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ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to noninvasively quantify perfusion dynamics in
tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data
science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we devel-
oped a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfu-
sion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ
and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity
in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and intersti-
tial transport in tumors and patients. We expect that our method will contribute to the better understanding of cancer progression and thera-
peutic response.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0190561

INTRODUCTION

Interstitial fluid transport is intrinsically linked to the movement
of drugs, nutrients, and cells in tissues and is, therefore, especially
important for understanding cancer physiology. Cancers in any tissue
develop aberrant transport that can affect the movement of drugs into
and through tumors. Interstitial fluid flow, in particular, has been iden-
tified as a driving force in tumor cell invasion into surrounding healthy

tissue.1–4 Interstitial flow can also change the surrounding microenvi-
ronment, activating fibroblasts,5,6 directing immune cell behavior,7–11

and inducing angiogenesis.12,13 As such, understanding interstitial
flows and interstitial transport is vital to understanding disease pro-
gression and therapeutic application strategies,14,15 though measuring
the interstitial fluid flow field noninvasively has remained a challenge,
particularly in situ and in 3D.
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Contrast-enhanced magnetic resonance imaging (MRI) has pro-
vided clinical benefit for cancer treatment for many decades.16 Given
its noninvasive nature and ability to image soft tissues, which are usu-
ally difficult to see with other imaging technologies, MRI has become a
staple of diagnosing, planning, and providing prognosis in several can-
cer settings, especially in brain.17–19 Importantly, MRI allows acquisi-
tion of physiologically relevant information in both space and time,
and therefore, represents one of the best methods for studying dynam-
ics in situ and in 3D. Over two decades ago, a version of MRI called
dynamic contrast-enhanced (DCE-MRI) was developed to allow the
study of tissue vasculature.20 A DCE-MRI experiment measures signal
enhancement due to the presence of an intravenously injected para-
magnetic contrast agent in the region of interest. In practice, a series of
images are acquired over time, capturing the signals before, during,
and after the contrast agent reaches the target tissue, allowing for both
visualization and quantification of vasculature in space and in time.
Thus, DCE-MRI offers an improved strategy for studying interstitial
flows and interstitial transport.

Existing data processing approaches for physical interpretation of
contrast enhancement data from DCE-MRI use ordinary differential
equation (ODE) models applied to individual voxels, though this
method largely fails to incorporate the rich spatial data provided by
the modality.21 Few methods exist for quantifying the spatially varying
effective diffusion coefficient of contrast agent in DCE-MRI,22,23 and
similarly few attempt to quantify and investigate interstitial fluid flow
(i.e., advection) within the tumor.24–27 While there do exist MRI
sequences which directly measure interstitial fluid velocity, they strug-
gle with separating vascular flow from interstitial flow and require
additional imaging sequences to be applied, significantly increasing the
time a patient spends in the scanner.28,29 Given that DCE-MRI is
becoming a standard clinical practice and novel methods for its acqui-
sition are being actively developed,30 there is growing opportunity to
utilize it for studying interstitial flow, without the need for requiring
more time in the scanner.

Here, we develop a strategy that overcomes these limitations by
integrating DCE-MRI with a method developed for the discovery of

equations governing time-series data through the concept of function-
space regression, known in data sciences as sparse identification of non-
linear dynamics (SINDy).31 Given that the time- and space-resolved
data obtained by DCE-MRI is often noisy,32 we utilized a variation of
SINDy which leverages the weak form of governing equations to provide
an efficient and accurate method for parameter estimation from noisy
data.33,34 Weak-formmethods bypass the use of discrete approximations
of derivatives on noisy or sparse data, which are used by the original
SINDy implementation31 or gradient descent methods used in Jacobian
estimation for standard ODE-fitting techniques.24–26 The key insight
from weak-form methods is the integration of raw data with known
basis functions and their derivatives, selected for the problem at
hand.33,34 However, existing weak-form methods recover global partial
differential equation (PDE) coefficients and do not recover spatially
varying parameter fields, including IFF. One variation of SINDy, SINDy
for boundary value problems, recovers spatially varying PDE coeffi-
cients;35 however, it does not utilize the weak form of the PDE. In the
present study, we apply weak-form function regression on localized
patches in the MRI region of interest, recovering a spatially varying field
of PDE coefficients from noisy data. We abbreviate this method as local-
ized convolutional function regression (LCFR). We assumed that
the dynamics of contrast agent transport are governed by an advection-
diffusion-reaction PDE, with vascular input forcing function (VIF), and
an unmixed enhancing plasma-compartment, consistent with extended
Tofts–Kety intra-voxel transport, advective and diffusive inter-voxel
transport [Equation (1), Fig. 1(a)]. These model terms are then esti-
mated as the coefficients, obtained by regression with the function
library in Equation (2). This method allows for using domain-specific
knowledge to constrain the function library and inform its physical
interpretation, and rapid, accurate recovery of spatially varying PDE
coefficients within the original image context, and does so efficiently
with simple regression. We validate the method on simulated data as
well as experimentally in a hydrogel model. Furthermore, we demon-
strate that our method works well with data obtained in vivo using a
mouse xenograft model and show the clinical potential by examining
fluid dynamics in human glioblastoma brain tumors and breast cancer

TABLE I. Description of in silico simulation parameters.

Simulation Diffusion coefficient Velocity field Source dynamics Explicit FDM time step (dt)

Divergent flow 0.75mm2 s–1 ux ¼
ffiffiffi
2

p

2
signðxÞ mm s�1

uy ¼
ffiffiffi
2

p

2
signðyÞ mm s�1

None 0.125 s

Poiseuille shear 0.75mm2 s–1 uy ¼ 0 mm s–1

ux ¼ 2:5
1� yð Þ2
322

mm s�1

None 0.125 s

Extended Tofts-Kety 0 0 Ktrans(1/s): Quadrant 1¼ 0.1
Quadrant 2¼ 0.2
Quadrant 3¼ 0.4
Quadrant 4¼ 1

ve ¼ 0.5
vp ¼ 0.05

3.75 s
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datasets.36,37 Our approach to DCE-MRI data processing offers a fast
and accurate strategy for studying interstitial flows and general fluid
transport in space and time in vivo.

Localized convolutional function regression

We designed the parameter estimation method to handle the
partial differential equations (PDEs) relevant to DCE-MRI, for
performing localized convolutional function regression to
recover spatially varying fluid transport parameters [Fig. 1(a)].
Briefly, we assumed that the dynamics of contrast agent transport
are governed by an advection-diffusion-reaction PDE, with vas-
cular input forcing function (VIF), and an unmixed enhancing

plasma-compartment (vp), consistent with extended Tofts–Kety
intra-voxel transport (Ktrans; Kep), advective (~u) and diffusive (D)
inter-voxel transport:

@tc ¼ r � Drcð Þ � r � ~u � cð Þ þ KtransVIF � Kepcþ vp@tVIF: (1)

A mapping between the coefficients and the terms of the full
expansion of equation (1) can be found in the supplementary material.
We then projected the concentration of contrast agent, cðX; tÞ, onto
smooth, 4D polynomial basis functionsWðX; tÞ, with compact support
in x, y, z, and t (supplementary material, Fig. S4). After the data are
projected onto basis functions, we perform a spatially localized regres-
sion of the following form:

FIG. 1. LCFR methodology and validation with in silico phantoms. (a) Methodology of localized convolutional function regression (LCFR), wherein spatiotemporal contrast agent
concentration data are convolved with a smooth basis-function and its derivatives, divided into 3 � 3 � 3 (x, y, z) windows. The coefficients of the factored transport PDE are
then solved for using linear regression. (b) Validation of LCFR coefficient ~nu on a divergent flow field (initial condition, white) with spatially invariant diffusion and the true direc-
tion and magnitude of velocity denoted in red bars. (c) Validation of LCFR on a Poiseuille shear flow field with spatially invariant diffusion (initial condition, white) and the true
direction and magnitude of velocity denoted in red bars.
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ect ¼ H c X; tð Þ; VIF X; tð Þð ÞN; (2)

where e� indicates convolution of the data onto basis functions or their

derivatives, denoted as ef ¼ hf X; tð Þ;WðX; tÞi and ef q ¼ �hf X; tð Þ;
@qWðX; tÞi, respectively [supplementary material, Eqs. (21) and (22)]
The model regression problem is performed on each voxel in the
region of interest by sampling the weak derivatives in the function
library at each (x, y, z) 3� 3� 3 window centered at that voxel, and at
all time points. The matrixH c X; tð Þ; VIF X; tð Þð Þ is populated by sam-
pling the polynomial projections of the data at each measurement
point in the 3 � 3 � 3 window, forming the columns of

H ¼ ½ecxx;ecyy;eczz;ecx;ecy;ecz ;ec;gVIF ;gVIFt �. The model regression prob-
lem is solved locally in space, independently on each 3 � 3 � 3 pixel
window, over all time, to recover the spatially localized vector N, which
consists of coefficients of the governing equation (1) at each position
in space as N ¼ nD;x; nD;y; nD;z; nu;x; nu;y; nu;z ; nep;

�
ntrans; nVIF�T .

Details of test function construction and hyperparameter selection
may be found in the supplementary material.

This method allows for using domain-specific knowledge to con-
strain the function library and inform its physical interpretation, and
rapid, accurate recovery of spatially varying PDE coefficients within
the original image context, and does so efficiently with simple regres-
sion. Below, we assess the accuracy of this method using multiple
examples.

RESULTS
LCFR accurately estimates transport parameters
from simulated data

To validate our approach, we first examined whether our meth-
odology can recover local PDE coefficients in silico from forward
model simulations. An advection-diffusion model was used to generate
two flow patterns (Table I). The first model we considered is a radially
diverging flow field [Fig. 1(b)], which was chosen because it simulates
the outward flow typically expected of a high-pressure tumor and will
test the method’s ability to distinguish advective and diffusive disper-
sion. The second model we implemented was a Poiseuille shear flow
[Fig. 1(c)], a standard case of incompressible flow in a pipe or blood

vessel, with a well-studied spatially varying velocity field. In both cases,
LCFR accurately recovers the direction and magnitude of the flow field
after addition of 0.1% noise (% maximum signal), with root mean
squared error (RMSE) of 1.02 � 10�1mm/s for divergent flow, and
RMSE¼ 4.63 � 10�1mm/s for Poiseuille flow. To study the relation-
ship between error and noise, we repeated this analysis with the addi-
tion of noise at multiple levels. For the outward flow scenario
[Fig. 1(b)], the median error in velocity was 39.8% at 10% noise, 11.2%
error at 1% noise, and less than 10% error at noise levels less than 1%
(supplementary material, Fig. 9). For the Pouiselle flow scenario
[Fig. 1(c)], the median error in velocity was 52.3% at 10% noise and
converged to 10.1% error at noise levels less than 1% (supplementary
material, Fig. 9). Full parameter error convergence plots for all compu-
tational scenarios may been seen in the supplementary material, Fig. 9.
Of note, we removed edge effects due to the Gibbs phenomenon from
the visualization and analysis.

To test the ability of the method to identify the transport rate con-
stant Ktrans and vascular volume fraction vp, we simulated the extended
Tofts–Kety dynamics with spatially varying perfusion, Ktrans, and con-
stant vascular volume fraction, vp ¼ 5.00� 10�2, and 0.1% noise. In this
scenario, Ktrans was accurately estimated by the coefficient ntrans
(RMSE¼ 1.54 � 10�1 1/s), while the measurement of the plasma vol-
ume fraction vp (RMSE¼ 3.89 � 10�1) was observed to be influenced
by the transport rate Ktrans (see the supplementary material). We also
compare our method against other methods in the literature for accu-
racy in estimation of Ktrans. At 5% noise, across 100 instantiations of
noise, the median relative error in Ktrans was measured to be 17.2%
(IQR 11.6%–23.8%). A comparison of computational walltime, hard-
ware, and accuracy are summarized in Table II. It is important to note
that the most comparable methods are the finite element PDE22 and
PINN38 methodologies, but neither of these methodologies incorporate
advective transport. Taken together, our in silico validation demonstrates
the ability of our method to accurately capture both the direction and
magnitude of different fluid velocity fields. We showed that sharp
changes in the field can be smoothed out by the basis functions, though
the resulting fields are consistent with the true velocity fields. We also
demonstrate measurement of Tofts–Kety-like dynamics, wherein ntrans

TABLE II. Comparison of Ktrans measurement accuracy and walltime across inversion methods.

Inversion method
Accuracy in Ktrans

(rSNR ¼ 5%) Walltime per subject Hardware used Source

LCFR 17.2% (median,
computational

domain) (present work)

1.5min (3D volume,
mouse subject,

128 � 128 � 12 voxels,
50 time points) (present work)

2.3GHz 8-Core Intel Core i9,
32 GB 2667MHz DDR4 RAM

(present work)

Present work

Voxel-wise Extended
Tofts-Kety ODE
Inversion

18.9% (median)22

55% (mean)38
101min (3D volume,

mouse subject,
128 � 128 � 12 voxels,

50 time points) (present work)

2.3GHz 8-Core Intel Core i9,
32 GB 2667MHz DDR4
RAM (present work)

Sainz-DeMena et al.,22

van Herten et al.,38

Present Work

Finite element
PDE Inversion

23.9% (median)39 10 h (2D computational domain,
360 time points on 955 nodes)22

24 CPUs and 32GB RAM22 Sainz-deMena et al.,39

Sainz-deMena et al.22

PINN 6.3% (median)39 30min (2D computational domain,
60 points in space,
360 points in time)39

NVIDIA RTX 3070 GPU,
32 GB RAM, and

Intel i7-11700K CPU39

Sainz-de Mena et al.39
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accurately estimates Ktrans. This gave us confidence to further validate
LCFR in vitro, in vivo, and using clinical data.

LCFR accurately measures the mean contrast velocity
in porous hydrogel

We next validated the methodology in vitro, by administering a
bolus of contrast agent on top of porous hydrogel with a pressure head
forcing the contrast agent through the gel [Fig. 2(a)]. DCE-MRI was
acquired at 30 s time intervals, and signal intensity was converted to con-
trast agent concentration using T1-mapping. LCFR was applied to the
resulting concentration field. We manually estimated the velocity of the
contrast agent front (~uj j ¼ 1.14� 10�3mm/s) [Fig. 2(b)] and compared

it to the LCFR-estimated 3D velocity j~nu j within the hydrogel

(j~nu j ¼ 1.32 � 10�36 8.20 � 10�4mm/s) [Figs. 2(b)–2(e)]. The mean
measured diffusivity within the gel n�D was measured to be n�D ¼ 1.48 �
10�46 7.35 � 10�6 mm2/s (N¼ 3). This analysis was performed on
multiple replicates, and the mean error associated with the method was
15.2% 6 1.08% (N¼ 3) [Fig. 2(e)]. Overall, these results illustrate that
using LCFR results in accurate estimation of 3D velocity and diffusivity
in a controlled system, where there are reliable methods for estimating
the true velocity rate and literature-characterized diffusivity. From these
findings, we began investigating the results of our methodology in vivo.

Evans blue leakage corresponds to elevated LCFR-
measured perfusion kinetics in a murine glioma model

Encouraged by the results from in silico and in vitro analysis, we
subsequently validated the method in vivo. Six mice (N¼ 6) implanted
with a mouse glioma cell line (GFP-GL261) in the brain underwent
DCE-MRI with isometric spatial resolution of 0.2mm, at 7 and 14 days
post-implantation. After imaging on day 14, the mice were injected
with Evans Blue to quantify perfusion, and brains were harvested and
stained for visual comparison to LCFR outputs [Figs. 3(a)–3(d)]. For
comparison to histology, the estimated perfusion ntrans is overlaid on
the central tumor slice of the T1-weighted image [Fig. 3(e)]. The mean
value of ntrans was then compared to the mean area coverage of Evans
Blue after venous infusion, and is observed to be positively correlated
with the mean tumor perfusion rate constant, ntrans, across all mice
(r¼ 0.507, P¼ 0.038, N¼ 17, two-tailed Pearson correlation)

[Fig. 3(f)]. The resulting 3D interstitial velocity field, ~nu , is displayed
over the native post-contrast T1 weighted volume, highlighting that
LCFR is readily applied on 4D data [Fig. 3(g)]. The measured velocity
~nu
�� �� remained constant from ~nu

�� �� ¼ 1.35� 10�36 7.04� 10�4mm/s

on day 7 to ~nu
�� �� ¼ 1.63 � 10�36 4.04 � 10�4mm/s on day 14

(P¼ 0.218, N¼ 6, two-tailed Wilcoxon test) [Fig. 3(h)]. The fluid rate
transfer constant, ntrans, increased from 2.70� 10�26 8.65� 10�3 1/s

FIG. 2. LCFR predicts interstitial fluid velocity in hydrogel phantoms. (a) Experimental setup, wherein a bolus of contrast agent is administered onto a porous hydrogel
and drains through due to a hydraulic pressure head. (b) Method of estimating the mean flow velocity of the contrast agent front, using the difference between the initial contrast
location (green), and final contrast location (pink), resulting in an estimated contrast agent velocity of 1.14 � 10�3 mm/s. (c) The estimated in-plane interstitial flow velocity
direction overlaid on the final T1-weighted image. (d) The local 3D magnitude of interstitial flow velocity within the hydrogel. (e) Histograms of three replicate gels, comparing the
3D magnitude of flow velocity within the hydrogel, with the blue line indicating the estimated contrast front velocity, and the red line indicating the mean velocity of the distribution
as measured by LCFR.
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on day 7 to 5.08 � 10�26 1.84 � 10�2 1/s on day 14 (P¼ 0.063,
N¼ 6, two-tailed Wilcoxon test) [Fig. 3(1)]. These results demonstrate
that LCFR can noninvasively detect individual variation of perfusion
and flow, as validated with histology.

LCFR-measured interstitial fluid velocity varies
between breast and brain cancers

To investigate the differences in interstitial fluid flow between
cancers in different tissues, we applied LCFR to clinical DCE-MRI in a
cohort of post-resection treatment naïve glioblastoma patients and a
cohort of treatment-naïve breast cancer patients. In the glioblas-
toma cohort, 20 patients with recurrent disease who underwent
DCE-MRI imaging between January 2020 and July 2022 were
selected from the radiology records at City of Hope National
Medical Center. The glioblastoma patients underwent DCE-MRI
on average 32.3 days after resection and prior to receiving
additional therapy. The breast cancer cohort consisted of 13
treatment-naïve patients from the Quantitative Imaging Network

BREAST-02 study.37 In each dataset, the enhancing lesion was
manually segmented, and LCFR was run to investigate the popula-
tion fluid dynamical profile. In these cohorts, we measured the flow

velocity, ~nu
�� ��, in breast tumors (1.03� 10�16 3.10� 10�2 mm/s) to be

significantly faster than that in brain tumors (6.81� 10�26 1.99� 10�2

mm/s) (P< 0.001, Nbrain¼ 20, Nbreast¼ 13, and two-tailed Mann–
Whitney test). A representative patient from both breast and brain
cohorts as well as a statistical comparison between these two groups
may be found in Fig. 4. These preliminary results indicate that can-
cers of different organs and cellular origins may present with differ-
ent flow profiles and may provide novel methods for explaining
differences in disease progression and treatment response. These
results warrant further exploration, which is outside the scope of
this initial reporting of our novel methodology.

DISCUSSION

Interstitial fluid transport plays a key role in many processes con-
nected with cancer physiology, tumor microenvironment, tumor

FIG. 3. LCFR-measured perfusion is correlated with Evans Blue coverage in vivo. (a)–(d) Representative coronal IHC stains through the central tumor slice (top row) and MR
resolution-matching intensity projection (bottom row), consisting of DAPI (a), GFP-expressing GL261 cells (b), Evans Blue (c). (d) Merge of all IHC demonstrating tumor hetero-
geneity. (e) Estimated perfusion field, ntrans, overlaid on post-contrast T1-weighted image. (f) Scatter plot depicting the correlation and 95% confidence interval of linear regres-
sion between mean tumor perfusion as measured by DCE-MRI (ntrans) and Evans Blue Coverage (mean tumor stain intensity), for N¼ 17 histology slices. (g) 3D velocity
vector field of estimated interstitial velocity ~nu , overlaid on the 3D T1 post-contrast volume. (h) and (i) Violin plots depicting the estimated velocity magnitude (h) and perfusion
(i) for six animals imaged 7 and 14 days after tumor implantation.
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immune response, as well as the response of cancer to treatment.
However, physical and physiological properties of interstitial flows and
transport remain difficult to study and understand. Here, we describe
a novel methodology for analyzing DCE-MRI data, which allows for
accurate, noninvasive measurement of fluid dynamics in living tissues.
The methodology leverages the rich spatial and temporal data
provided by DCE-MRI to enhance our understanding of tissue
fluid dynamics. In prior studies, DCE-MRI-derived imaging bio-
markers, including Ktrans and Kep, have been shown to be prog-
nostic and diagnostic and are used for inputs to predictive
models.40,41 By refining our understanding of perfusion and fluid
transport within tumors to include interstitial transport, we
expect to provide additional clinical benefit beyond standard
kinetic parameters.

We have validated our approach using synthetic and experimen-
tal data, both in vitro by following the flow of contrast agent in a
hydrogel and in vivo by using a mouse model of glioblastoma. We also
demonstrate application of LCFR to human MRI data routinely col-
lected in the clinic from patients with either breast or brain cancer.

The present methodology measured the mean interstitial fluid
velocity of breast tumors to be 1.03 � 10�16 3.10 � 10�2mm/s vs
6.81 � 10�26 1.99 � 10�2mm/s as measured in brain tumors
(Fig. 4). It is commonly assumed in the literature that interstitial fluid
velocity is governed by Darcy’s Law:42 ~u ¼ �K � rp, where the fluid

velocity, ~u, is proportional to the gradient of fluid pressure, p, by the
hydraulic conductivity of the tissue, K. K is thought positively correlated
with tissue apparent diffusion coefficient of water (ADC).43 As the ADC
of healthy breast tissue (1.366 0.16 � 10�2 mm2/s44) is higher than
healthy ADC of brain tissue (0.846 0.11 � 10�3mm2/s45), it is reason-
able to hypothesize that this difference between the two organs explains
the difference in fluid velocity measured by our method. Furthermore,
as restricted velocity can result from denser tumors, fluid velocity may
be a parallel way to measure individual-specific tumor properties and
may be used in the future as a prognostic or diagnostic feature to nonin-
vasively grade tumor aggression.

LCFR was able to accurately measure the mean 3D flow velocity of
contrast agent forced through a hydrogel, and yielded mean diffusivity
in the gel, n�D , consistent with diffusivity measurements reported previ-
ously.46,47 However, if we compare our results obtained using LCFR to
process DCE-MRI mouse data (1.35� 10�36 7.04� 10�4mm/s) with
results from recent studies that used phase-contrast imaging to directly
measure fluid velocity within tumors (1.10 � 10�16 5.5 � 10�4 and
1.10 � 10�16 5.5 � 10�4mm/s),28,29 we find some discrepancy, likely
due to contribution from vascular flow, which could not be disambigu-
ated from tissue interstitial fluid flow in the phase-contrast methods
resulting in higher values.24,25,36,37 In the present study, the bolus arrival
time is corrected for in each voxel, thus minimizing the contribution of
vascular velocity in the total velocity field. Additionally, we demonstrate

FIG. 4. LCFR captures differences in fluid transport between breast and brain cancers. (a) and (b) Representative post-contrast T1-weighted image of central slice of residual
glioblastoma 2 weeks after resection surgery. (b) Detail of tumor and resection cavity, with overlay of the estimated velocity direction, ~nu . (c) and (d) Representative post-
contrast T1-weighted image of untreated primary breast cancer lesion. (d) Detail of the enhancing tumor, with overlay of the with overlay of the estimated velocity direction, ~nu .
(e) Distribution of the in-plane velocity of the entire enhancing glioblastoma and resection cavity (mean¼ 5.23 � 10�16 5.10 � 10�1). (f) Distribution of the in-plane velocity
of the entire enhancing breast tumor (mean¼ 1.19 � 10�16 1.06 � 10�1). (g) Mean fluid velocities for brain (mean¼ 6.81 � 10�26 1.99 � 10�2 mm/s, N¼ 20) and breast
data (mean¼ 1.03 � 10�16 3.10 � 10�2, N¼ 13), with whiskers indicating mean and 95% confidence interval.
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that the spatial gradient of diffusion is structurally unidentifiable from
true advective transport and may, thus, artificially increase the apparent
velocities observed in past studies and others directly measuring advec-
tive transport (supplementary material). These confounding factors may
contribute to higher apparent velocities measured by methods which
utilize higher temporal resolution data or do not account for diffusive
and advective transport separately, thus explaining the observed
discrepancy.

Our methodology has several advantages over traditional model
inversion methods used to parameterize DCE-MRI data, foremost that
it is readily applied in native 4D, instead of individual z-slices, allowing
for simultaneous estimation of both inter- and intra-voxel fluid trans-
port parameters. Moreover, LCFR is able to handle noise due to the
use of smooth polynomial basis functions and performs similarly to
other model inversion methods for DCE-MRI, and is computationally
more efficient (Table II). Our method is highly efficient, utilizing the
fast Fourier Transform for convolution with basis functions and linear
regression for the recovery of local PDE coefficients. Finally, our
method allows for a direct calculation of parameters of a PDE from the
original data, agnostic of spatial and temporal resolutions, and without
the need for iterative forward-PDE solutions required for PDE inverse
problems.48,49

While these advantages are useful for this type of data, they do
come with tradeoffs which limit the performance of the method. For
example, our method uses a pre-defined library of functions to charac-
terize the dynamics (H), instead of an extensive library of hypothetical
functions and polynomial combinations of partial derivatives. This is
largely because neither the higher-order and spatial cross-derivatives,
nor products of these terms are readily interpretable with respect to the
physics at hand, and storage of each of these 4D arrays may be
memory-expensive. Additionally, we utilize L2 regression for simplicity
and efficiency, as opposed to sparse objective functions such as LASSO
or SR3, which are typically used in model discovery frameworks.34,50

For this reason, we refer to our method as function regression, instead
of model discovery, as it utilizes a set library constructed from prior
knowledge of the physics problem at hand. Some of the PDE parame-
ters are unidentifiable given the structure of the underlying PDE and
characteristics of the vascular input function. Furthermore, due to the
nature of any overdetermined regression problem, the models recovered
may not be unique. This is especially the case for model discovery meth-
ods which utilize L1 or SR3, as the discovered model strongly depends
on the sparsity parameters used to enforce parsimony. While the pre-
sent methods may not yield unique results for each individual spatial
window, these results consistently indicate the presence of directed
transport within tumors and allow for the accurate measurement of
transport parameters in vitro and within living tissue.

CONCLUSION

In this work, we present a data processing framework tailored
specifically to the unique needs of DCE-MRI for studying fluid
dynamics in living tissues. These developments were fueled by our
interest in understanding interstitial fluid flow and transport, as a key
contributing factor influencing cancer biology, progression, and
response to therapy. Given the lack of tools in this area, our contribu-
tion will be of significant interest to the community. In our strategy,
we employ approaches from data science and integrate them into
DCE-MRI data analysis framework, which allowed us to process and
analyze noisy data rapidly in situ. Importantly, in an in vivo mouse

study, we noninvasively capture individual variation in tumor perfu-
sion and interstitial flow over time and find that perfusion estimated
by this noninvasive method are consistent with measures of perfusion
and vascular density measured from tissue histology. Finally, we find
that fluid velocity magnitude in brain and breast cancers differ signifi-
cantly, finding the measured velocity to be greater in breast than in
brain. These results support use of our method in measuring both var-
iations across individuals and between diseases of different origins,
providing a novel method for studying the underlying physiology, and
demonstrating the application of this novel methodology to routinely
collected clinical imaging.

METHODS
In silico forward methods

Forward PDE models of advection, diffusion, and source of con-
trast in tissue are implemented using the two-dimensional finite differ-
ence method on a 64 � 64mm2 grid, with Dx ¼ Dy ¼ 1mm, with
explicit time stepping. The boundary conditions are Dirichlet such
that (cðX; tÞ@X ¼ 0). After the simulation is finished, 100 instantia-
tions of noise was applied for each of ten noise levels Nstrength, spaced
evenly in log10 space from 10�9 to 1. The noise is additive and nor-
mally distributed with standard deviation rSNR ¼ maxt c tð Þð ÞNstrength.

Collagen-hyaluronic acid hydrogel in vitro validation

350 ll rat collagen I (0.2%)-photo-crosslinkable hyaluronic acid
(0.4%) was pipetted into a 12mm tissue culture insert (Millipore,
Burlington, MA) and crosslinked for 45 s. Prior to imaging, 100 ll of
1� PBS was applied below the tissue culture insert in a collection cham-
ber. To induce flow through the gel, 300 ll of a 1:100 dilution of Gd-
DTPA (BioPal, Worcester, MA) in 1X PBS was administered atop the
gel. The contrast front velocity was measured by calculating the number
of pixels contrast traveled through the gel during the duration of MR
imaging [Fig. 2(a)]. The location of these sample points may be found in
supplementary material, Table 1. Dynamic contrast enhanced imaging
was performed according to methods for in vivo analysis (see Methods:
Magnetic Resonance Imaging, 3D DCE). A single T10 map was
acquired through VFA methods (see Methods: Magnetic Resonance
Imaging, 3D DCE), across three replicates, and the mean T10 value
within the gel was used for the T10 value across the three replicates to
calculate the concentration of Gd-DTPA within the hydrogel.

Description of cell lines

GL261-GFP cells were generated as previously described.3 Cells
were serially transduced with GFP lentivirus and purified by selection
with 2lg/ml puromycin (Thermo Fisher A1113803). Cells were main-
tained at 37 �C and 5.2% CO2 for at least three passages after thaw
with DMEMþ 10% Fetal bovine serum (ThermoFisher, Gibco). Cells
were resuspended at a concentration of 20 000 cells/ll in serum free
media for tumor implantation.

Description of in vivo animal studies

Three-month-old, male C57Bl/6 mice (n¼ 6, �25 g) were pur-
chased from Charles River. The animals were housed in a room main-
tained at 20–23 �C, 45%–55% relative humidity, and a 14-h/12-h light/
dark cycle with access to standard laboratory chow and water until the
experiment. Mice were anesthetized and connected to a stereotactic
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frame. A burr hold was drilled at stereotactic coordinates (�1.25, 1.25,
�1.91) with respect to lambda. 100000 GFP-Gl261 (NCI-DTP Cat#
Glioma 261, RRID:CVCL_Y003) cells were resuspended in 5ll and
injected via a Hamilton syringe and pump (World Precision
Instruments) at 1ll/min. The syringe was left for three additional
minutes following injection completion to prevent reflux. Tumors were
imaged with MRI on days 7 and 14 and tissues were harvested on day
15. Following inoculation, mice were provided wet food and hydrogel
for recovery, injected with 4mg/kg ketoprofen for 48h post inoculation,
and weighed every other day for the duration of the study. Mice were
allowed to live in group housing, with a max of four mice per cage.
Mice were separated if wounds appeared indicating aggressive behavior.

Small animal magnetic resonance imaging

Following anesthesia, a catheter was inserted into the lateral tail
vein. Mice were imaged with a 9.4T small animal MRI (Bruker,
Ettingen, Germany) equipped with a 20mm RF surface coil. Two con-
secutive T2-weighted images were collected to verify tumor presence.
The first image has high SNR to aid with MRI:IHC alignment for cryo-
sectioning; the second T2-weighted image has isometric voxels for regis-
tration to isotropic T1 images. T1 mapping was performed to collect
baseline intensity, followed by a 3D DCE T1-weighted FLASH
sequence. Six pre-contrast images were acquired before injecting gado-
linium (0.2ml/kg, BioPal). A T1-weighted post-contrast image was
acquired to confirm contrast enhancement. Imaging resolutions and
fields of view for small animal and hydrogel imaging may be found in
Table III. An extensive list of imaging parameters are included in Table
S2. After completion of MRI, mice were injected with Evans Blue at a
concentration of (1.6ml/kg) which was allowed to circulate overnight
before tissue harvesting.

Tissue harvest and immunohistochemistry (IHC)

Mice were euthanized and transcardially perfused with 4% PFA
in ice cold 1� PBS. Brains were post-fixed in PFA for 18 h and placed
in 30% sucrose until complete submersion. Afterward, brains were
placed in molds with O.C.T. Compound at �80 �C and sectioned at
12 lm on a cryostat. T2-weighted MRI images were used as a guide

during sectioning to inform which MRI slice corresponded to the col-
lected cryosectioned slice. Structural features (i.e., ventricles, white
matter, tumor shape) were used as visual aides to confirm location and
compared to the corresponding coronal MRI slice. Brain Secs. were
stained for DAPI (ThermoFisher) and imaged at 20� on an VS200
Olympus Slide Scanner (Olympus).

Immunohistochemistry comparison to MRI

To visually compare MRI to histology, all IHC stains were first
loaded into MATLAB, and then down-sampled to 0.2mm in-plane res-
olution to match the resolution of isotropic MRI. This down-sampling
was done using the blockproc function in MATLAB, summing the total
intensity of sub-pixels within the larger superpixels so as to maintain
the total image intensity. A ROI was drawn around the tumor region of
the DAPI stain, using the drawfreehand function in MATLAB, as well
as on the corresponding slice of post-contrast DCE-MRI.

Immunohistochemistry Evans Blue coverage
calculation

Evans Blue stains from individual animals were processed using
FIJI image processing software to calculate percent tumor coverage.
First, a threshold was applied, removing the lower 95th percentile of
the image intensity. A mask of the tumor was draw on the DAPI stain
to demarcate the tumor using FIJI’s “mask” functionality. This mask
was then applied to the Evans Blue stain, and the percent of voxels
greater than the 95th percentile intensity within the tumor ROI was
reported. The percent tumor Evans Blue coverage was then taken and
compared to the mean tumor intensity value of ntrans on an individual
animal basis, and the correlation and significance of the correlation
were determined using a Pearson correlation test.

Clinical imaging: QIN BREAST-02

The study of publicly available data were approved by the local
Institutional Review Board Protocol 15286. All 13 patients from the
QIN BREAST-02 dataset, provided by The Cancer Imaging Archive
(TCIA), were analyzed using LCFR. All patients (female, 18þ) were

TABLE III. Small animal and hydrogel MRI imaging parameters.

1. T2-weighted 2. T2-Weighted 3. T1 mapping 4. T1-weighted DCE 5. T1-weighted

Sequence RARE RARE RARE with varied TR FLASH FLASH
TE/TR 40/2600ms 40/2600ms TE: 7ms

TR: 5500, 3000, 1500,
800, 500, 300ms

4/21ms 3/180ms

Number of slices 16 12 12 1 (3D imaging) 16
Slice thickness (lm) 400 200 200 200 400
Rare factor 8 8 2 n/a n/a
Flip angle 90,180 90/180 90/180 25 70
FOV (mm2) 19.2� 19.2mm2 19.2 � 19.2mm2 19.2 � 19.2mm2 19.2 � 19.2 � 12mm3 19.2 � 19.2mm2

Matrix size 192 � 192 96 � 96 96 � 96 96 � 96 � 12 192 � 192
Repetitions 1 1 1 48 1
Averages 9 18 18 1 7
Time of acquisition 9min 21 s 9min 21 s 9min 16 s 24min 11 s 3min 1 s
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diagnosed with invasive breast cancer, with lesion size> 1 cm. Images
used were while all patients were treatment-naïve, though all patients
received treatment after initial imaging. The multi-flip T1 map and
DCE sequences, acquired on Phillips 3T scanners located at both
Vanderbilt University Medical Center and University of Chicago, were
used in this study.37 Image acquisition details can be found on the
TCIA website for the BREAST-02 study.

Clinical imaging: Glioblastoma patients

The retrospective study of City of Hope patient data was
approved by the local Institutional Review Board Protocol 15286. 20
patients who came to City of Hope National Cancer Center in Duarte,
CA, for advanced imaging after resection of glioblastoma between
January 2020, and July 2022, with residual enhancing lesion
size> 1 cm underwent DCE-MRI. Patients underwent imaging
between 3 and 135 days post-resection (mean¼ 32.3, median 28,
SD¼ 30.7). Scans were performed on a 3T Siemens scanner. The DCE
scan consisted of 3D FLASH sequence with prior variable-flip angle
T1-mapping. Variable Flip angles were acquired at 2�, 5�, and 10�, rep-
etition time¼ 9.3ms, and echo time of 4.29ms. The dynamic scan was
performed with 50 phases at 6 s temporal resolution, flip angle¼ 15�,
repetition time¼ 9.3ms, and echo time of 4.29ms. 8ml of Gadovist
(Bayer, Whippany, NJ) was administered during the sequence. The
size of the imaging FOV was 192� 132 in-plane (1.46mm resolution)
and 16 slices with 5mm slice thickness, identical between the dynamic
scan and variable flip angle scans.

DCE-MRI pre-processing

Each of the variable flip angle images and dynamic T1-weighted
images are rigidly registered to the first dynamic T1 image. From
images acquired using variable flip angles, a, a T10 map for each indi-
vidual was is calculated by regression:51

S tð Þ ¼ S0

1� exp � TR

T10 tð Þ
� �� �

sin að Þ

1� cos að Þ exp � TR

T10 tð Þ
� � : (3)

Here, S is the measured signal intensity, S0 is the baseline
non-contrast-enhanced signal intensity, TR is the repetition time,
T10 is the native T1 relaxation time of the tissue, and a is the flip
angle.

From the calculated T10 map,52 and the relaxivity (r1) of the con-
trast agent (Gadovist, 3.7 s�1 mM�1 for 3T, and 3.3 7 s�1 mM�1for
7T53) the sequential T1-weighted images are converted into a spatio-
temporal map of contrast agent concentration54 by

R1 ¼ r1Ct tð Þ þ R10; R1 ¼ 1
T1

; (4)

1
T1 tð Þ ¼

1
T10

þ r1Ct ; (5)

where R1 is the inverse of the T1-relaxation time, and R10 is the
baseline relaxation, or the inverse of the baseline T10 relaxation
time.

After calculation of contrast agent concentration, the local con-
trast bolus arrival time (BAT) is calculated by bilinear regression.55

Briefly, a sub-set of each individual voxel’s time-enhancement curve,
csample, is considered, from the initial time point to the time point with
maximal concentration of contrast agent. The points 0 and tf corre-
spond to the initial and final timepoints, and the point p1 corresponds
to a time points BAT � (0, tf). The BAT is determined to be the value
that minimizes the summed square error between the bilinear fit and
the data

BAT ¼ argminBAT R f i;BATð Þ � csample;i
� �2	 


; (6)

f i;BATð Þ ¼ m1t þ b1; t � BAT;

m2t þm1BAT; i > BAT:

(
(7)

An empirical vascular input function (VIF) is then measured using the
automatic-VIF selection algorithm detailed by Singh et al.56 Briefly,
this method selects voxels which are rapidly enhancing (BAT< 10 s)
and enhance within the upper 90th percentile of all voxels. The signal
intensity is then normalized and scaled to account for partial volume
effect and hematocrit. This method is utilized for the CoH GBM
patients, the QIN BREAST-02 dataset, and in vivo mouse model. The
individual-specific VIF is adjusted for each individual voxel such that
the BAT for the VIF matches the estimated BAT of the individual vox-
el’s enhancement time course, using [Eq. (6) and (7)].

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed descriptions of the
methodology, including mathematical formulation of LCFR, detailed
equations, pseudocode, experimental convergence analysis, technical
limitations, and full clinical data summary for all individuals included
in the presented analysis.
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