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The effect of higher education on intelligence has been
examined using longitudinal data. Typically, these studies
reveal a positive effect, approximately 1 IQ point per year of
higher education, particularly when pre-education intelligence
is considered as a covariate in the analyses. However, such
covariate adjustment is known to yield positively biased
results if the covariate has measurement errors and is
correlated with the predictor. Simultaneously, a negative bias
may emerge if the intelligence measure after higher education
has non-classical measurement errors as in data from the 1970
British Cohort Study that were used in a previous study of the
effect of higher education. In response, we have devised an
estimation method that used iterated simulations to account
for both classical measurement errors in the covariate and
non-classical errors in the dependent variable. Upon applying
this method in a reanalysis of the data from the 1970 British
Cohort Study, we find that the estimated effect of higher
education diminishes to 0.4 IQ points per year. Additionally,
our findings suggest that the impact of higher education is
somewhat more pronounced in the initial 2 years of higher
education, aligning with the notion of diminishing marginal
cognitive benefits.
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1. Introduction
Many studies have reported a positive effect of education on intelligence. A recent meta-analysis [1]
described three research designs, which examine the effect of education on intelligence at different
educational stages: (i) the effect of starting basic education a year earlier; (ii) the effect of extending
basic education by an extra year; and (iii) the effect of taking an additional year of higher education.
The meta-analysis reported that effects were smaller at higher stages of education: compared with
estimated gains of 5.23 IQ points for children having started school a year earlier, and 2.06 IQ
points for an additional year of basic education, the estimated gain from an additional year of higher
education was 1.20 IQ points. It has been argued that even small effects of education are ‘potentially of
great consequence’ [1, p. 1368]. But can we trust that there is even a small effect of higher education,
rather than none at all? The reason for our concern is a serious weakness in the research design.
Effects of basic education on intelligence have been studied using strong research designs in the

form of natural experiments. Studies of the effect of starting basic education a year earlier capitalize on
the school-age cut-off, that is, the fact that the year in which a child enters school depends on their date
of birth. Children that differ in age by a few months will differ in the time they have been in school
either by a full year or not at all. By comparing intelligence between these two cases, the effect on
children’s intelligence of having been an extra year in school can be estimated. Studies of the effect of
extending basic education by an extra year instead capitalize on policy changes in which the minimum
compulsory level of schooling is increased. Such policy changes lengthen the education of individuals
who would otherwise have attended school at the pre-existing minimum compulsory level. Through
comparison of the intelligence in pre-reform and post-reform cohorts, the effect on intelligence of
extending basic education by an extra year can be estimated.

Because higher education is not mandatory, there is no corresponding population-wide natural
experiment. Instead, studies of the effect of higher education on intelligence rely on longitudinal
observations. Unfortunately, it is difficult to obtain trustworthy estimates from observational data of
the effect of higher education on intelligence. The fundamental problem is to disentangle this effect
from the reverse effect of more intelligent young people being more likely to progress to higher
education levels, that is, a selection effect [2].

The standard method for dealing with the selection effect is to include a childhood measure of
intelligence as a covariate in a linear regression of intelligence on years of higher education. This is
the method used in all eight studies of the effects of higher education on intelligence included in the
meta-analysis by Ritchie and Tucker-Drob [1]. Unfortunately, the covariate method (cov) is likely to
yield a considerable overestimate of the effect of higher education on intelligence. The reason is that
the measure of intelligence taken in childhood has limited reliability as a measure of intelligence at
the start of higher education. The inclusion of childhood intelligence as a covariate will therefore only
partially remove the selection effect. The implication is that part of the selection effect will incorrectly
be counted as an education effect.

It has been known for half a century that the cov method to control for pre-treatment differences
will produce spurious findings when measures are unreliable [3,4]. However, published research on
the effects of higher education on intelligence rarely acknowledges the inherent bias and the possibility
that findings are spurious. None of the eight studies included in the aforementioned meta-analysis
attempted to account for the limited reliability of intelligence measures. This is a weakness of the
literature because there is a standard method for accounting for measurement errors, often called
errors-in-variables (eiv) regression [5]. This method can be applied to pre- and post-test designs like
the ones discussed here [6]. As estimates of the reliability of intelligence tests exist, it would be a step
forward to apply eiv regression in studies of the effect of higher education on intelligence.

Accounting for limited reliability may, however, be insufficient. Tests used to measure intelligence
may have other problems that cause further misestimation of the effect of higher education. Here, we
shall focus on one such problem that is present in the study by Ritchie and Tucker-Drob [1]. They
used data from a large cohort study that included a large intelligence test at age 10 and a more
limited numeracy assessment at age 34. The latter test was used as a measure of adult intelligence.
Although numeracy and intelligence are strongly correlated, they are not equivalent. It is possible
that the effect of higher education on numeracy differs from the effect on intelligence, but we cannot
examine this possibility without an independent measure of intelligence. Our working assumption will
be that numeracy and intelligence are in fact equivalent. Even under this assumption, estimates of the
effect of higher education will be biased when scores on the numeracy test are used to measure adult
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intelligence. The reason is the limited ability of the numeracy test to discriminate between different
levels of intelligence.
Specifically, while IQ scores are assumed to be normally distributed, the distribution of scores on

the numeracy test is discrete (only 23 levels) and left-skewed (see figure 1a). To see how this property
of the test biases results, consider children at the high end of the intelligence distribution. Because of
the selection effect, these children will be over-represented among those who receive a long higher
education. Any positive effect of higher education on their intelligence will go undetected because
they cannot get more than full points at the numeracy test. A general method to account for ceiling
effects in regression analyses is to use censored (also known as Tobit) regression [7]. However, for the
present problem, it is not sufficient to use censored regression because the problem is the discretization
as such and not just the ceiling effect. For example, not only the highest but also the second highest
level of numeracy scores corresponds to a wide range of IQ scores (see figure 1b). To deal with the
discretization problem, we may capitalize on the fact that, by the definition of IQ, we know that a
proper IQ test given in the adult population would have produced a normal distribution with the
same mean and standard deviation as the IQ scores in childhood. Thus, our dependent variable is a
discretization of a known normal distribution, and a regression method for this case is required.

This article aims to reanalyse a dataset previously used to estimate the longitudinal effect of higher
education on intelligence. We use the cov method, which is predominant in the field, as well as the eiv
method, which accounts for limited reliability. Further, we develop an iterated simulations model (ism)
which accounts for discretization of IQ test data. We compare the performance of these three models
on simulated data as well as on data used by Ritchie and Tucker-Drob [1].

1.1. A model of observed and latent variables
Figure 2 illustrates our model involving three observed and two latent variables. IQchild is IQ meas-
ured in childhood, HE is the length of higher education (years) and IQafter is adult IQ scores obtained
at some point after people would have completed their higher education using a test that results in a
discrete distribution of scores. Latent variables are IQstart, true IQ at the start of higher education, and
IQafterN, the normally distributed adult IQ score that would have been obtained had the adult test been
a proper IQ test. All IQ variables are assumed to be standardized to have a mean of 0 and s.d. of 15, so
that var(IQchild) = var(IQstart) = var(IQafterN) = var(IQafter) = 225. The variable for higher education (HE)
is measured in years but centred on the mean.

We write (i) after a variable when referring to the value for a specific individual i. The relationship
between IQchild and IQstart depends on a reliability parameter ρ,

(1.1)IQchild = ρ IQstart i + echild i ,

where the error terms echild(i) are assumed independently drawn from a normal distribution with
mean 0 and variance equal to var(IQchild) – var(ρIQstart).
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Figure 1. (a) The discrete distribution of the measure of intelligence after higher education used by Ritchie and Tucker-Drob [1].
(b) Segments of the normal distribution to which the different unique values of the discrete measure correspond.
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In the dataset we analyse, HE can only take the values 0, 2, 6 and 10. The selection effect is described
by a pair of parameter vectors NHE = (N0, N2, N6, N10) and MHE = (M0, M2, M6, M10), where Nl is the
number of individuals with HE = l and Ml is the expected value of IQstart among those individuals, that
is,

(1.2)Ml = E IQstart i | HE i = l .

The effect of higher education on adult IQ is assumed to be bHE IQ points per year of higher education.
Specifically, properly measured adult IQ is assumed to be described by the following linear model:

(1.3)IQafterN i = bHEHE i + bstartIQstart i + eafterN i ,

where the parameter bstart describes the contribution of IQ at the start of higher education to IQ
after higher education and the error terms eafterN(i) are assumed independently drawn from a normal
distribution with mean 0 and variance equal to var(IQafterN) – var(bHEHE+bstartIQstart).

The observed measure of adult IQ is a discretized version of IQafterN in which whole segments of
the normal distribution are mapped to the same value (figure 1b). We write this relationship as

(1.4)IQafter = Discretize IQafterN .

We may express IQafter(i) using the same form as equation (1.2),

(1.5)IQafter i = bHEHE i + bstartIQstart i + eafter i .

However, the error terms eafter(i) are not independently drawn. Instead, eafter is determined by IQstart,
HE and eafterN as follows:

(1.6)eafter = Discretize bHEHE + bstartIQstart + eafterN – bHEHE + bstartIQstart .

1.2. Estimating bHE from observed variables
The situation we consider is that we have data on the observed variables and assume that they have
been generated under the model described above. The goal is to estimate bHE and bstart by finding the
values of these parameters under which the model is expected to produce the observed covariances
between the observed variables.

1.2.1. The covariate method

In the special case of IQchild = IQstart and IQafter = IQafterN, the estimation goal would be achieved by
linear regression of IQafter on HE with IQstart as a covariate. As explained in any textbook on linear
regression [8], the resulting estimate for bHE and bstart are

(1.7)bHE cov =
var IQchild cov IQafter, HE − cov IQchild, HE cov IQafter, IQstart

var IQchild var HE − cov(IQchild, HE)2

and

(1.8)bstart cov =
var HE cov IQafter, IQchild − cov IQchild, HE cov IQafter, HE

var IQchild var HE − cov IQchild, HE 2 .
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Figure 2. The model. Variables in rectangles are observed.
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The crux is that the equalities IQchild = IQstart and IQafter = IQafterN do not hold in our model, so
equations (1.7) and (1.8) are expected to yield biased estimates.

1.2.2. The error-in-variables method

Now consider the special case of IQafter = IQafterN and the known reliability parameter ρ. When the
value of ρ is known, the error in IQchild can be corrected using eiv regression. The resulting estimates
for bHE and bstart are

(1.9)bHE eiv =
ρ2var IQchild cov IQafter, HE − cov IQchild, HE cov IQafter, IQchildρ2var IQchild var HE − cov(IQchild, HE)2

and

(1.10)bstart eiv = ρvar HE cov IQafter, IQchild − cov IQchild, HE cov IQafter, HEρ2var IQchild var HE − cov(IQchild, HE)2 .

These formulae have been used to adjust for the limited reliability of pretest scores in other contexts
[6,9]. Note that if we set ρ = 1 (perfect reliability) in these equations, we recover equations (1.7) and
(1.8). Thus, eiv regression is a generalization of linear regression. The crux is that the equality IQafter =
IQafterN does not hold in our model. As explained by texts on eiv regression [5], this method is derived
under the assumption that errors in the dependent variable are independent of the independent
variables. In our model, this assumption does not hold, because eafter depends on HE and IQstart as
shown in equation (1.6). Hence, equations (1.9) and (1.10) are expected to yield biased estimates.

1.2.3. The iterated simulations method

We shall now present a method to obtain unbiased estimates using an ism method. In appendix A, we
derive the following equations that correct the eiv estimates for dependencies between the error terms
eafter and the independent variables HE and IQstart

(1.11)bHE ism =
ρ2var IQchild cov IQafter, HE − cov eafter, HE − cov IQchild, HE cov IQafter, IQchild − cov eafter, IQchildρ2var IQchild var HE − cov(IQchild, HE)2 ,

(1.12)bstart ism = ρvar HE cov IQafter, IQchild − cov eafter, IQchild − cov HE, IQchild cov IQafter, HE − cov eafter, HEρ2var IQchild var HE − cov(IQchild, HE)2 .

Note that if we assume cov(eafter, HE) = 0 and cov(eafter, IQchild) = 0, we recover equations (1.9) and
(1.10). Thus, equations (1.11) and (1.12) generalize the eiv method. As the error terms eafter are not
observed, we cannot directly obtain estimates of bHE and bstart from these equations. However, given
initial estimates of bHE and bstart, we can simulate data on the error terms and use the equations to
update the estimates. This procedure can be iterated until the values have converged. This method of
iterated simulations is summarized in figure 3.

The first step is to make initial estimates of bHE and bstart using eiv regression (equations (1.9) and
(1.10)).

The second step is to simulate data on the latent variable IQstart to fit both the model and the
observed data on HE and IQchild. As shown in appendix A, this is achieved by the generating equation,

(1.13)IQstart
sim i = βMchild i + ρ−1 – β IQchild i + estart i ,

where the supplementary parameter β and supplementary variable Mchild are calculated from
observed data as described in appendix A. The error terms estart(i) are drawn independently from
a normal distribution with mean of 0 and variance equal to 225 – var(β Mchild + (ρ−1 – β) IQchild).

Due to the random draws, every simulated dataset yields somewhat different results. Below, errors
can be reduced by the simulation of several (D) datasets. Our demonstration below suggests that D =
25 datasets are enough.

Given guesses of bHE and bstart, we use the data on HE and the D simulated datasets on IQstart in
equation (1.6) to obtain D simulated datasets of eafter. The average values of the covariances cov(eafter,
IQchild) and cov(eafter, HE) across the D datasets are used in equations (1.11) and (1.12) to yield
updated values of bHE and bstart. This step is iterated until the change in values is smaller than a preset
tolerance.
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This method is an example of fixed-point iteration. When it converges, it finds a fixed point, which
in the case at hand means a pair of values bHE and bstart such that data generated with these parameter
values satisfy equations (1.11) and (1.12). Fixed-point iteration methods do not necessarily converge.
However, our analyses demonstrate convergence in this case.

2. Analysis of simulated data
We use simulated data to demonstrate the relative accuracy of the three methods across various
parameter values, selection effects and discretizations. This section is divided into two parts. In the first
part, we simulate data in a toy model where the sample size is 1000, the length of higher education
only takes two different values (0 or 1 year), and the discrete distribution of the adult intelligence
measure is either uniform or triangular. Data are simulated under set true values of the parameters ρ,
bHE and bstart. We then apply the cov method, the eiv method and the ism method to the simulated
data to obtain estimates of bHE, which we compare with the true value of this parameter.

In the second part, we simulate data that matches the real data as closely as possible. The aims of
this part are to demonstrate what results to expect in the real data if the model is correct and what
results to expect if the true effect of higher education on intelligence is nonlinear. The simulation of
data and subsequent analysis were implemented in R 4.0.2 [10]. The R scripts are available as electronic
supplementary material.

2.1. Analysis of simulated data in a toy model
We simulate data on a sample of n = 6000 individuals. Data on IQstart are drawn from a normal
distribution with a mean of 0 and s.d. of 15. Data on IQchild are simulated using equation (1.1) with the
value of the reliability parameter ρ set to either 0.84 or 1 (i.e. perfect reliability so that IQchild = IQstart).
The objective is to demonstrate that imperfect reliability is corrected by the ism method and the eiv
method, whereas it leads to bias in the cov method.

Data on HE are simulated using either of two selection schemes, p-selection or p2-selection, defined
as follows. With p(i) representing the proportion of individuals who have a lower intelligence than
individual i at the start of higher education, the p-selection scheme is to set HE(i) to 1 with probability
p(i) and 0 otherwise. Simulations show that p-selection is characterized by parameter values N0 = 3000,
N1 = 3000, M0 = –8.46 and M1 = 8.46 (see equation (1.2)). The alternative selection scheme is p2-selection,
in which HE(i) is set to 1 with probability (p(i))2 and 0 otherwise. Simulations show that p2 selection is
characterized by N0 = 4000, N1 = 2000, M0 = –6.35 and M1 = 8.46. The purpose of including more than
one selection scheme is to demonstrate that the biases of the cov and eiv methods are moderated by the
selection effect, whereas the ism method always yields unbiased estimates under our model.

Data on IQafterN are simulated using equation (1.3) with the value of parameter bstart fixed to 0.6 but
with the effect of higher education varying between simulations to have either value bHE = 4 or bHE =
8. The objective is to demonstrate that all estimation methods produce higher estimates when the true
value is higher, but the bias in the eiv and cov methods may vary with the true value.

Data on IQafter are simulated in either of three ways: by setting IQafter = IQafterN (no discretization)
or by discretizing IQafterN to four equidistant levels with 250 individuals at each level (uniform
discretization) or by discretizing IQafterN to four equidistant levels with 100 individuals at the lowest
level, 200 at the second level, 300 at the third level and 400 at the highest level (triangular discretiza-
tion). The discrete distributions are standardized to have mean of 0 and s.d. of 15. The objective is to
demonstrate that while the ism method corrects for any discretization, the biases of the cov and eiv
methods depend on how data discretized.

For each combination of parameter values, selection scheme and discretization scheme, we simulate
1000 datasets. In each dataset we estimate the value of bHE using three different methods: the cov
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Figure 3. Summary of the iterated simulations method to estimate the effect of higher education on intelligence.
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method (equation (1.7)), the eiv method using the true reliability ρ (equation (1.9)) and the ism method
using the true reliability ρ and D = 25 simulated datasets to estimate the error covariances used in
equations (1.11) and (1.12), stopping iterations when the change between subsequent estimates is less
than 0.01 (which usually occurred after four or five iterations).

Figure 4 summarizes the results. Note that the ism method yields unbiased estimates of bHE for
any value of reliability, any selection scheme and any discretization scheme. By contrast, estimates
obtained using the eiv method are biased whenever IQafter is discretized. The bias in these estimates
may be either positive or negative depending on the specification of the selection and discretization
schemes, and the amount of bias depends on the reliability value. The complex pattern of the bias in
the eiv method demonstrates that correction requires a method that simultaneously takes into account
the specific discretization scheme, the specific selection effect and the specific reliability level. This is
what the iterated simulation method does. Figure 4 also shows that the cov method produces severely
biased estimates when the reliability is low, whereas it is equivalent to the eiv method when reliability
is perfect.

2.2. Analysis of simulated data matching the real data
Next, we simulate data matching the real data as closely as possible (the real data are described in
detail below). For a set of n = 6766 individuals, we use real data on the observed variables IQchild and
HE (N0 = 3877, N2 = 655, N6 = 1808 and N10 = 426). We simulate data on IQstart using equation (1.13)
with the reliability parameter ρ set to 0.84. The expected mean values of IQstart at different lengths of
higher education are M0 = –6.2, M2 = 2.8, M6 = 8.1 and M10 = 18.0.

Data on IQafterN are simulated using equation (1.3) with the value of parameters bstart and bHE set
to 0.6 and 0.45, respectively. In an alternative set of simulations of IQafterN, we replace the linear effect
of 0.45 IQ points per year of higher education with a nonlinear effect: 2.4 points after the first 2 years,
3.1 points after 6 years and 3.8 points after 10 years (i.e. the effect per year is much higher in the first 2
years than in the subsequent years). This specific nonlinear effect was chosen because it yields the same
effect estimate as the linear model. Data on IQafter are simulated through the discretization of IQafterN
to the observed distribution of IQafter in the real data (see figure 1). The objective is to examine how
well the ism method, which assumes a linear effect, fits the data when the true effect is nonlinear.

For each specification of the effect of higher education, we simulate 1000 datasets and estimate the
value of bHE using the same three methods as above. The iterated simulation method correctly yields
a mean estimate, 0.45, whereas the cov method produces an almost twice as high mean estimate, 0.89,
while the eiv method yields a too low mean estimate, 0.39. The same estimates were obtained when the
true effect was nonlinear.

For each length of higher education, we also compared the mean adult IQ score between the
simulated ‘true’ data and the simulated data in the final iteration of the ism method. When the true
effect is linear, there is little difference. When the true effect is nonlinear, however, true adult scores
for individuals with 2 years of higher education are on average more than 1 IQ point higher than the
corresponding scores estimated by the ism method (table 1).

3. Reanalysis of data from the 1970 British Cohort Study
We next reanalyse data from the 1970 British Cohort Study [11,12]. This is a longitudinal dataset that
has previously been used to estimate the effect of education on intelligence [1].

3.1. Data

3.1.1. Participants

The original sample (achieved sample size n = 16 571) consisted of all individuals born in England,
Northern Ireland, Scotland and Wales during a single week in April 1970 (those born in North-
ern Ireland were dropped from subsequent sweeps). Of the original participants, 14 874 and 9656
participated in the second and the sixth sweeps at ages 10 and 34, respectively [13]. In the present
analyses, we use data from 6766 individuals (47.2% male) who satisfied the following inclusion criteria:
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(i) not twins; (ii) data were available on length of education; and (iii) non-zero scores were available on
all measurements of intelligence.1

3.1.2. Length of education

At age 34, participants were asked about their highest obtained educational qualifications. Adapting
the coding scheme used by Ritchie and Tucker-Drob [1], we converted these qualifications to years
of higher education as follows: (i) no qualifications, CSE, GCSE or O-level = 0 year (N0 = 3877); (ii)
A-level, SSCE or AS-level = 2 years (N2 = 655); (iii) degree, diploma of higher education, other teaching
qualifications or nursing qualifications = 6 years (N6 = 1808); and (iv) higher degree or PGCE = 10 years
(N10 = 426). This is the variable HE (M = 2.43 years, s.d. = 3.23 years).

1The study by Ritchie and Tucker-Drob [1] included fewer participants in the analysis (n = 5296). Their inclusion criteria were not
reported.

Estimation method Selection

scheme

b
H

E
 =

 8
b
H

E
 =

 4

rh
o
 =

 1
rh

o
 =

 0
.8

4
rh

o
 =

 1
rh

o
 =

 0
.8

4

p
p2

ism eiv cov

12

8

4

12

8

4

12

M
ea

n
 ±

 1
 S

D
 e

st
im

at
e

8

4

12

8

4

None Unif.Tria. None Unif.Tria. None Unif.Tria.

Discretization

Figure 4. Mean values (±1 s.d.) of estimates of bHE when applying the iterated simulations method (ism), the errors-in-variables
method (eiv) and the covariate method (cov) to 1000 simulated datasets for each combination of a true value of bHE (4 or 8), a
reliability level ρ (1 or 0.84), a selection scheme (p or p2) and a discretization (none, uniform or triangular).

Table 1. Differences between ‘true’ simulated data and data in the final iteration of the iterated simulations method with respect to
mean adult IQ scores for various lengths of higher education.

true effect 0 year 2 years 6 years 10 years

linear: bHE = 0.45 points/year 0.1 (0.1) −0.1 (0.5) −0.1 (0.2) −0.2 (0.4)

nonlinear: 2.6 points after 2 years, 3.2 points after 6
years and 3.8 points after 10 years −0.1 (0.1) 1.2 (0.4) 0.0 (0.3) −0.9 (0.6)

Notes: Entries are mean differences with s.d. within parentheses.
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3.1.3. Intelligence measure in childhood

At age 10, participants completed four subscales of the British Ability Scales: (i) Word definitions—
participants were asked to define words from simple (e.g. ‘travel’, 82.6% correct) to difficult (‘hirsute’,
0.1% correct), 37 items; (ii) Recall of digits—participant were asked to remember two (‘44’, 99.9% correct)
to eight (‘25 837 461’, 10.6% correct) digit numbers, 34 items; (iii) Similarities—the interviewer presented
three words in a given category and the participant was required to give a fourth example in the same
category and to name the category (e.g. ‘red, blue, brown’, 99.3% correct example and 99.1% correct
name; ‘democracy, justice, equality’, 1.1% correct example and 0.6% correct name), 21 items; and (iv)
Matrices—participants were asked to complete a pattern of figures by drawing the appropriate shape in
the empty bottom-right square in a 2 × 2 or a 3 × 3 matrix, correct responses varied between 4.8% and
99.5%, 28 items. After standardization of the scores on each of the four tests, we calculated the average
for each participant. We obtain IQchild by standardizing this measure to an IQ metric centred on the
mean (i.e. M = 0, s.d. = 15).

3.1.4. Intelligence measure after higher education

At age 34, participants completed a numeracy assessment with 17 multiple-choice and 6 open-response
numeracy questions. The questions measured the participants’ understanding of numbers, symbols,
diagrams, charts and mathematical information. Following Ritchie and Tucker-Drob [1], we obtain
IQafter by standardizing the squared score on this test to an IQ metric centred on the mean. This
measure has the discrete distribution shown in figure 1a.

3.1.5. Estimation of the reliability parameter ρ

To estimate the reliability of IQchild as a measure of IQstart, we use a summary of a large number of
prior studies of the test–retest reliability of intelligence tests similar to the British Ability Scales ([14],
table 4.) At ages 9 and 12, the estimated 6 years test–retest reliabilities are 0.81 and 0.84, respectively.
By interpolating between these numbers, we estimate the test–retest reliability of tests at age 10 and 6
years later to be 0.82. However, the hypothetical test at age 16 would have some small measurement
errors with respect to IQstart, which refers to true intelligence at age 16. In the same table, we find that
the estimated 3-month test–retest reliability at age 15 is 0.94. The test–retest reliability on the same
day would be higher, say 0.95. The correlation between the hypothetical test score at age 16 and true
intelligence at age 16 may then be estimated to be 0.951/2. The correlation of the test score at age 10 and
true intelligence at age 16 is, therefore, estimated to be 0.82/0.951/2 = 0.84. To capture the uncertainty, our
working estimate will be ρ = 0.84 ± 0.02.

3.2. Analysis
Similar to the above analysis of simulated data, analysis of the real data was implemented in R 4.0.2
[10]. Estimates were obtained using the cov, eiv and ism methods applied to 1000 resamples of the real
data from which mean estimates with 95% bootstrapped confidence intervals (CIs) were calculated.
The R script is available at [15].

3.3. Results
Table 2 presents the estimates of bHE and bstart obtained using the three methods. Our focus is on
estimates of bHE, the effect of higher education on IQ. The cov method yields a bHE estimate of 0.87
IQ points per year of higher education.2 This estimate is inflated due to the imperfect reliability of
the measure of IQ before higher education. From prior data on the reliability of IQ tests, a plausible
estimate of the reliability parameter is 0.84. Assuming this value, the eiv method yields a corrected
estimate of 0.36. However, that estimate is biased downward due to the incorrect distribution of
the measure of IQ after higher education. The corrected estimate obtained using the ism method is
a bit higher, 0.42, but still less than half the estimate obtained using the cov method. Even taking

2The study by Ritchie and Tucker-Drob [1] on this dataset included sex as a covariate as well, which led to a marginally higher
estimate of 0.92 for the effect of education.
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sampling error and uncertainty in the reliability assumption into account, all plausible estimates are
considerably below the estimate produced by the cov method.

To assess how well the model fits the data, we compared mean IQ scores after different lengths of
higher education in real data with the corresponding scores obtained in the simulated data in the final
iteration of the ism method (table 3). Note that scores in the group with 2 years of higher education
were more than 1 IQ point higher in the real data than in the simulated data. As we saw in the
simulation study, this pattern is expected if the true effect of higher education is not linear but higher in
the first 2 years and much lower thereafter.

4. Discussion
In this article, we have brought attention to challenges associated with assessing the impact of higher
education on intelligence. In the absence of natural experiments, researchers’ best option is to analyse
data from longitudinal cohort studies. The main problem for such analyses is to distinguish the
effect of higher education on intelligence from the selection effect, that is, the phenomenon that more
intelligent people tend to progress further in the education system. Unless the selection effect is
fully accounted for in the analysis, estimates of the effect of education on intelligence will be biased
upward. To remove the selection effect is challenging, because the intelligence level on which the
selection effect acts is unobservable, and so is the intelligence level achieved after higher education.
Researchers, therefore, resort to intelligence measures taken sometime in childhood and adulthood, but
these measures have limited test–retest reliability, especially across longer time spans. Adding to the
complexity of our reanalysed dataset from the 1970 British Cohort Study was that the adult intelligence
measure had an incorrect, discrete distribution so that measurement errors are non-classical.

Many studies have ignored these complications when using an analytical strategy in which adult
intelligence is regressed on the length of higher education with childhood intelligence included as a
covariate [1,16–19]. Estimates from these studies of a positive effect of higher education on intelligence,
typically around 1 IQ point per year of education, are therefore likely to have been exaggerated. In this
article, we have addressed the analytical problem more thoroughly.

The first, and most important, improvement of the analytical strategy is to take the measurement
errors in childhood intelligence measures into account. This requires two steps: the first step is to use
known test–retest reliabilities of intelligence tests to estimate how reliably the childhood intelligence
score represents the intelligence at the start of higher education, while the second step is to replace the
cov method with eiv regression using the estimated reliability. In our study, this reduced the estimate
of the effect of higher education on intelligence by more than 50% to less than 0.4 IQ points per year of
higher education.

This estimate may still be biased in the case where the adult intelligence measure does not produce
a properly normally distributed score. For this case, we developed an ism method that corrects
for incorrectly distributed adult intelligence scores. Analysis of simulated data showed that the ism
method produces unbiased effect estimates. Applied to the data from the 1970 British Cohort Study, the
ism method estimated the effect to around 0.4 IQ points per year of higher education, slightly higher
than the estimate obtained from eiv regression.

Following Ritchie and Tucker-Drob [1], we used a numeracy assessment in the 1970 British Cohort
Study as a measure of adult intelligence. The validity of our effect estimates rests on the questionable
assumption that the only problem with using this numeracy assessment as an intelligence measure is

Table 2. Results of three methods of estimating bHE (the effect of higher education on IQ) and bstart (the contribution of IQ at the start
of higher education to adult IQ) in real data.

assumed covariate method error-in-variables iterated simulations

value of ρ bHE bstart bHE bstart bHE bstart

0.82 0.86 [0.76, 0.97] 0.47 [0.44, 0.50] 0.27 [0.11, 0.42] 0.64 [0.60, 0.68] 0.32 [0.16, 0.48] 0.65 [0.61, 0.69]

0.84 0.86 [0.76, 0.97] 0.47 [0.44, 0.50] 0.36 [0.22, 0.50] 0.62 [0.57, 0.66] 0.42 [0.27, 0.57] 0.62 [0.59, 0.66]

0.86 0.86 [0.76, 0.97] 0.47 [0.44, 0.50] 0.44 [0.31, 0.58] 0.59 [0.55, 0.63] 0.51 [0.37, 0.65] 0.60 [0.56, 0.64]

Notes: Estimates with 95% CIs based on 1000 bootstrap samples.
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that its scores are not correctly distributed. As numeracy is not equivalent to intelligence, results might
have been different had a proper intelligence test been available. However, from the meta-analysis
of Ritchie and Tucker-Drob [1], we know that the estimate of the effect of higher education obtained
in this dataset (using the cov method) is close to the meta-analytic average. Thus, the numeracy
assessment appears to produce similar results to the tests of adult intelligence that were used in
other studies. A direction for future research would be to reanalyse all the datasets included in the
meta-analysis along the lines in this article, and to compare the results for studies using different types
of tests of adult intelligence. Such an analysis should also include any more recent studies not included
in the meta-analysis (e.g. [20]).

Another questionable assumption is that the effect of higher education on intelligence is linear, that
is, every additional year of higher education produces the same increase in intelligence. If the true
effect of higher education is not linear, the estimate from a linear model only represents a weighted
average of the effect of different lengths of education. There is reason to believe that the effect of
education is diminishing, because Ritchie and Tucker-Drob found much larger effects in studies of
basic education than in studies of higher education and noted: ‘We might expect the marginal cognitive
benefits of education to diminish with increasing educational duration, such that the education–intel-
ligence function eventually reaches a plateau’ [1, p. 1367]. In line with a larger effect of the first 2
years of higher education and a smaller effect of subsequent education, we found the linear model to
underestimate the intelligence in the group with 2 years of higher education.

There may be other kinds of model misspecification too. For one thing, the reliability of intelligence
measurement may depend on the intelligence level. For another, there may be confounding factors,
such as parents’ profession and education, that affect both the longitudinal development of intelligence
and the likelihood of completing more years of higher education. Analysis of the impact of such
additional confounders is beyond the scope of this article, but if they exist, accounting for them would
probably reduce the effect estimate further.

In conclusion, we found that a longitudinal dataset used in a previous study to estimate the effect
of higher education on intelligence had childhood intelligence measures of limited reliability and adult
intelligence measures with dependent measurement errors. We developed an iterated simulations
method to account for these limitations of the data. In a reanalysis of the data using this method,
the estimated effect of higher education dropped to approximately half the size, indicating that prior
estimates have been considerably exaggerated. Future meta-analytic estimations of the effect of higher
education on intelligence should consider the reliability and any discretization of measures. We have
here developed the means to do so.
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Table 3. Differences between real and simulated data with respect to mean adult IQ scores for various lengths of higher education.

length of higher
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difference between real and simulated data in mean adult IQ

ρ = 0.82 ρ = 0.84 ρ = 0.86
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Appendix A.
In the below equations, ‘plim’ in front of equalities refers to the probability limit, that is, the left-hand
and right-hand sides of equalities converge in probability as the sample size tends to infinity.

A.1. Derivation of equations (1.9) and (1.10)
Under our model we can derive a version of the so-called normal equations [8]. When variables are
centred so that their expected values are 0, variances and covariances satisfy the equations plim var(X)
= E[X2] and plim cov(X,Y) = E[XY]. Using these equations and the model equations, we can express
covariances involving the unobserved variable IQstart in terms of observed covariances as follows. By
multiplying equation (1.1) with IQstart and taking expected values, we obtain

(A 1)plim cov IQstart, IQchild = ρvar IQstart = ρvar IQchild ,

where the last equality follows from the standardization of IQ scores. By multiplying equation (1.1)
with HE and taking expected values, we obtain

(A 2)plim cov IQstart, HE = ρ−1cov IQchild, HE .

We can then express covariances involving the dependent variable IQafter as follows. By multiplying
equation (1.5) with HE, taking expected values, and applying equation (A 2), we obtain

(A 3)plim cov IQafter, HE = bHEvar HE + bstartρ−1cov IQchild, HE + cov eafter, HE .

By multiplying equation (1.5) with IQchild, taking expected values, and applying equation (A 1), we
obtain

(A 4)plim cov IQafter, IQchild = bHEcov HE, IQchild + bstart ρvar IQchild + cov eafter, IQchild .

Equations (A 3) and (A 4) constitute a system of linear equations for the parameter values bHE and
bstart, which can be solved by standard methods in linear algebra. Equations (1.11) and (1.12) describe
the solution.

A.2. Verification of equation (1.13) for simulating data on IQstart
Our method rests on the claim that under our model, data on IQstart can be simulated to fit observed
data using equation (1.13),

(A 5)IQstart
sim i = βMchild i + ρ−1 − β IQchild i + estart i .

The supplementary variable Mchild is calculated from observed data as the mean value of IQchild across
all individuals that have the same length of higher education:,

(A 6)Mchild i = E IQchild j | HE j = HE i .

The supplementary parameter β is then calculated as follows:

(A 7)β = var IQchild ρ−1 − ρ / var IQchild − cov IQchild,Mchild .

We shall verify that the simulated variable IQstart
sim matches the unobserved variable IQstart with

respect to how they relate to IQchild and HE.
First, we need to check that IQstart

sim and IQstart have the same expected covariance with IQchild.
plim cov(IQstart

sim ,IQchild) =
{use equation (1.13)} = β cov(IQchild, Mchild) +(ρ−1 – β)var(IQchild)
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{use equation (A 6)} = ρ var(IQchild)
{use equation (A 1)} = plim cov(IQstart,IQchild).
Second, if we define Ml

sim as the mean value of IQstart
sim among individuals with HE = l, we need to

check that the expected values of Ml
sim are equal to the expected values of Ml.

plim E[Ml
sim] =

{use equation (1.13)} = E[(β Mchild(i) + (ρ−1 – β) IQchild(i)) | HE(i) = l]
{use equation (A 5)} = E[ρ−1 IQchild(i) | HE(i) = l]
{use equation (1.1)} = E[IQstart(i) | HE(i) = l]
{use equation (1.2)} = E[Ml]
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