains, cell culture, and inhibitors

The UPEC cystitis isolate UTI89 was grown statically from frozen stocks for 24 h at 37°C in 
either lysogeny broth (LB, Difco) or modified M9 minimal medium to induce expression 
of type 1 pili (6 g L−1 Na2HPO4, 3 g L−1 KH2PO4, 0.5 g L−1 NaCl, 0.1 mM CaCl2, 1 g L−1 NH4Cl, 
1 mM MgSO4, 0.1% Glucose, 0.0025% nicotinic acid, 0.2% casein amino acids, and 16.5 
µg mL−1 thiamine) (29, 125). S. Typhimurium (SL1344) and S. flexneri (ATCC 12022) were 
cultured shaking at 37°C in LB overnight, then diluted 1:33 in fresh LB, and grown for an 
additional 3.5 h, as previously described (126). AAEC185/pRI203 was grown shaking in LB 
to stationary phase prior to usage (127).

The bladder carcinoma cell line 5637 (ATCC HTB-9) was cultured in RPMI1640 
(HyClone) supplemented with 10% heat-inactivated fetal bovine serum (FBS; HyClone) 
in a 37°C humidified incubator with 5% CO2. FAK+/+ (ATCC CRL-2645) and FAK−/− (ATCC 
CRL-2655) MEFs were grown in DMEM (HyClone) supplemented with 10% heat-inactiva
ted FBS.

FAK14 (a.k.a. Y15) was purchased from Cayman Chemical, while CAPE, resveratrol 
(specifically trans-resveratrol), EGCG, and catechin were from Sigma-Aldrich, Biomol, 
or Cayman Chemical. These compounds were prepared as 1,000× stocks in DMSO. 
Actinomycin D and cycloheximide were obtained from Sigma-Aldrich and solubilized 
in ethanol.

Bacterial cell association and invasion assays

Bacterial host cell association and invasion assays were performed using established 
protocols (69). Briefly, 5637 or MEF cells were seeded into 24-well tissue culture plates 
and grown for about 24 h to near confluency. Where indicated, cell monolayers were 
treated with CAPE (100.7 µM; 25 µg/mL), resveratrol (100 µM; 22.9 µg/mL), EGCG 
(54.5 µM; 25 µg/mL), catechin (86.1 µM; 25 µg/mL), FAK14 (10 µg/mL; 35 µM), or 
DMSO (carrier, 0.1% final concentration) in complete media for 1 h prior to infection. In 
other experiments, host cells were treated with actinomycin D (5 µg/mL), cycloheximide 
(26 µM), or an equal volume of ethanol (diluent) for 30 min prior to infection. Triplicate 
sets of host cells were then infected with UTI89 or AAEC185/pRI203 using a multiplicity 
of infection (MOI) of approximately 15, while an MOI of 100 was used with S. flexneri 
and S. Typhimurium. Plates were centrifuged at 600 × g for 5 min to accelerate and 
synchronize bacterial contact with the host cells. UTI89- and AAEC185/pRI203-infected 
monolayers were then incubated at 37°C in the continued presence of the compounds 
or carrier, washed four times with PBS containing Mg+2 and Ca+2 (PBS+2), and lysed in 
PBS with 0.4% Triton-X 100. Serial dilutions of these lysates were plated on LB agar to 
determine numbers of cell-associated bacteria. Alternatively, sets of triplicate wells were 
washed twice with PBS+2 and treated for 2 h with complete media containing gentamicin 
(100 µg/mL) to kill extracellular bacteria. Subsequently, monolayers were washed four 
times with PBS+2 and lysed and plated as noted above to quantify the numbers of 
surviving intracellular bacteria. Experiments with S. Typhimurium and S. flexneri used 
30-min infection periods for the cell association assays, followed by 1-h incubations with 
gentamicin for the invasion assays. Results from the invasion assays were normalized 
by dividing the numbers of intracellular bacteria by the total number of cell-associated 
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bacteria, accounting for any differences in host cell numbers. All assays were repeated at 
least three times in triplicate.

Potential effects of the phenolic compounds and FAK14 on bacterial growth and 
viability were assessed by adding bacteria to complete RPMI media in 24-well plates 
using the same times and drug concentrations as used for the cell association assays, 
but in the absence of host cells. Bacterial titers were then determined by plating serial 
dilutions of the media on LB agar. These assays were independently repeated three 
times. Trypan blue exclusion assays were used to assess host cell viability (128).

Signal transduction protein phospho-site profiling

Sub-confluent 5637 BEC monolayers in six-well plates were serum starved overnight, 
treated with CAPE (25 µg/mL) or DSMO alone for 1 h, infected with UTI89 (MOI ~15), and 
centrifuged at 600 × g for 5 min. After an additional 15-min incubation at 37°C in the 
continued presence of CAPE or DSMO, wells were washed three times with PBS+2 and 
then lysed on ice with cold buffer containing 50 mM Tris (pH 7.4), 1 mM NaCl, 1% NP-40, 
complete protease inhibitor cocktail (Roche Applied Science), 1 mM PMSF, 1 mM NaF, 
0.4 mM orthovanadate, 5 µM leupeptin, and 1 mM aprotinin. Protein concentrations were 
determined using a BCA reagent system (Pierce). Lysates were diluted in 4× Kinexus 
sample buffer to a final concentration of 0.8 µg/µL and shipped to Kinexus (Vancouver, 
Canada) for multi-immunoblotting analysis using the Kinetworks signal transduction 
protein phospho-site profiling service (KPSS 7.0 Profile).

Western blot analysis

Nearly confluent BEC monolayers cultured in 12-well plates were serum starved 
overnight, treated with the specified phenolic compounds or 0.1% DMSO alone for 
1 h, and infected with UTI89 from M9 cultures using an MOI of about 25. The cell 
culture medium was not exchanged when adding either the compounds or during 
the infection process. After a 5-min spin at 600 × g, the plates were incubated for 
15 min at 37°C, washed three times with PBS+2, and then lysed in ice-cold RIPA 
buffer supplemented complete protease inhibitor cocktail (Roche Applied Science), 
1 mM PMSF, 1 mM NaF, and 0.4 mM orthovanadate. Equivalent protein amounts (as 
determined by BCA assays; Pierce) were resolved by SDS-PAGE, transferred to Immo
bilon PVDF-FL membrane (Millipore), and processed for western blot analysis. Mem
branes were incubated with phospho-site-specific rabbit anti-pFAK(Y576) (1:200; Upstate 
Biotechnology), mouse anti-pFAK(Y397) (1:1,000; BD Biosciences), or mouse anti-FAK 
(1:500; BD Biosciences) primary antibodies and then probed and imaged using IRDye-
labeled secondary antibodies and an Odyssey DLx instrument (LI-COR Biosciences). 
For quantification, membranes were re-probed with the different antibodies follow
ing treatments with stripping buffer (Thermo Scientific). Phospho-site-specific band 
intensities, minus background values, were measured using ImageJ software (129) and 
normalized to total FAK levels in each sample.

Visualization and quantification of focal adhesions

5637 BECs were seeded onto 12-mm diameter coverslips in 24-well plates and grown 
overnight until nearly confluent. Cells were treated with CAPE (25 µg/mL), resveratrol 
(22.9 µg/mL), EGCG (25 µg/mL), catechin (25 µg/mL), or DMSO (carrier, 0.1%) alone in 
complete RPMI medium for 3 h, washed three times with PBS+2, and then fixed for 20 min 
with 3.7% paraformaldehyde dissolved in PBS. After three washes in PBS, cells were 
blocked and permeabilized using PBS containing 1% powered milk, 3% bovine serum 
albumin, and 0.1% saponin. The cells were then labeled using primary mouse anti-vincu
lin antibody (1:100; Sigma-Aldrich) and donkey anti-mouse Alexa Fluor 555-conjugated 
secondary antibody (1:400; Abcam). F-Actin and nuclei were stained using Oregon Green 
488-conjugated phalloidin (1:200; Thermo Fisher) and Hoechst (1:1,000; Sigma-Aldrich), 
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respectively. Coverslips were mounted in FluorSave (Calbiochem) and imaged using a 
Nikon A1 series confocal microscope with NIS Elements software.

Quantitative analysis of vinculin-positive focal adhesions was performed as previ
ously described, with slight modifications (77). Briefly, using the Fiji processing package 
with ImageJ software, the background for each image of vinculin-stained cells was 
subtracted and local contrast enhanced using the CLAHE plugin (130). Next, a mathe
matical exponential was utilized via the Exp function to further reduce background, 
and brightness and contrast were adjusted automatically. A Gaussian filter was applied 
using the Log3D plugin with sigma X = 1.5 and sigma Y = 1.5. An automatic threshold 
function was then used to create binary images in which pixels were assigned to either 
a background or foreground signal. Particles (representing focal adhesions) within the 
binary images were enumerated and sized using the ANALYZE PARTICLES command in 
ImageJ, with the size parameter set at 14.5-infinity.

Mouse infections

Using established protocols approved by the University of Utah and Institutional Animal 
Care and Use Committee (IACUC), 8- to 9-week-old female CBA/JCrHsd mice (Harlan 
Laboratories) were inoculated via transurethral catheterization with 107 CFU of E. coli 
UTI89 in 50 µL PBS containing 300 µM resveratrol or DMSO. Mice were sacrificed 1 h 
post-catheterization and the bladders were harvested aseptically, quadrisected, and 
incubated for 30 min at 37°C in PBS with gentamicin (100 µg/mL) to kill extracellular 
bacteria. The bladder pieces were then washed three times with PBS and homogenized 
in PBS containing 0.025% Triton X-100. Serial dilutions of each homogenate were plated 
on LB agar to determine numbers of intracellular bacteria. A total of 11 mice from two 
independent experiments were tested for each treatment.

Statistics

For the mouse experiments, data distribution normality (Gaussian) was not assumed. 
Mann–Whitney U tests and unpaired two-tailed Student’s t tests were performed using 
Prism 9.0.0 (GraphPad Software). P values of less than or equal to 0.05 were considered 
significant.
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