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Abstract

Data scarcity and data imbalance are two major challenges in training deep learning models on 

medical images, such as brain tumor MRI data. The recent advancements in generative artificial 

intelligence have opened new possibilities for synthetically generating MRI data, including brain 

tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem 

and enhance training data availability. This work focused on adapting the 2D latent diffusion 

models to generate 3D multi-contrast brain tumor MRI data with a tumor mask as the condition. 

The framework comprises two components: a 3D autoencoder model for perceptual compression 

and a conditional 3D Diffusion Probabilistic Model (DPM) for generating high-quality and diverse 

multi-contrast brain tumor MRI samples, guided by a conditional tumor mask. Unlike existing 

works that focused on generating either 2D multi-contrast or 3D single-contrast MRI samples, 

our models generate multi-contrast 3D MRI samples. We also integrated a conditional module 

within the UNet backbone of the DPM to capture the semantic class-dependent data distribution 

driven by the provided tumor mask to generate MRI brain tumor samples based on a specific 

brain tumor mask. We trained our models using two brain tumor datasets: The Cancer Genome 

Atlas (TCGA) public dataset and an internal dataset from the University of Texas Southwestern 

Medical Center (UTSW). The models were able to generate high-quality 3D multi-contrast brain 

tumor MRI samples with the tumor location aligned by the input condition mask. The quality of 

the generated images was evaluated using the Fréchet Inception Distance (FID) score. This work 

Further author information: (Send correspondence to Nghi C. D. Truong), Nghi C. D. Truong: nghi.truong@utsouthwestern.edu. 

DISCLOSURES
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 May 07.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2024 February ; 12931: . doi:10.1117/12.3009331.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has the potential to mitigate the scarcity of brain tumor data and improve the performance of deep 

learning models involving brain tumor MRI data.
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1. INTRODUCTION

Recent advancements in image generative models1, 2 have led to significant improvements in 

the quality and realism of generated images. One of the most promising recent developments 

is the diffusion model,2–5 a type of generative model that can generate high-quality 

and diverse images. Unlike traditional approaches, the diffusion model learns the data 

distribution by iteratively adding noise to the original image and then gradually denoising it 

until the desired output is achieved. The recent strides in developing diffusion models mark 

a notable shift in the image generation domain and offer promising potential for various 

applications, especially in the domain of medical imaging. In medical imaging, the capacity 

to generate high-fidelity, diverse, and realistic images plays a crucial role in enhancing 

limited datasets, enabling more robust training of deep learning models for diverse tasks 

such as image segmentation, anomaly detection, and prediction. The integration of diffusion 

models into medical imaging also paves the way for improved diagnostics, patient care, and 

scientific understanding in the healthcare sector.

This study focuses on adapting 2D latent diffusion models (LDMs)2 to generate 3D multi-

contrast brain tumor MRI data utilizing a tumor mask as a guidance factor. The framework 

consists of two main components: a 3D autoencoder model for perceptual compression 

and a conditional 3D Diffusion Probabilistic Model (DPM) for generating diverse and 

high-quality multi-contrast brain tumor MRI samples. This generation process is guided by 

a conditional tumor mask. Prior studies have focused on creating either 2D multi-contrast6 

or 3D single-contrast MRI samples.7–9 Several challenges persist in developing conditional 

3D LDMs for generating multi-contrast MRI data: (1) The complexity of multi-contrast 3D 

LDMs demands substantial computational resources and time for both training and inference 

due to the high dimensionality of MRI data; (2) Introducing a conditioning element into 3D 

LDMs increases model intricacy and extends the required training duration.

In this study, we developed conditional 3D LDMs to generate 3D multi-contrast brain 

tumor MRI data. Our models were trained using two brain tumor datasets: The Cancer 

Genome Atlas (TCGA) public dataset10 and an internal dataset from the University of 

Texas Southwestern Medical Center (UTSW). The resulting models were able to produce 

high-quality multi-contrast MRI samples of brain tumors with the tumor location aligned by 

the input condition mask. These generated samples offer augmented data for various tasks 

involving brain tumor data, such as brain tumor segmentation or molecular prediction.
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2. METHODOLOGY

2.1 Datasets and Image Preprocessing

This study utilized retrospective brain tumor MRI data from two datasets: The Cancer 

Genome Atlas (TCGA)10 dataset downloaded from The Cancer Imaging Archive (TCIA)11 

and the internal dataset collected from UT Southwestern Medical Center (UTSW). Data 

included in this study was required to have the preoperative MRI scans of all four sequences: 

T1-weighted (T1), post-contrast T1-weighted (T1C), T2-weighted (T2), and T2-weighted 

fluid-attenuated inversion recovery (FLAIR). The dataset utilized for training our LDMs 

comprised 583 glioma patients, segregated into 466 samples for training and 117 samples for 

validation.

The MRI scans from both datasets were preprocessed using the federated tumor 

segmentation (FeTS) tool.12 The preprocessing steps included co-registering MRI scans 

to a template atlas, correcting for bias field distortion, and skull stripping. FeTS was also 

employed for segmenting the tumors, and the resulting tumor masks were employed as 

conditions for training the diffusion models. Subsequently, the skull-stripped images were 

cropped using the bounding box of the non-zero area. The z-score normalization was also 

applied to all non-zero voxels before feeding the data to the generative model training 

process.

2.2 Generative models

The skull-stripped images and the corresponding tumor masks were adjusted for size by 

randomly scaling and zero-padding. This process aimed to create volumes of 128 × 128 × 64 

voxels, representing the x, y, and z dimensions of the 3D MR dataset. In addition, flipping 

was also used as an additional augmentation technique for training both autoencoder 

and diffusion models. The autoencoder model consists of an encoder, a decoder, and a 

discriminator network.2 The encoder reduces the dimensions of input images from (4 × 128 

× 128 × 64) to a lower-dimensional latent space of (8 × 32 × 32 × 16). The decoder then 

reconstructs the MRI image from this compressed latent representation. Kullback-Leibler 

(KL) regularization was employed to slightly enforce the learned latent vectors towards a 

standard normal distribution.2 We introduced the Structural Similarity Index (SSIM) loss,5 

a metric quantifying structural similarity between two images, to ensure the preservation of 

overall structure and perceptual details in the reconstructed MRI images. The autoencoder 

model was trained using a combination of perceptual loss,6 pixel-level L1 loss, and SSIM 

loss.

After achieving satisfactory results with the autoencoder model in generating high-quality 

reconstructed MRI images, we proceeded to train the diffusion model (DM). The DM 

consists of two main processes: the forward diffusion process, which adds noise to the 

latent-space features using a discrete-time diffusion schedule13 with 1000 steps, and the 

backward process of denoising using the UNet backbone.4 Our study focused on using 

the DM to learn conditional data distributions in the latent space. To achieve this, the 

conditional brain tumor mask first underwent a conditional module that downsampled it to 

match the latent space dimension (32 x 32 x 16). The resulting downsampled mask was then 
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concatenated with the latent space features. To guide the learning process with respect to 

the conditional mask, cross-attention modules were integrated into the UNet backbone of the 

DM. These modules facilitated the learning of class-dependent data distribution based on the 

semantic information provided by the conditional mask.

3. RESULTS

3.1 Autoencoder quality

We first evaluated the quality of the images reconstructed through the autoencoder model. 

Figure 1 depicts the original and reconstructed images achieved via the autoencoder. We 

observe that the autoencoder effectively preserved details during the image reconstruction 

process.

Table 1 shows the qualitative evaluation outcomes of the reconstructed images obtained 

by the autoencoder. To assess image quality and similarity between the original and 

reconstructed images, we employed metrics including Peak Signal to Noise Ratio (PSNR), 

Structural Similarity Index (SSIM), Mean Absolute Error (MAE), and Perceptual Loss. 

These metrics were calculated using a set of 50 test images. The quantitative analysis 

underscores that the autoencoder generated high-quality reconstructed images, even when 

subjected to a 32-fold compression factor.

3.2 Image Generation with 3D Multi-contrast Latent Diffusion

Figure 2 shows two examples of the synthetic images generated by our condition 3D LDMs. 

The conditional tumor masks were denoted by the transparent red area overlaid on the T1 

sequence. The LDMs effectively generate brain tumor MRI samples, aligning the tumor 

locations with the provided masks. The generated samples also exhibit diversity despite 

having only a single mask as input. Figure 3 presents 6 samples of T1C MRI sequence, 

generated by the LDMs employing an identical mask.

To evaluate the realism of the synthetic images, we employed the Fréchet Inception Distance 

(FID), a widely used metric to estimate the distances between feature representations of 

synthetic and real images. A smaller FID indicates greater similarity in distribution between 

the real and generated images. FID was calculated for each MRI sequence using a set of 

500 generated samples and 500 real samples. We compared the synthetic image quality 

generated by two LDMs, each utilizing a UNet backbone with base channel sizes of 256 

and 352, respectively. The quantitative results demonstrated that employing the larger UNet 

enhances the visual fidelity of the generated samples.

4. CONCLUSIONS

This study presents the development of conditional LDMs to generate 3D multi-contrast 

brain tumor MRI data. Our models were trained on a dataset consisting of MRI scans of 583 

glioma patients. The models effectively produced high-quality multi-contrast MRI samples 

of brain tumors with the tumor location aligned by the input condition mask. This work has 

promising implications as it can alleviate the scarcity of brain tumor data and enhance the 

performance of deep learning models employing brain tumor MRI data.
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Figure 1. 
Comparison of the original and reconstructed images obtained by the autoencoder. The top 

row depicts the original images, while the bottom row shows the images that have been 

reconstructed by the autoencoder.
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Figure 2. 
Synthetic images generated by the conditional 3D LDMs. The transparent red area indicates 

the whole tumor mask used as a condition for the LDMs.
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Figure 3. 
Different T1C samples generated by LDMs using the same whole tumor mask.
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Table 1.

Qualitative evaluation results of the reconstructed images obtained by the autoencoder.

MRI Sequence PSNR ↑ SSIM ↑ MAE ↓ Perceptual loss ↓

T1 30.9 0.84 0.069 0.046

T1C 34.8 0.96 0.037 0.051

T2 32.5 0.94 0.049 0.040

FLAIR 32.9 0.91 0.046 0.062
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Table 2.

Qualitative evaluation results of the synthetic images obtained by two LDMs with the UNet base channel sizes 

of 256 and 352, respectively. For each MRI sequence, FID scores were calculated using a set of 500 synthetic 

samples and 500 real samples.

FID ↓

T1 T1C T2 FLAIR

LDMs - 256 112.76 50.9 46.01 45.77

LDMs - 352 23.01 17.14 26.43 32.42
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