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DDX11/Chl1R is a conserved DNA helicase with roles in genome maintenance, DNA replication, and chromatid cohesion. Loss of DDX11 
in humans leads to the rare cohesinopathy Warsaw breakage syndrome. DDX11 has also been implicated in human cancer where it has 
been proposed to have an oncogenic role and possibly to constitute a therapeutic target. Given the multiple roles of DDX11 in genome 
stability and its potential as an anticancer target, we set out to define a complete genetic interaction profile of DDX11 loss in human cell 
lines. Screening the human genome with clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA drop out screens 
in DDX11-wildtype (WT) or DDX11-deficient cells revealed a strong enrichment of genes with functions related to sister chromatid co-
hesion. We confirm synthetic lethal relationships between DDX11 and the tumor suppressor cohesin subunit STAG2, which is frequently 
mutated in several cancer types and the kinase HASPIN. This screen highlights the importance of cohesion in cells lacking DDX11 and 
suggests DDX11 may be a therapeutic target for tumors with mutations in STAG2.
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Introduction
Synthetic lethality (SL) occurs when a sublethal genetic defect al-
lows cell viability but leads to death if combined with a second 
sublethal genetic defect. Given the potential specificity of such in-
teractions, SL is touted as a solution for genotype targeted preci-
sion anticancer therapeutics (Hartwell et al. 1997; O’Neil et al. 
2017). The approval of poly-ADP ribose polymerase (PARP) inhibi-
tors for the treatment of BRCA1/2-mutated advanced ovarian can-
cers and more recently for BRCA1/2-mutated breast cancers 
illustrates the potential of SL-based therapeutics (Bryant et al. 
2005; Farmer et al. 2005; Kim et al. 2015). Cohesin is mutated across 
diverse cancer types, including glioblastoma, bladder cancer, 
acute myeloid leukemia, and Ewing’s sarcoma (Solomon et al. 
2014; Romero-Pérez et al. 2019). In total, this amounts to well 
over 100,000 Americans per year affected by a cohesin-mutated 
cancer, raising the possibility that cohesin–SL interactions could 
be impactful therapeutically. Previously, we screened for SL 
with mutant forms of cohesin subunits in yeast and identified a 
hub of SL targets, all associated with the stability of the replication 
fork (McLellan et al. 2009, 2012). One of the potentially druggable 
targets is the helicase Chl1 (the yeast ortholog of human DDX11 
helicase).

DDX11 is a superfamily 2, an ATP-dependent DEAH/DEAD-box 
containing helicase belonging to the XPD-like helicase family, 
which contains 4 members (FANCJ, XPD, RTEL1, and DDX11), all 

having a conserved Fe–S-binding domain (Bharti et al. 2014). 
These proteins play important roles in genome stability and are 
implicated in rare genetic syndromes and cancer development 
(Wu et al. 2009; Suhasini and Brosh 2013). In vitro DDX11 unwinds 
DNA/DNA and DNA/RNA duplexes, as well as G-quadruplex (G4) 
structures with a preferred 5′ to 3′ directionality (Hirota and 
Lahti 2000; Farina et al. 2008; Wu et al. 2012; Bharti et al. 2013). 
DDX11 also interacts with Ctf18-RFC, PCNA, and FEN1 and stimu-
lates FEN1 endonuclease activity on a flap DNA structure, a model 
intermediate substrate that forms during lagging strand synthesis 
(Farina et al. 2008).

Mutations in the yeast ortholog chl1 result in elevated levels of 
chromosome loss or missegregation (Gerring et al. 1990; Holloway 
2000). Chl1 plays a critical role during establishment of proper sis-
ter chromatid cohesion during S-phase and in DNA repair 
(Petronczki et al. 2004; Skibbens 2004; Ogiwara et al. 2007; Chung 
et al. 2011; Stoepker et al. 2015; Abe et al. 2018). In mammalian 
cells, depletion of DDX11 by shRNA/siRNA results in aneuploidy, 
abnormal sister chromatid cohesion, and a prometaphase delay 
leading to mitotic failure (Parish et al. 2006). DDX11 is required 
for proper chromosome cohesion at both centromeres and along 
the chromosome arms, and in its absence, cohesin complexes 
bind more loosely to chromatin (Inoue et al. 2007). In addition, it 
has been shown in both yeast and mammalian cells that/Chl1/ 
DDX11 binds to the replisome (in yeast via interaction with Ctf4 
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and in mammalian cells through interaction with Timeless) and 
that this interaction is required for effective sister chromatid co-
hesion (Samora et al. 2016; Cortone et al. 2018). In humans, 
bi-allelic mutations in DDX11 cause the rare cohesinopathy- 
related disease, Warsaw breakage syndrome (WABS; van der 
Lelij et al. 2010). At the cellular level, fibroblasts and lymphoblasts 
cultured from WABS patients display increased spontaneous and 
drug-induced chromosomal breakage, sister chromatid defects, 
and sensitivity to drugs that impede replication [DNA cross- 
linking agent mitomycin C and topoisomerase I inhibitor camp-
tothecin (CPT)] but not to drugs that elicit nucleotide excision 
repair or cause single- or double-stranded DNA breaks (such as 
X-ray and UV irradiation), supporting that DDX11 plays a role in 
sister chromatid cohesion and replication fork stability or recov-
ery, but not necessarily in repair of single-stranded or double- 
stranded DNA breaks (van der Lelij et al. 2010; Capo-Chichi et al. 
2013).

In addition to identifying SL interactions, studying genetic in-
teractions (GIs) can provide functional information on a protein’s 
role and pathways (Kim et al. 2019). DDX11 plays an important role 
in DNA replication, repair, and sister chromatid cohesion, and the 
yeast ortholog, Chl1, is a highly connected SL hub that interacts 
with many genes involved in cancer-relevant processes 
(Costanzo et al. 2016). However, the mammalian GIs of DDX11 
have not been widely studied, prompting our analysis of the 
DDX11 SL interactome in this study. In this study, we conduct 
an unbiased genome-wide CRISPR/Cas9 knockout (KO) screen in 
isogenic DDX11-deficient human cells. We identified many genes 
involved in DNA replication, repair, and sister chromatid cohe-
sion, supporting the key role that DDX11 plays in linking DNA re-
pair with establishment of sister chromatid cohesion and 
maintenance of genome stability. Our work supports another re-
cent study using CRISPR screens in DDX11 and ESCO2 mutant 
cell lines that also shows a strong dependency of 
DDX11-deficient cells on cohesion regulators (van Schie et al. 
2023).

Materials and methods
Cell lines
HAP1 cells are a near-haploid line derived from KBM-7 and 
have been previously described (Carette et al. 2011). HAP1 cells 
and HAP1 DDX11 KO cells were cultured in Iscove’s Modified 
Dulbecco’s MFBS’edium + 10% fetal bovine serum (FBS) 
(Invitrogen) and incubated at 37°C and 5% CO2.

Western blotting
Samples for western blot were lysed in Lysis buffer (50 mM 
Tris-HCl, pH 7.5, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 
and protease inhibitors), sonicated, and debris spun down at 
∼18,000 × g at 4°C for 15 min. Samples were normalized by protein 
concentration using the bicinchoninic acid assay (BCA) (Thermo 
Fisher Scientific), run on 8% SDS-PAGE gels, and transferred to 
PVDF membrane (Immobilon-FL, Millipore). After probing with 
primary and secondary antibodies, blots were then subjected to 
ECL (Clarity or Clarity Max Western ECL substrate, BioRad) and vi-
sualized using a BioRad ChemiDoc MP Imager in the appropriate 
channel. Antibodies used for western blot were as follows: 
DDX11 (1:1,000; Abnova, H00001663-B01P) and α-tubulin 
(1:20,000: Abcam, ab18251). Secondary antibodies were either 
goat antimouse conjugated to HRP or goat antirabbit conjugated 
to HRP or Cy3 (Jackson Laboratories).

Plasmids, primers, and single-guide RNA
For generation of KO lines, single-guide RNAs (sgRNAs; Table 1) 
were cloned into pSpCas9-T2A-blast, which was derived from 
pSpCas9-T2A-puro (Addgene # 62988). Blasticidin resistance 
gene was amplified from lenti-dCas9-VP64-blast (Addgene 
#61425) using primers OPH8968 and OPH8969 and cloned 
into the pCR-Blunt vector using Zero Blunt PCR Cloning 
Kit (Invitrogen) according to manufacturer’s instructions. 
Site-directed mutagenesis to remove the BbsI site was performed 
using QuikChange Site-Directed Mutagenesis Kit (Agilent) and pri-
mers OPH9364 and OPH9365 and verified by Sanger sequencing. 
The modified blasticidin resistance gene was then cloned into 
pSpCas9-T2A-puro using EcoRI (replacing the puro gene) to obtain 
BPH1324. Finally, guide RNAs (gRNAs) were cloned into 
pSpCas9-T2A-blast using BbsI.

Generation of clonal KO lines
HAP1 parent cells were transfected with BLA371 + BLA332 
(pSpCas9-T2A-Blast-DDX11 Int. 5/6.2 + pSpCas9-2A-GFP-DDX11 
Intron 6/7.1) or BLA392 (pSpCas9-T2A-Blast-DDX11 gRNA exon 
4) plasmids using XtremeGene 9 (Roche) according to the manu-
facturer’s instructions. The following day, transfected cells were 
selected using blasticidin (Sigma) for ∼3 days, followed by replat-
ing at single-cell density in 10-cm plates. Ten to 14 days after plat-
ing, colonies were picked using cloning cylinders and transferred 
to a 96-well dish. Clones were passaged every 2–3 days until they 
reached 10 cm density, and DDX11 protein KO was tested by west-
ern blot. Parent lines and DDX11 KO clones were checked for 
mycoplasma before being used. Clones were also stained with 
propidium iodide (PI) and compared with parent cells by 
fluorescence-activated cell sorting (FACS) to determine ploidy.

To sequence the clones, due to the high identity between 
DDX11 and other regions (DDX12P and LOC642846), genomic 
DNA was extracted using QuickExtract according to the manufac-
turer’s instructions, and the relevant region was PCR amplified 
using primers OPH9318 + 9319 or OPH9320 + 9321 for HAP1 clones 
#1.1.5 and #2.1.5 and OPH9453 + 9454 for HAP1 clone #3.4.9. The 
PCR product was cloned into PCR_Blunt and transformed into 
DH5α cells, and ∼10 colonies were sequenced for each clone using 
M13F and M13R primers.

Drug sensitivity assays
Cells were plated in 100-µL media in 96-well plates (6 wells per 
concentration). The next day, 100-µL media containing CPT, ola-
parib, or hydroxyurea (HU, at 2× final concentration) was added. 
Cells were incubated for further 3–4 days before being fixed in 
3.7% paraformaldehyde and stained with Hoechst 33342, and nu-
clei were counted on a Cellomics Arrayscan VTI.

CRISPR-Cas9 KO screen
CRISPR-Cas9 screen was performed as previously described 
(Aregger et al. 2020). Briefly, cells were infected with lentiviral 
TKOv3 library (a sequence-optimized sgRNA library of 71,090 
sgRNAs targeting 18,053 human protein-coding genes with 4 
sgRNAs per gene) at an MOI of ∼0.3 such that each sgRNA was re-
presented in about 200–300 cells and then selected the following 
day with puromycin (2 µg/mL) for 48 h. Following selection, T0 
samples were collected for determination of library representa-
tion at day 0, and the remaining cells were replated in 3 replicates 
maintaining >200-fold coverage of the library. Replicates were 
passaged every 3–4 days maintaining coverage of the sgRNA li-
brary and with 3 samples collected at T0 and all subsequent 
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passages, until the infected population reached 16 doublings 
(T18). Genomic DNA was purified from T0 and endpoint samples 
using Promega Wizard Genomic DNA Purification kit according 
to the manufacturer’s instructions. For each sample, sgRNA in-
serts were amplified from ∼50 µg of genomic DNA by a 2-step 
PCR reaction using primers harboring Illumina TruSeq adaptors 
with i5 and i7 barcodes. The sequencing libraries were gel purified 
and sequenced on an Illumina HiSeq 2500. Log2 fold changes 
(LFCs) and quantitative GI (qGI) scores were processed and calcu-
lated as in Aregger et al. (2020).

Gene ontology term enrichment analysis
Enrichment of DDX11 GIs (|qGI| ≥ 0.6, false discovery rate (FDR) ≤  
5%) was analyzed using the PANTHER Overrepresentation Test 
(https://geneontology.org/) for either negative or positive interac-
tions. The top 10 terms are shown for each of the hit categories.

STAG2, HASPIN, and PAXIP1 knockdown and 
viability assays
The Alt-R CRISPR-Cas9 (from-integrated DNA technology [IDT]) 
system was used to generate STAG2, HASPIN, and PAXIP1 knock-
down in HAP1 and DDX11 KO cell lines. Briefly, crRNAs targeting 
STAG2, HASPIN, or PAXIP1 (see Table 1 for sequences) were mixed 
in equimolar ratios with tracrRNA (IDT) to form the sgRNA com-
plex. A total of 1 μM sgRNA was complexed with 1 μM purified 
Cas9 (IDT), combined with RNAiMAX transfection reagent 
(Thermo Fisher Scientific) and mixed with cells.

HAP1 and DDX11 KO cells were seeded at 80,000 cells/well in a 
24-well plate, reverse transfected as described above, and incu-
bated for 48 h. Adherent cells were stained with crystal violet 
and resuspended in 10% acetic acid in methanol, and the OD570 
was measured. HAP1 and DDX11 KO cells were reverse trans-
fected as described above and seeded at 40,000 cells/well in an 
opaque 96-well plate and incubated for 48 h. A total of 150 μL of 
CellTiter-Glo reagent (Promega) were added to each well, and 
fluorescence intensity was measured at 520 nm.

HAP1 and DDX11 KO cells were seeded at 10,000 cells/well in a 
24-well plate, incubated for 24 h, treated with CHR-6494 trifluor-
oacetate, and incubated for an additional 72 h. Adherent cells 
were stained with crystal violet and resuspended in 10% acetic 
acid in methanol, and the OD570 was measured.

Results
Generating DDX11 KO HAP1 clones
To generate DDX11 KO cell lines, we chose the human near-haploid 
cell line HAP1 as a model system, given the relative ease of generat-
ing KO mutations in this background (Carette et al. 2011). Targeting 
DDX11 is challenging as it is located in a complex repetitive region 
on chromosome 12. Several highly related DDX11 pseudogenes, in-
cluding DDX12P and LOC642846, exist on chromosome 12, and mem-
bers of the DDX11L family map to multiple chromosomes (Amann 
et al. 1996; Costa et al. 2009). While we explored various strategies in-
volving 1 or 2 sgRNAs (Fig. 1a), screening 47 clones for DDX11 protein 
KO, ultimately a single sgRNA strategy, produced clone 3.4.9. Clone 
3.4.9 appeared to contain 2 editing events when aligned to DDX11 se-
quence (an insertion of a single C or insertion of CT—both of which 
create a frameshift and early termination). However, when aligning 
the sequences to DDX12P and LOC642846 pseudogenes as well as to 
DDX11, the single C insertion is most likely at the DDX11 locus, and 
the CT insertion is more likely to be at DDX12P or LOC642846 loci. 
Therefore, it seems that this clone was also derived from a haploid 
clone that diploidized after the genome editing event. This DDX11 
KO in clone 3.4.9 appeared to be complete by western blot (Fig. 1b) 
and exhibited sensitivity to CPT and olaparib but not HU (Fig. 1c). 
This is consistent with published data that human lymphoblastoid 
cells lacking DDX11 are sensitive to CPT (a topoisomerase I inhibitor) 
and to PARP inhibitors, but DDX11/Chl1 is largely dispensable for cell 
survival in chicken DT-40 and budding yeast cells following expos-
ure to HU (a ribonucleotide reductase inhibitor; van der Lelij et al. 
2010; Laha et al. 2011; Stoepker et al. 2015; Abe et al. 2018). HAP1 cells 
often contain a subpopulation of cells that spontaneously switch to 
a diploid state during normal culturing and often become fully dip-
loid within 10–20 passages after CRISPR/Cas9 editing (Beigl et al. 
2020). To test the ploidy of the DDX11 mutant clones, cells were 
stained with PI and compared with parental cells by FACS analysis. 
Several candidate KO clones, including 3.4.9, had become diploid 
compared with the parental line (Fig. 1d). In summary, clone #3.4.9 
demonstrated the cleanest KO by western blot and the strongest ex-
pected DDX11 KO drug sensitivity and was selected for the CRISPR/ 
Cas9 KO screen.

Genome-wide CRISPR/Cas9 KO screen of 
DDX11-deficient cell lines
We conducted a genome-wide CRISPR/Cas9 screen using the 
TKOv3 gRNA library, which contains ∼71,090 gRNAs that target 

Table 1. sgRNA, primers, and plasmids used in this study.

Identifier crRNA
STAG2 /AltR1/rArUrU rUrCrG rArCrA rUrArC rArArG rCrArC rCrCrG rUrUrU rUrArG rArGrC rUrArU rGrCrU/AltR2/
HASPIN /AltR1/rArCrC rGrUrG rArCrC rCrCrA rArGrA rCrGrC rCrUrG rUrUrU rUrArG rArGrC rUrArU rGrCrU/AltR2/
PAXIP1 /AlTR1/rGrArGrGrUrCrArArGrUrArUrUrArCrGrCrGrGrUrGrUrUrUrUrArGrArGrCrUrArUrGrCrU/AlTR2/
Identifier Primers
OPH9318 AATGAGATGGGTGTGAAGAGCAGG
OPH9319 TCCCAATGCACAAAGCCGAG
OPH9320 AATGAGATGGGTGTGAAGAGCAGGG
OPH9321 GGAGACCAGCCGAACATCCT
OPH9453 ATTGTTCTGGGGCGATTCCG
OPH9454 GCACATAGCCAGTGAGGGTC
OPH8968 CTGGACATGCTGATTAACGAATTCGGCAGTGGAGAGGGCAGAG
OPH8969 CGATAAGCTTGATATCGAATTCTTAGCCCTCCCACACATAAC
OPH9364 GCTGGCGACGCTGTAATCCTCAGAGATGGGGATG
OPH9365 CATCCCCATCTCTGAGGATTACAGCGTCGCCAGC
Identifier Plasmids
BPH1324 pSpCas9(BB)-2A-Puro (PX459) V2.0
BLA371 spCas9-T2A-Blast-DDX11 Int. 5/6.2-3
BLA332 spCas9-2A-GFP-DDX11 Intron 6/7.1-1
BLA392 spCas9-T2A-BLAST-DDX11 gRNA Exon 4-1
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∼18,000 human protein-coding genes, most of them targeted by 4 
unique gRNAs (Hart et al. 2017; Aregger et al. 2019). The relative 
abundance of individual gRNAs was compared between the 
screen start (T0, following infection and selection) and end (T18, 

after 16 doublings) providing an estimate of single-mutant fitness, 
whereas the relative abundance in DDX11-mutated cells provides 
an estimate of double-mutant fitness (schematized in Fig. 2a). The 
GIs were scored using a qGI score that measures the strength and 
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significance of the interaction by comparing the relative abun-
dance of gRNA in the mutant cell line with the relative abundance 
of the same gRNA in an extensive panel of 21 wild-type HAP1 
screens, after the removal of frequent flyers and batch correction 
(Aregger et al. 2019). Negative interactions reflect genes whose 
gRNAs are significantly decreased in the DDX11-mutated line 
relative to the control wild-type panel, whereas positive interac-
tions reflect genes with increased gRNA abundance in 
DDX11-mutated line compared with the control wild-type panel.

DDX11 KO was maintained throughout the screen, and there was 
no reversion of the mutation to restore DDX11 levels (Fig. 2b). To 
evaluate screen performance, LFC of essential genes and non-
essential genes were analyzed and compared with a reference set 
of core essential and nonessential genes as previously described 
(Hart et al. 2017). The screen robustly distinguished the reference 
set of essential genes from nonessential genes, indicating a high- 

quality screen (Fig. 2c). Analysis of the DDX11 mutant-specific hits 
identified 324 negative GIs (NGIs) at a cutoff of qGI < −0.4 at FDR ≤  
0.2 and 320 positive GIs (PGIs) at a cutoff of qGI > 0.4 at FDR ≤ 0.2 
for DDX11-KO cells. As expected, multiple genes associated with 
the cohesin complex and sister chromatid cohesion were identified 
as both positive and negative genetic interactors of DDX11-KO 
(Fig. 3). One of the strongest positive interactions was DDX11 itself, 
which supports the quality of the screen; gRNAs in the library target-
ing DDX11 cause impaired growth in the wild-type cells, but not the 
DDX11 KO cells as the protein is not expressed, and this manifests in 
the screen results as a positive interaction.

Pathway analysis confirms cohesion-associated 
DDX11 dependencies
To provide further insight into the functional categories of genes 
identified, we performed gene ontology (GO) term enrichment 
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analysis using PantherDB PANTHER Overrepresentation Test (Mi 
et al. 2021). We first looked at the negative GIs, which reflect genes 
that are SL or synthetic sick with DDX11 KO. For this analysis, we 
set a more stringent cutoff of qGI > 0.6 to compute enrichments of 
the strongest hits. The top enriched terms for biological process 
GO terms are shown in Fig. 4a. Consistent with the known role 
of the DDX11 helicase, the enriched terms were associated with 
the cell cycle, DNA repair, and chromosome cohesion and segre-
gation. Interestingly, among the top enriched terms that were as-
sociated with DNA damage response and cohesion related, 
supporting the hypothesis that DDX11 inhibition may be a good 
therapeutic target in cancer cells, many of which carry defects 
in DNA repair pathways.

A recent paper reported negative GIs for a DDX11 KO in immor-
talized RPE1 cell lines (van Schie et al. 2023). GIs are often context 
dependent with relatively few interactions conserved between 
different cell lines with the same genetic KO query gene. For ex-
ample, a comparison of GIs with STAG2 KO in 3 different cell lines 
found only one interaction common to HAP1, RPE1, and tumor- 
derived H4 cell lines (Bailey et al. 2021). To find common GIs 
with loss of DDX11 and to corroborate the GIs found in the HAP1 
CRISPR screen, we compared the top negative GIs reported by 
van Schie et al. (2023) with the top negative interactions found in 
our CRISPR screen. Of the 105 top negative interactions with 
DDX11 RPE1 (van Schie et al. 2023) and the 127 top negative inter-
actions, we found in DDX11 KO HAP1 cells, 35 were common to 
both screens and were highly enriched for cohesion-associated 
genes (Fig. 4b).

Validation of DDX11–cohesion GIs
Finally, we sought to confirm that the observed interactions could 
be reproduced by direct tests of fitness. We chose to focus on 
STAG2 because of its importance as a tumor-suppressor gene 

lost in various cancers, PAXIP1 a recently identified cohesin regu-
lator, and the Haspin kinase since it may be targetable with small 
molecules (Liang et al. 2018; Bailey et al. 2021; Mayayo-Peralta et al. 
2023). We used CRISPR sgRNAs targeting STAG2, GSG2 (the cata-
lytic subunit of Haspin), or PAXIP1 to generate knockdowns. 
Cellular fitness in gRNA transfected cells was measured in com-
parison with untreated or scrambled sgRNA controls using 2 inde-
pendent assays. First, we quantified metabolically active cells 
using the CellTiter Glo cell viability assay and found that STAG2 
and HASPIN sgRNA treatment significantly reduced cell viability 
in the DDX11-KO relative to a scrambled control but did not re-
duce fitness in the parental cell line (Fig. 5a). We also used crystal 
violet staining and colorimetric quantification as a proxy for cell 
viability. DDX11 KO cells were less viable/adherent compared 
with the parental lines (note the different Y-axis scales); however, 
treatment with the STAG2, HASPIN, or PAXIP1 sgRNA significantly 
reduced crystal violet staining in the KO but not in the wildtype 
(WT) cell lines (Fig. 5b). Finally, the HASPIN kinase inhibitor, 
CHR-6494 trifluoroacetate was tested and also qualitatively re-
duced the DDX11-KO cell growth compared with WT (Fig. 5c). 
Together, these experiments validate several cohesin-related 
hits from our primary screen, confirming that DDX11-KO cells 
are highly dependent on intact sister chromatid cohesion to 
survive.

Discussion
Studying GIs expands our understanding of their molecular 
role(s) and therapeutic potential. The DDX11 helicase plays an 
important role in DNA replication, repair, and sister chromatid 
cohesion. The yeast DDX11 homolog, CHL1, is a highly connected 
SL hub with many genes involved in cancer-relevant processes, 
but the mammalian GIs of DDX11 are only recently being 
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defined (Faramarz et al. 2020; van Schie et al. 2023). The goal of 
this study was to conduct an unbiased screen in isogenic 
DDX11 KO cells to provide additional functional and therapeutic 
information.

For our screen, we chose to use HAP1 lines with/without 
DDX11. In a previous study, DDX11 was defined as an essential 
gene in HAP1 cells using a gene-trap method to systematically 
inactivate genes (Blomen et al. 2015). This essentiality is sup-
ported by data from the DepMap project (a large-scale project 

aiming to systematically identify genetic and pharmacologic de-
pendencies in a large panel of cancer lines), in which DDX11 is 
defined as a “common essential” gene (Pacini et al. 2021). Given 
the presence of highly similar DDX11 pseudogenes, it is possible 
that the “essentiality” of DDX11 in pooled CRISPR screens is, in 
part, a byproduct of multiple CRISPR-induced double-stranded 
breaks in the genome that reduce viability and are selected 
against in pooled competitive growth conditions. In the case 
of our generated clones, cells were edited and plated at single- 
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regulation of telomere maintenance in response to DNA damage (GO:1904505) 19 3 25 4.16E-02

positive regulation of transcription by RNA polymerase III (GO:0045945) 19 3 25 4.13E-02

DNA replication initiation (GO:0006270) 28 4 22 9.52E-03

mitotic spindle assembly (GO:0090307) 49 6 19 3.89E-04

mitotic G2 DNA damage checkpoint signaling (GO:0007095) 35 4 18 1.69E-02

histone H3 acetylation (GO:0043966) 37 4 17 1.91E-02

protein monoubiquitination (GO:0006513) 65 6 15 1.43E-03
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Fig. 4. The GO enrichment of dependencies and comparison of DDX11 GIs in HAP1 and RPE1 cell lines. a) A summary of top enriched biological processes 
(qGI| > 0.6, FDR < 0.05) determined using the Panther DB (https://geneontology.org/). b) A comparative analysis of DDX11 GIs in HAP1 and RPE1 cell lines. 
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cell density until the formation of a colony. Under these condi-
tions, even cells with fitness defects may be able to survive and 
form colonies. Other groups have also managed to KO DDX11 in 
human cells in HeLa, U2OS, and RPE1 cells using CRISPR/Cas9 
genome editing (Jegadesan and Branzei 2021; van Schie et al. 
2023).

Our screen identified multiple GIs (both positive and negative) 
with genes involved in sister chromatid cohesion or cohesion es-
tablishment and maintenance (Fig. 3). Our genetic screen was in 
a single-cell type, HAP1, and many GIs are cell line specific and 
are not broadly shared across cell lines. To identify common GIs 
with DDX11 KO, we compared our strong negative interactions 
with those from a CRISPR screen in immortalized retinal pigment 
epithelium (RPE) cells (van Schie et al. 2023). There was significant 
overlap (35/105 negative interactions) between the strong nega-
tive interactions, and the common interactions were enriched in 
genes involved in chromatin cohesion. This comparison rein-
forces the findings in both datasets.

The GIs observed reflect the underlying molecular roles of 
DDX11. For example, sororin (CDCA5), WAPAL, and PDS5 form a 
cohesin-regulator complex in vertebrates, in which sororin and 
WAPAL antagonize each other by competing for binding to a 
specific site on PDS5 to regulate association of cohesin with chro-
matin. This complex positively or negatively regulates the associ-
ation of cohesin with chromosomes, depending on which protein 
binds to PDS5. PDS5–sororin complex maintains sister chromatid 
cohesion, whereas PDS5–WAPAL dislodges cohesin from chroma-
tin (Zhang et al. 2021). In our screen, both CDCA5 and PDS5B were 
identified as negative GIs, whereas WAPAL was identified as a 
positive GI. This is consistent with the known role of DDX11 in es-
tablishing and maintaining sister chromatid cohesion. In the ab-
sence of DDX11, cohesion is less robust, and further dissociation 
through the loss of PDS5 or sororin may be detrimental to the 
KO cells. On the other hand, in wild-type cells, the loss 
of WAPAL is detrimental as it leads to increased cohesin on the 
DNA, whereas in the DDX11 KO cells, this effect is counteracted 
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by the loss of cohesion due to the loss of DDX11 activity. Another 
protein that ties into the regulation of cohesin maintenance ver-
sus removal is the kinase HASPIN (GSG2). HASPIN was one of the 
strongest negative GIs identified in the screen, and we confirmed 
the interaction with potent HASPIN kinase inhibitors. HASPIN 
binds and phosphorylates WAPAL, directly inhibiting the inter-
action of WAPAL with PDS5B. Cells expressing a WAPAL-binding- 
deficient mutant of HASPIN or treated with HASPIN inhibitors 
show centromeric cohesion defects (Liang et al. 2018). In contrast, 
HASPIN also binds to PDS5B, and KO of HASPIN or disruption of 
HASPIN-PDS5B interaction causes weakened centromeric cohe-
sion and premature chromatid separation, which can be reverted 
by centromeric targeting of a short fragment of HASPIN contain-
ing the PDS5B-binding motif or by prevention of 
WAPAL-dependent cohesin removal (Zhou et al. 2017). Together, 
the interactions identified support a central role for DDX11 in 
regulation of cohesin establishment/protection versus removal.

One of the goals of this screen was to identify potential genetic 
features of tumors that might be treated with DDX11 inhibition. 
The pattern of interactions identified suggests DDX11 inhibition 
may be therapeutic for tumors exhibiting a cohesin-dysregulation/ 
premature separation phenotype. This builds upon the concept 
of expanding the definition of clinically relevant SL from a gene/ 
gene (or inhibitor) negative interaction to a phenotype or 
pathway + inhibitor interaction, similar to the recent evidence 
for expansion of PARP inhibitors from treatment of tumors carry-
ing BRCA1/2 mutations to tumors displaying a “BRCAness” 
phenotype (Lord and Ashworth 2016).

In addition to potential therapeutic potential, studying GIs can 
provide information on the biological role of DDX11. This screen 
identified multiple genes important for sister chromatid cohesion, 
as well as genes involved in DNA repair, providing further support 
for the conservation of DDX11’s role from yeast to human, and 
strengthening the idea of DDX11 inhibition as a therapeutic for 
cancer with cohesion defects. Of course, such cancers would 
need to be identified by the presence of a biomarker (similar to 
BRCA1/2 mutations as an indication for treatment with PARP inhi-
bitors). Even in the absence of a defined genotypic vulnerability, 
such tumors could potentially be identified by a phenotypic assay 
of cohesion defects.
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