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Abstract
Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is 
not yet known whether MHC could distinguish potential beneficiaries. Single‐cell RNA sequencing datasets derived from 
patients with immunotherapy were collected to elucidate the association between MHC and immunotherapy response. A novel 
MHCsig was developed and validated using large‐scale pan‐cancer data, including The Cancer Genome Atlas and immu-
notherapy cohorts. The therapeutic value of MHCsig was further explored using 17 CRISPR/Cas9 datasets. MHC-related 
genes were associated with drug resistance and MHCsig was significantly and positively associated with immunotherapy 
response and total mutational burden. Remarkably, MHCsig significantly enriched 6% top‐ranked genes, which were potential 
therapeutic targets. Moreover, we generated Hub-MHCsig, which was associated with survival and disease-special survival 
of pan-cancer, especially low-grade glioma. This result was also confirmed in cell lines and in our own clinical cohort. Later 
low-grade glioma-related Hub-MHCsig was established and the regulatory network was constructed. We provided conclusive 
clinical evidence regarding the association between MHCsig and immunotherapy response. We developed MHCsig, which 
could effectively predict the benefits of immunotherapy for multiple tumors. Further exploration of MHCsig revealed some 
potential therapeutic targets and regulatory networks.

Keywords  Immunotherapy · Single‐cell RNA sequencing · Pan‐cancer · Major histocompatibility complex · 
Immunotherapy response · Signature

Introduction

Immunotherapy has been approved by the Food and Drug 
Administration to treat multiple cancer types and has 
brought significant survival benefits to patients. Neoadju-
vant nivolumab plus chemotherapy resulted in significantly 
longer event-free survival in patients with resectable non-
small-cell lung cancer [1], dostarlimab plus carboplatin-
paclitaxel significantly increased progression-free sur-
vival among patients with primary advanced or recurrent 
endometrial cancer [2], nivolumab plus ipilimumab or 
nivolumab showed improved clinical outcomes in patients 
with advanced melanoma [3]. However, despite the success 
of immunotherapy, resistance to these agents restricts the 
number of patients able to achieve durable responses [4]. 
Thus, a better understanding of biomarkers is essential for 
optimizing patient selection and combination strategies to 
cope with immune resistance.
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The major histocompatibility complex (MHC) is the most 
important region in the vertebrate genome with respect to 
infection and autoimmunity and is crucial in adaptive and 
innate immunity [5]. Immune targeting of tumor-specific 
antigens is a powerful therapeutic strategy. Immunotherapy 
targeting MHC expands the range of antigens and enables 
intracellular oncoproteins to directly target cell surfaces [6]. 
Primary response to anti-CTLA-4 requires robust melanoma 
MHC class I expression and primary response to anti-PD-1 
is associated with preexisting IFN-γ-mediated immune acti-
vation that includes tumor-specific MHC class II expression 
and components of innate immunity when MHC class I is 
compromised [7]. Loss of MHC class I antigen presenta-
tion on tumor cells plays a critical role in the reduction of 
T cell infiltration during drug resistance [8]. MHC class 
I-mediated antigen presentation by Hodgkin Reed-Sternberg 
cells is an important component of the biological response 
to standard chemo/radiotherapy [9] and genetically driven 

PD-L1 expression and MHC class II positivity on Hodgkin 
Reed-Sternberg cells are potential predictors of favorable 
outcomes after PD-1 blockade [10]. In addition, higher 
MHC class I and MHC class II scores significantly enriched 
in melanoma of unknown primary compared with known 
primary [11]. All of the evidence suggests that MHC could 
serve as a potential biomarker for tumor immunotherapy.

In this study, we revealed and verified the negative asso-
ciation between MHC and immunotherapy outcomes in 
two single-cell RNA sequencing immunotherapy cohorts. 
Thereafter MHC-related gene signature (MHCsig) was 
developed through an integrative analysis of 34 single-cell 
RNA sequencing datasets. The predictive value of MHCsig 
was further explored and validated through a comprehensive 
analysis of pan-cancer transcriptomic data and independent 
immunotherapy cohorts. Our findings uncovered the poten-
tial of MHCsig for predicting immunotherapy outcomes, 
especially in low-grade glioma (LGG) (Fig. 1).

Fig. 1   MHC-related gene 
score and immunotherapy in 
GSE115978 and GSE123813. 
A UMAP projection of MHC-
related gene score of each cell 
in GSE115978. B MHC-related 
gene scores in non-responders 
and responders in GSE115978. 
C UMAP of cell subtypes in 
GSE115978. D MHC-related 
gene scores in different cell sub-
types in GSE115978. E UMAP 
of cell subtypes in immune cells 
in GSE115978. F MHC-related 
gene scores in different immune 
cell subtypes in GSE115978. G 
UMAP projection of MHC-
related gene score of each cell 
in GSE123813. H MHC-related 
gene scores in non-responders 
and responders in GSE123813. 
I UMAP of cell subtypes in 
GSE123813. J MHC-related 
gene scores in different cell sub-
types in GSE123813. K UMAP 
of cell subtypes in immune cells 
in GSE123813. L MHC-related 
gene scores in different immune 
cell subtypes in GSE123813
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Materials and methods

Data source and processing

GSE115978 (melanoma) and GSE123813 (basal cell 
carcinoma) were downloaded from the Gene Expression 
Omnibus database. 34 single-cell RNA sequencing data-
sets were collected from TISCH, including malignant and 
stromal/immune cell data. The Seurat (version 4.0.6) pack-
age was used for single-cell RNA sequencing data process-
ing as described previously [12].

Transcriptome data from The Cancer Genome Atlas 
(TCGA) pan-cancer cohort was downloaded from the 
UCSC Xena data portal to explore the potential of MHC-
sig and immunosuppression in 30 different cancer types. 
The total mutation burden (TMB) came from cBioPortal, 
and the intratumor heterogeneity (ITH) data came from 
Torsson et al. [13], these data were used to analyze the 
correlation with MHCsig.

A total of 10 immune checkpoint inhibitor bulk RNA 
sequencing cohorts with clinical information, including 
5 SKCM cohorts, 2 urothelial carcinoma cohorts, 1 pleo-
morphic cohort Glioblastoma cohort, 1 gastric cancer 
cohort and 1 renal cell carcinoma cohort, were systemati-
cally collected.

A total of seven published CRISPR/Cas9 screening 
studies that assessed the individual impact of each gene 
knockout on tumor immunity were collected and grouped 
into 17 datasets according to the model cells and applied 
therapeutic conditions.

Somatic mutation data of LGG from TCGA were down-
loaded from the Genome Data Commons data portal.

MHC‑related genes acquisition

MHC-related genes were obtained from GeneCards and 
Molecular Signatures Database with the keyword of 
“MHC”. The obtained results were intersected to obtain 
the final MHC-related genes.

Relationship between MHC‑related genes 
and immunotherapy

Two datasets with clear tumor immunotherapy efficacy 
GSE115978 (melanoma) and GSE123813 (basal cell car-
cinoma) were used to explore the relationship between 
MHC-related genes and tumor immunotherapy. Patients 
were divided into two groups according to their response 
status evaluated by Response Evaluation Criteria in Solid 
Tumors (version 1.1): complete response and partial 

response as responders, or stable disease and progressive 
disease as non-responders.

MHCsig acquisition

In this study, 34 single-cell sequencing datasets were 
included to screen MHCsig. We analyzed the relationship 
between MHC-related genes and their MHC scores in malig-
nant tumor cells by Spearman correlation. Then, gene ontol-
ogy enrichment analysis was used to show the biological 
function pathways of highly enriched MHCsig.

Relationship between MHCsig and immune 
response

In this study, the correlation analysis between MHCsig and 
75 immune-related genes [13] (Table S1) was carried out. 
We then assessed the infiltrating abundance of immune cells 
in pan-cancer to better characterize the immune microenvi-
ronment in different tumors. B cells could favorably affect 
immune checkpoint inhibitor response via tertiary lymphoid 
structure [14], next, we analyzed the relationship between 
tertiary lymphoid structure-related genes and MHCsig in the 
TCGA dataset pan-cancer dataset.

In addition, we analyzed the relationship between MHC-
sig and immune-relevant factors (ITH and TMB) with the 
MCPcounter package. Then, we compared the abundance of 
immune cells among these patients.

MHCsig model construction

We collected 10 immune checkpoint inhibitor bulk RNA 
sequencing data cohorts with clinical information to inves-
tigate the predictive value of MHCsig. Patients received 
anti-PD-1/PD-L1, anti-CTLA-4, or anti-PD-1/PD-L1 plus 
anti-CTLA-4. All these 10 cohorts were split into 2 cohorts: 
the training cohort (80%, N = 618) and the validation cohort 
(20%, N = 154).

We used eight common machine learning algorithms. 
After training, eight models were harvested in the valida-
tion cohort and the model with the highest area under the 
receiver operating characteristic curve was selected as the 
MHCsig model.

Screening of potential therapeutic targets 
for MHCsig

We collected data from seven published CRISPR/Cas9 
screening studies to explore potential therapeutic targets for 
the MHCsig, as described previously [15].



	 Cancer Immunology, Immunotherapy (2024) 73:121121  Page 4 of 14

Hub‑MHCsig acquisition

We used different machine learning algorithms to further 
screen the Hub-MHCsig, which was related to immune 
efficacy in the training cohort.

The landscape of Hub‑MHCsig among cancers

The scores of Hub-MHCsig in 30 cancers in the TCGA 
dataset were evaluated by ssGSEA analysis. Then, we 
reported the correlation between the scores of Hub-
MHCsig and the abundance of immune cell infiltration 
and microsatellite instability among cancers.

Survival analysis

The survival package was used for survival analysis, the 
Kaplan–Meier survival curve was used to show the differ-
ence in survival, and the log-rank test was used to evaluate 
the significance of the difference in survival time between 
two groups of patients, which were defined by the sur-
vminer package.

LGG‑related Hub‑MHCsig acquisition

We ranked the 19 Hub-MHCsig by the random forest 
model and obtained the importance of each Hub-MHCsig. 
Hub-MHCsig with importance greater than 0 were consid-
ered as LGG-related Hub-MHCsig.

Construction of the prognostic model in LGG

In order to explore the relationship between LGG-related 
Hub-MHCsig and the prognosis of patients with LGG, 
we constructed the prognostic model through 5 machine 
learning algorithms. The ConsensusClusterPlus package 
was used to identify distinct functional phenotype char-
acteristic populations. Finally, we compared the overall 
survival between clusters.

Based on the above analysis results, the nomogram was 
drawn by the rms package. Next, the calibration curve 
was used to evaluate the accuracy and resolution of the 
nomogram.

Somatic mutation heterogeneity in LGG

Somatic mutation data of LGG with all non-synony-
mous mutations were used for downstream analysis. The 

mutation status of LGG-related Hub-MHCsig was dis-
played by the maftools package.

Druggability estimation

Druggability data of anti-tumor compounds across tumor 
cell lines were collected from the Drug Gene Interaction 
database and were estimated by the oncoPredict package. 
Then, LGG-related Hub-MHCsig with logFC < 6 were 
selected to build the LGG-related Hub-MHCsig-drug 
network.

Immune infiltration quantification

The infiltration levels of immune cell compositions were 
scored and compared between groups by employing CIBER-
SORT and correlations between immune cell compositions 
were then estimated.

LGG‑related Hub‑MHCsig‑miRNA/transcription factor 
network construction

The miRNA and transcription factor of LGG-related Hub-
MHCsig were obtained from TargetScan and ENCODE, 
respectively. All data were uploaded to Cytoscape to build 
the networks.

Experiment validation

Cell culture

SVG p12, U-118MG, MCF-7, MDA-MB-231, SHSY-5Y, 
and SK-N-SH were obtained from National Collection of 
Authenticated Cell Cultures (Shanghai, China), U-138MG 
was obtained from the American Type Culture Collection 
(Manassas, VA, USA), and T98G was purchased from the 
FuHeng Cell Center (Shanghai, China). SHSY-5Y, and 
SK-N-SH were cultured in 1:1 mixture of EMEM (ATCC, 
Manassas, VA, USA) and Ham’s F12 Medium (Gbico, 
Grand Island, NY, USA) supplemented with 10% fetal 
bovine serum (Ozfan, Nanjing, China) and other cells were 
maintained in DMEM supplemented with 10% fetal bovine 
serum at 37 °C in a humidified atmosphere of 5% CO2.

RNA extraction and real‑time quantitative PCR (RT‑qPCR)

Total RNA was isolated by using the TRizol reagent (Inv-
itrogen, USA) according to the manufacturer’s protocol. 
The extracted RNA was transcribed into cDNA using HiS-
cript II Q Select RT SuperMix for qPCR(+ gDNA wiper) 
(Vazyme, Nanjing, China) and then quantitated by Taq Pro 
Universal SYBR qPCR Master Mix (Vazyme). The relative 
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expression of indicated genes was normalized to β-actin with 
the comparative Ct method. The primer sequences are listed 
in Table S2.

Drug resistance experiments

Cells (5000 cells/well) were seeded in 96-well plates and 
after 24 h were incubated with Adriamycin (Selleck, Shang-
hai, China). The viability of the cells was determined using 
Celltiter-Glo Luminescent Cell Viability Assay (Promega, 
Beijing, China) according to the manufacturer’s instructions.

Clinical validation

We collected 125 LGG patients with survival data from Ren 
Ji Hospital, Shanghai Jiao Tong University School of Medi-
cine (Shanghai, China). This study was approved by the Eth-
ics Committee of Ren Ji Hospital, Shanghai Jiao Tong Uni-
versity School of Medicine (RA-2022–052). The expression 
of 8 LGG-related Hub-MHCsig (B2M, HLA-B, HLA-DOA, 
HLA-DPB1, HLA-DRB1, HLA-E, TAP1, and TAP2) was 
tested by immunohistochemistry, as described previously 
[16]. The details of antibody are shown in Table S3. All 
patients were divided into high expression and low expres-
sion groups based on the median expression of this LGG-
related Hub-MHCsig in each sample. Survival analysis was 
performed using survival package (version 3.5–7), and the 
significance of survival differences between the two groups 
was calculated using the log rank test, survival curves for 
each gene were plotted using the survminer package (ver-
sion 0.4.9).

Statistical analysis

All data processing and analysis were done by R (version 
4.0.2) and GraphPad Prism (version 9.5). For the compari-
son of two groups of continuous variables, the statistical 
significance of normally distributed variables was estimated 
by an independent Student t-test, and the difference between 
non-normally distributed variables was analyzed by the 
Mann–Whitney U test. The Chi-square test or Fisher’s exact 
test was used to compare and analyze statistical significance 
between two groups of categorical variables. P < 0.05 was 
used as the criterion for significant difference results.

Results

MHC‑related genes acquisition

We retained a total of 65 and 21 MHC-related genes from 
GeneCards and Molecilar Signatures Database, respectively. 

After the intersection, 21 MHC-related genes were finally 
obtained (Table S4).

MHC‑related genes were associated 
with immunotherapy

A total of 32 patients were included in the GSE115978 after 
quality control, including 15 patients in the immunother-
apy ineffective group, 16 patients in the non-immunother-
apy group, and 1 patient in the immunotherapy effective 
group. The MHC-related gene score of each cell is shown 
in Fig. 1A. It was found that the MHC-related gene scores 
in the immunotherapy-noneffective group were lower than 
those in the immunotherapy-effective group (P < 0.0001) 
(Fig. 1B). From these cells, we mainly confirmed three cell 
subtypes, namely immune cells, malignant cells, and stro-
mal cells (Fig. 1C). Among them, immune cells had the 
highest MHC-related gene scores (P < 0.0001) (Fig. 1D). 
Furthermore, immune cells were identified with B cells, T 
cells, plasma B, innate lymphoid cells, and natural killer 
cells (Fig. 1E), and B cells had the highest MHC-related 
gene scores (Fig. 1F).

Similarly, GSE123813 included 10 patients after quality 
control, including 6 patients with effective immunotherapy 
and 4 patients with ineffective immunotherapy. The MHC-
related gene score of each cell is shown in Fig. 1G. It was 
found that the MHC-related gene scores in the immunother-
apy-noneffective group were lower than those in the immu-
notherapy-effective group (P < 0.0001) (Fig. 1H). From 
these cells, we mainly confirmed three cell subtypes, namely 
immune cells, malignant cells, and stromal cells (Fig. 1I). 
Among them, immune cells had the highest MHC-related 
gene scores (P < 0.0001) (Fig. 1J). Furthermore, immune 
cells were identified with B cells, T cells, plasma B, innate 
lymphoid cells, and natural killer cells (Fig. 1K), and B cells 
had the highest MHC-related gene scores (Fig. 1L).

MHCsig acquisition

Since MHC-related genes were associated with drug resist-
ance to tumor immunotherapy [17, 18], we hypothesized 
that the level of MHC-related genes in patients could predict 
the efficacy of immunotherapy. We obtained MHCsig from 
34 single-cell RNA sequencing datasets (Fig. 2A). Func-
tional analysis showed that MHCsig were mainly enriched 
in antigen processing and presentation of peptide antigen, 
antigen processing and presentation and antigen process-
ing and presentation of exogenous peptide antigen and other 
biological processes (Fig. 2B), MHC protein complex, inte-
gral component of endoplasmic reticulum membrane and 
endocytic vesicle membrane and other cellular components 
(Fig. 2C), as well as peptide antigen binding, antigen bind-
ing, and peptide binding (Fig. 2D).
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MHCsig was positively correlated with immune 
response and infiltration

MHCsig were positively correlated with most immune-
related genes (Fig.  3A). Moreover, MHCsig enhanced 
the infiltration of various immune-promoting cells in 
the immune microenvironment of different cancer types 
(Fig. 3B), indicating MHCsig was positively correlated with 
tumor immune response. We found that some tertiary lym-
phoid structure-related genes such as LAT, RBP5, SKAP1, 
and CCR6 were positively correlated with MHCsig in pan-
cancer (Fig. 3C).

In addition, we analyzed the relationship between MHC-
sig and immune-relevant factors (ITH and TMB). It was 
found that there was no statistically significant correla-
tion between ITH and MHCsig in pan-cancer (R = 0.097, 
P = 0.61, Fig. 4A). Interestingly, TMB was positively cor-
related with MHCsig in pan-cancer (R = 0.48, P < 0.01, 
Fig. 4B). So we further estimated the population abundance 
of tissue-infiltrating immune and stromal cell popula-
tions regardless of MHCsig and TMB. It was found that 
all immune and stromal cells were differently infiltrated in 

MHCsig (Fig. 4C). T cells, natural killer cells, neutrophils, 
myeloid dendritic cells, monocytic lineage, endothelial 
cells, and cytotoxic lymphocytes were differently infiltrated 
in TMB while CD8 T cells, B lineage, and fibroblasts were 
not differently infiltrated in TMB (Fig. 4D). Furthermore, 
CD8 T cells and B lineage were differently infiltrated in 
high MHCsig regardless of TMB (Fig. 4E & F), indicating 
high MHCsig was more immune sensitive than low MHCsig 
regardless of TMB level.

MHCsig predicted immunotherapy outcome

We got 8 models after training in the training cohort, and the 
logistic regression model had the highest AUC in the valida-
tion cohort, with a value of 0.68 (Fig. S1A & B). Therefore, 
the logistic regression model was selected as the MHCsig 
model.

Potential therapeutic targets screened from MHCsig

A total of 22,505 genes were obtained from 17 datasets, 
of which 563 and 1350 were the 2.5% and 6% top-ranked 

Fig. 2   The enrichment of MHC-
sig among different cell sub-
types. A Relationship between 
MHCsig and their MHC scores 
in malignant tumor cells. B 
Biological function enrichment 
analysis of MHCsig. C Cellular 
function enrichment analysis of 
MHCsig. D Molecular function 
enrichment analysis results of 
MHCsig
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genes number, respectively. A total of 8 top-ranked 
genes and 8 bottom-ranked genes representing immune-
resistant genes and immune-sensitive genes are shown 
in Fig. S2A. Then we found that MHCsig had the low-
est percentage of top-ranked genes than other immune 
signatures (Fig.  S2B). The top 6% immune-resistant 
genes included 5 MHCsig (HLA-DOA, HLA-DMB, 

HLA-DQA1, HLA-DMA, and HLA-DRB) and were 
down-represented in multiple independent CRISPR/Cas9 
datasets (Fig.S2C). Importantly, 5 MHCsig were upregu-
lated in the breast cancer cells and neuroblastoma cells 
with high malignancy (Fig. S2D & E), which might serve 
as potential therapeutic targets in synergy with immune 
checkpoint inhibitors.

Fig. 3   MHCsig was posi-
tively correlated with immune 
response. A Expression levels 
of MHCsig and immune check-
point inhibition-related genes. 
B Correlation of expression 
levels of MHCsig and immune 
checkpoint inhibition-related 
genes. C Correlation between 
MHCsig and tertiary lymphoid 
structure-related genes
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Hub‑MHCsig acquisition

In this study, five different algorithms were applied and 
intersected. The results show that there were 19 Hub-MHC-
sig, namely, B2M, HLA-A, HLA-B, HLA-C, HLA-DMA, 
HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-
DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRBI, 
HLA-E, HLA-F, TAP1, TAP2, and TAPBP.

The landscape of Hub‑MHCsig among different 
tumor types

In this study, the scores of Hub-MHCsig in 30 cancers 
in the TCGA dataset were first evaluated by ssGSEA 
analysis (Fig. S3A). Then we analyzed the correlation 
between Hub-MHCsig and the abundance of immune cell 
infiltration in different cancer types and found that M1 
macrophages, CD8 T cells, and regulatory T cells were 
positively correlated with the scores of Hub-MHCsig in 
all cancers while M0 macrophages, resting NK cells, and 
activated dendritic cells were negatively correlated with 
the scores of Hub-MHCsig in most cancers (Fig. S3B). In 

some cancers, the scores of Hub-MHCsig were positively 
correlated with microsatellite instability while the scores 
of Hub-MHCsig were negatively correlated with microsat-
ellite instability in cholangiocarcinoma, lung adenocarci-
noma, and pancreatic cancer (Fig. S3C). Moreover, among 
19 Hub-MHCsig, HLA-DMA, HLA-DMB, and HLA-DOA 
were positively correlated with microsatellite instability in 
colon adenocarcinoma, while TAP2, TAP1, and HLA-F 
were negatively correlated with microsatellite instability 
in testicular germ cell tumors (Fig. S3D).

Hub‑MHCsig was associated with multiple tumor 
prognoses

We subsequently performed survival analysis across tumor 
types. Hub-MHCsig was associated with pan-cancer 
overall survival (Fig. S4A) and disease-special survival 
(Fig. S4A). Higher Hub-MHCsig was associated with 
worse overall survival (P < 0.0001, Fig. S4B) and disease-
special survival (P < 0.001, Fig. S4C) in LGG.

Fig. 4   MHCsig was positively 
correlated with immune infiltra-
tion. A Correlation of median 
MHCsig and median TMB of 
each cancer type. B Correlation 
of median MHCsig and median 
ITH of each cancer type. C 
Immune infiltrating in MHCsig. 
D Immune infiltrating in TMB. 
E CD8 T cells infiltrating in 
MHCsig and TMB. F B lineage 
infiltrating in MHCsig and 
TMB. HMHT, high MHC-
sig/high TMB; HMLT, high 
MHCsig/low TMB; LMHT, low 
MHCsig/high TMB; LMLT, 
low MHCsig/low TMB
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LGG‑related Hub‑MHCsig acquisition

In this study, the 19 Hub-MHCsig were ranked by the 
random forest model. It can be seen that the error rate of 
describing the survival of LGG was decreasing with the 
inclusion of different Hub-MHCsig (Fig. S5A). In order 
to screen the LGG-related Hub-MHCsig, Hub-MHCsig 
with importance greater than 0 were selected. Finally, 10 
LGG-related Hub-MHCsig (B2M, HLA-B, HLA-C, HLA-
DOA, HLA-DPB1, HLA-DRA, HLA-E, TAP1, TAP2, and 
TAPBP) were obtained (Fig. S5B).

LGG‑related Hub‑MHCsig was related to survival

Next, we evaluated the relationship between 10 LGG-
related Hub-MHCsig and survival in patients with LGG. 
The patients with high expression of each 10 LGG-related 
Hub-MHCsig had worse overall survival (all P < 0.001, 
Fig. 5) and disease-special survival (all P < 0.001, Fig. S6) 
than those with low expression of that.

The expression of 10 LGG-related Hub-MHCsig was then 
validated in LGG cell lines and we found that 8 LGG-related 
Hub-MHCsig (B2M, HLA-B, HLA-DOA, HLA-DPB1, 
HLA-DRB1, HLA-E, TAP1, and TAP2) were upregulated 
in LGG (Fig. S7). Furthermore, the expression of 8 LGG-
related Hub-MHCsig was validated in our clinical LGG 
patients (Fig. S8), and we found that patients with high 
expression of each 8 LGG-related Hub-MHCsig had worse 
overall survival (all P < 0.05, Fig. 6).

Construction of the prognostic model in LGG

In the TCGA-BLCA dataset, we used 10 LGG-related Hub-
MHCsig to construct a prognostic model. We found that 

the prediction performance of the prognostic models was all 
high (C-index > 0.75), and the prognostic model constructed 
by the StepCox was the best (C-index = 0.8386, Fig. S9A). 
Cumulative distribution function indicated TCGA-BLCA 
could be divided into two clusters (Fig. S9B), then, two 
consensus clusters (ClusterA and ClusterB) were identified 
(Fig. S9C). Principal co-ordinates analysis demonstrated the 
classification stability was high (Fig. S9D). Finally, patients 
in ClusterA had better overall survival than those in Clus-
terB (P < 0.001, Fig. S9E).

We built the nomogram to predict the 1-year, 3-year, 
and 5-year survival probability in patients with LGG 
(Fig. S10A). The calibration curves indicated the nomogram 
goodness-of-fit test (Fig. S10B ~ D). The time-dependent 
ROC curves indicated the AUCs of the prognostic model 
for the 1-year, 3-year, and 5-year prognosis of patients with 
LGG were 0.78 (70.51–85.45), 0.76 (68.68–83.02), and 0.69 
(59.8–77.39), respectively (Fig. S10E).

Somatic mutation characteristics and druggability 
of LGG‑related Hub‑MHCsig

Somatic mutation frequencies were investigated. Over-
all, IDH1, TP53, ATRX, CIC, FUBP1, TTN, and EGFR 
mutation frequencies were high in LGG, among which the 
mutated frequency of IDH1 was 84% in ClusterA and 70% in 
ClusterB (Fig. 7A). The biological function changes caused 
by mutations in ClusterA were mainly concentrated in the 
TP53 and Hippo signaling pathways (Fig. 7B), and the bio-
logical function changes caused by the mutations in Clus-
terB were mainly concentrated in the TP53 and RTK-RAS 
signaling pathways (Fig. 7C). Next, the mutations of the two 
clusters of LGG were analyzed to explore the druggability of 
the gene and the interaction between the drug and the gene, 

Fig. 5   Overall survival analysis of 10 LGG-related Hub-MHCsig in LGG
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Fig. 6   Overall survival analysis of 8 LGG-related Hub-MHCsig in LGG from our clinical data
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Fig. 7   Somatic mutation characteristics and druggability of LGG-
related Hub-MHCsig. A LGG-related Hub-MHCsig mutation land-
scape in ClusterA and ClusterB. B Biological functions affected by 
mutations in ClusterA. C Biological functions affected by mutations 
in ClusterB. D Classification of potentially druggable genes in Clus-

terA. E Classification of potentially druggable genes in ClusterB. The 
top 5 genes in square brackets after each classification are displayed. 
If there are less than 5 genes, all are displayed. The Y-axis is the 
number of genes in the druggable gene category



	 Cancer Immunology, Immunotherapy (2024) 73:121121  Page 12 of 14

and we found that genes that predict the drug might act on 
ClusterA and ClusterB were clinically actionable (Fig. 7D) 
and druggable genome (Fig. 7E), respectively. Through 
logFC < 6 filtering, 5 (PIK3R3, KCNA6, TARDBP, RGS5, 
and TOP2A) and 4 (PIK3R3, KCNA6, TARDBP, and RGS5) 
LGG-related Hub-MHCsig were left in ClusterA and Clus-
terB, respectively, and the LGG-related Hub-MHCsig-drug 
networks are shown in Fig. S11. Importantly, these 5 LGG-
related Hub-MHCsig in ClusterA and ClusterB were upregu-
lated in the LGG cells with high malignancy (Fig. S12A), 
and the half maximal inhibitory concentration of Adriamy-
cin in U-118MG and T98G was 9.93 (8.14 ~ 12.36) μM and 
55.85 (50.09 ~ 62.97) μM, respectively (Fig. S12B).

Immune infiltration characteristics in LGG

We scored the infiltration of 22 immune cell composi-
tions across LGG (Fig. 8A). The infiltration abundance 

of activated B cells, activated CD4 cells, and plasma cells 
in ClusterA was significantly higher than that in Clus-
terB (Fig. 8B). The infiltration abundance of memory 
B cells, resting memory CD4 T cells, and regulatory T 
cells in ClusterB was significantly higher than that in 
ClusterA (Fig. 8B). LGG-related Hub-MHCsig was dif-
ferently expressed in immune cells (Fig.  8C). HLA-
DRA and TAP1 were negatively correlated with B cells 
(R = −0.25, P < 0.001, and R = −0.15, P < 0.001, respec-
tively) (Fig. 8D) and HLA-DRA and TAP1 were positively 
correlated with M2 macrophage (R = 0.48, P < 0.001, and 
R = 0.26, P < 0.001, respectively) (Fig. 8E).

Regulatory network construction

We obtained 58 miRNAs for 10 LGG-related Hub-MHC-
sig (Fig. S13A). We obtained 71 transcription factors for 
10 LGG-related Hub-MHCsig (Fig. S13B).

Fig. 8   Immune cell infiltration 
analysis. A Histogram of the 
proportion of immune cells in 
the TCGA-LGG dataset. B Box 
plot of immune cell infiltration 
abundance in LGG. C Heat 
map of immune cell infiltra-
tion abundance in TCGA-LGG 
dataset. D HLA-DRA and TAP1 
were negatively correlated with 
B cells. E HLA-DRA and TAP1 
were positively correlated with 
M2 macrophage
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Discussion

The mechanism between MHC and immunotherapy has 
been widely explored and targeting MHC could serve as 
an opportunity for cancer immunotherapy [19], however, 
direct clinical evidence on the association of MHC and 
immunotherapy response has not been reported. Here, 
we obtained 21 MHC-related genes and then evaluated 
the MHC-related genes of individual malignant cells and 
uncovered the inverse correlation between MHC-related 
genes and immunotherapy outcomes. Antigenic epitopes 
presented by MHC molecules to induce tumor-specific 
T cells. Based on this, MHC might have a certain role 
in pan-cancer. So we carefully validated the predic-
tive value of MHCsig in various cancers. Remarkably, 
MHCsig achieved better performance in LGG. We later 
distinguished the performance of MHCsig and potential 
molecular mechanisms. This study is the first report to 
demonstrate the robust link between MHCsig and immu-
notherapy outcomes. Most importantly, we constructed 
Hub-MHCsig, which successfully predicts response to 
immunotherapy across multiple cancer types, and primar-
ily explored the regulatory networks in LGG.

We found that MHCsig were mainly enriched in anti-
gen processing and presentation. Therefore, MHC could 
respond to immunotherapy [20]. Furthermore, we evalu-
ated the correlation between MHCsig and immune infiltra-
tion. Additionally, we found MHCsig had a positive sta-
tistically significant correlation with TMB in pan-cancer. 
High MHCsig is associated with high TMB, which is a 
predictor for benefit from immune checkpoint blockade 
treatment [21]. Although TMB is a recognized immuno-
therapy biomarker, there are still a considerable number 
of patients with high TMB who do not respond to immu-
notherapy [22]. Our stratified analysis revealed that high 
MHCsig was more immune sensitive than low MHCsig 
regardless of TMB level. Considering such a robust link 
between MHCsig and immunotherapy outcomes, we 
explored potential drug targets from MHCsig. MHC-
sig had a low percentage of top-ranked genes, namely 
immune-resistant genes. Five MHCsig (HLA-DOA, HLA-
DMB, HLA-DQA1, HLA-DMA, and HLA-DRB) showed 
immune-resistant characteristics. HLA-DM is a potential 
novel target for cellular and immunotherapy of leukemia 
[23], which is consistent with the results we obtained. 
These MHCsig might serve as potential therapeutic tar-
gets among various cancers and further research on these 
MHCsig will help develop a combined immunotherapy 
strategy.

There are several limitations in our study. Firstly, it is 
not enough to evaluate immunotherapy response solely 
from two single-cell RNA sequencing datasets, although 

these are two independent datasets. Moreover, 10 immune 
checkpoint inhibitor bulk RNA sequencing cohorts did not 
cover all cancers, although we compensated with TCGA 
data containing 30 cancers. Thirdly, some datasets have 
incomplete clinical information, which to some extent 
weakens the reliability of our results. Moreover, although 
we validated the function and mechanism of MHCsig, 
more experiments about how MHCsig interacts with vari-
ous components of the tumor microenvironment, such as 
immune cells, stromal cells, and other soluble factors, how 
MHCsig influences immune cell infiltration, activation, 
and function within the tumor microenvironment, as well 
as how MHCsig affects the expression of immune check-
points or other immune-modulatory molecules are needed. 
Finally, although our analysis is relatively synthetical and 
comprehensive, it is only based on the publicly available 
data, and subsequent prospective clinical validation is 
necessary.

Conclusions

To our knowledge, this is the first conclusive clinical evi-
dence to be provided regarding the association between 
MHCsig and immunotherapy response. Our study demon-
strates a promising solution for patient selection in immuno-
therapy and elucidates the use of targeted MHC to address 
to immunotherapy resistance.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00262-​024-​03714-5.

Author contribution  JC and QZ conceived and designed the study, had 
full access to all of the data in the study, and take responsibility for 
the integrity of the data and the accuracy of the data analysis. JF and 
BL conceived and designed the study. WZ collected the data. LX per-
formed the statistical analysis. JF, BL and WZ drafted this manuscript. 
All authors contributed to manuscript revision, read, and approved the 
submitted version.

Funding  This work was supported by grants from the National Natu-
ral Science Foundation of China (82103486), Shanghai Jiaotong Uni-
versity Medical-Engineering Cross Research Fund (YG2022QN017), 
Renji Hospital Clinical Research Innovation Cultivation Fund (RJPY-
LX-003), Scientific Research Project of Shanghai Municipal Health 
Commission (202040014, 202140437).

Data availability  Publicly available datasets were analyzed in this 
study. This data can be found here: https://​www.​ncbi.​nlm.​nih.​gov/​geo; 
http://​tisch.​comp-​genom​ics.​org/; https://​xenab​rowser.​net; https://​www.​
cbiop​ortal.​org; https://​portal.​gdc.​cancer.​gov/; https://​www.​genec​ards.​
org; https://​www.​gsea-​msigdb.​org/​gsea.

Declarations 

Competing interests  The authors have no relevant financial or non-
financial interests to disclose.

https://doi.org/10.1007/s00262-024-03714-5
https://www.ncbi.nlm.nih.gov/geo
http://tisch.comp-genomics.org/
https://xenabrowser.net
https://www.cbioportal.org
https://www.cbioportal.org
https://portal.gdc.cancer.gov/
https://www.genecards.org
https://www.genecards.org
https://www.gsea-msigdb.org/gsea


	 Cancer Immunology, Immunotherapy (2024) 73:121121  Page 14 of 14

Ethical approval  This study was approved by the Ethics Committee of 
Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine 
(RA-2022–052).

Consent to participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Consent to publish  Not applicable.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Forde PM, Spicer J, Lu S et al (2022) Neoadjuvant nivolumab 
plus chemotherapy in resectable lung cancer. N Engl J Med 
386(21):1973–1985

	 2.	 Mirza MR, Chase DM, Slomovitz BM et al (2023) Dostarlimab 
for primary advanced or recurrent endometrial cancer. N Engl J 
Med 388(23):2145–2158

	 3.	 Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2022) Long-
Term outcomes with nivolumab plus ipilimumab or nivolumab 
alone versus ipilimumab in patients with advanced melanoma. J 
Clin Oncol 40(2):127–137

	 4.	 Bagchi S, Yuan R, Engleman EG (2021) Immune checkpoint 
inhibitors for the treatment of cancer: clinical impact and mecha-
nisms of response and resistance. Annu Rev Pathol 16:223–249

	 5.	 Horton R, Wilming L, Rand V et al (2004) Gene map of the 
extended human MHC. Nat Rev Genet 5(12):889–899

	 6.	 Zhang Z, Rohweder PJ, Ongpipattanakul C et al (2022) A cova-
lent inhibitor of K-Ras(G12C) induces MHC class I presentation 
of haptenated peptide neoepitopes targetable by immunotherapy. 
Cancer Cell 40(9):1060–1069

	 7.	 Rodig SJ, Gusenleitner D, Jackson DG et al (2018) MHC proteins 
confer differential sensitivity to CTLA-4 and PD-1 blockade in 
untreated metastatic melanoma. Sci Transl Med 10(450):3342

	 8.	 Yu J, Wu X, Song J et al (2022) Loss of MHC-I antigen presenta-
tion correlated with immune checkpoint blockade tolerance in 
MAPK inhibitor-resistant melanoma. Front Pharmacol 13:928226

	 9.	 Roemer MG, Advani RH, Redd RA et al (2016) Classical Hodgkin 
lymphoma with reduced β2M/MHC class I expression Is associ-
ated with inferior outcome independent of 9p24.1 status. Cancer 
Immunol Res 4(11):910–916

	10.	 Roemer MGM, Redd RA, Cader FZ et al (2018) Major histo-
compatibility complex class II and programmed death ligand 1 

expression predict outcome after programmed death 1 blockade 
in classic Hodgkin lymphoma. J Clin Oncol 36(10):942–950

	11.	 Tarhini AA, Lee SJ, Tan AC et al (2022) Improved prognosis and 
evidence of enhanced immunogenicity in tumor and circulation 
of high-risk melanoma patients with unknown primary. J Immu-
nother Cancer 10(1):e004310

	12.	 Liang Bo, Liang W-L, Liao H-L (2023) Single-cell and bulk char-
acterisation of the distinct immune landscape and possible regula-
tory mechanisms in coronary plaques vulnerability. Clin Transl 
Med 13(6):e1281

	13.	 Thorsson V, Gibbs DL, Brown SD et al (2018) The immune land-
scape of cancer. Immunity 48(4):812–830

	14.	 Helmink BA, Reddy SM, Gao J et al (2020) B cells and tertiary 
lymphoid structures promote immunotherapy response. Nature 
577(7791):549–555

	15.	 Zhang Z, Wang ZX, Chen YX et al (2022) Integrated analysis of 
single-cell and bulk RNA sequencing data reveals a pan-cancer 
stemness signature predicting immunotherapy response. Genome 
Med 14(1):45

	16.	 Liang Bo, Zhang X-X, Li R et al (2022) Guanxin V protects 
against ventricular remodeling after acute myocardial infarction 
through the interaction of TGF-β1 and Vimentin. Phytomedicine 
95:153866

	17.	 Ugurel S, Spassova I, Wohlfarth J et al (2019) MHC class-I down-
regulation in PD-1/PD-L1 inhibitor refractory Merkel cell carci-
noma and its potential reversal by histone deacetylase inhibition: 
a case series. Cancer Immunol Immunother 68(6):983–990

	18.	 James JL, Taylor BC, Axelrod ML et al (2023) Polycomb repres-
sor complex 2 suppresses interferon-responsive MHC-II expres-
sion in melanoma cells and is associated with anti-PD-1 resist-
ance. J Immunother Cancer 11(11):e007736

	19.	 Karpiński P, Łaczmański Ł, Sąsiadek MM (2020) Major histocom-
patibility complex genes as therapeutic opportunity for immune 
cold molecular cancer subtypes. J Immunol Res 2020:8758090

	20.	 Zhou Y, Bastian IN, Long MD et al (2021) Activation of NF-κB 
and p300/CBP potentiates cancer chemoimmunotherapy through 
induction of MHC-I antigen presentation. Proc Natl Acad Sci 
USA 118(8):e2025840118

	21.	 Negrao MV, Skoulidis F, Montesion M et al (2021) Oncogene-
specific differences in tumor mutational burden, PD-L1 expres-
sion, and outcomes from immunotherapy in non-small cell lung 
cancer. J Immunother Cancer 9(8):e002891

	22.	 Ready N, Hellmann MD, Awad MM et  al (2019) First-line 
nivolumab plus ipilimumab in advanced non–small-cell lung 
cancer (CheckMate 568): outcomes by programmed death ligand 
1 and tumor mutational burden as biomarkers. J Clin Oncol 
37(12):992–1000

	23.	 Meurer T, Crivello P, Metzing M et al (2021) Permissive HLA-
DPB1 mismatches in HCT depend on immunopeptidome diver-
gence and editing by HLA-DM. Blood 137(7):923–928

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Integrative analysis of single-cell and bulk RNA sequencing unveils a machine learning-based pan-cancer major histocompatibility complex-related signature for predicting immunotherapy efficacy
	Abstract
	Introduction
	Materials and methods
	Data source and processing
	MHC-related genes acquisition
	Relationship between MHC-related genes and immunotherapy
	MHCsig acquisition
	Relationship between MHCsig and immune response
	MHCsig model construction
	Screening of potential therapeutic targets for MHCsig
	Hub-MHCsig acquisition
	The landscape of Hub-MHCsig among cancers
	Survival analysis
	LGG-related Hub-MHCsig acquisition
	Construction of the prognostic model in LGG
	Somatic mutation heterogeneity in LGG
	Druggability estimation
	Immune infiltration quantification
	LGG-related Hub-MHCsig-miRNAtranscription factor network construction


	Experiment validation
	Cell culture
	RNA extraction and real-time quantitative PCR (RT-qPCR)
	Drug resistance experiments
	Clinical validation
	Statistical analysis


	Results
	MHC-related genes acquisition
	MHC-related genes were associated with immunotherapy
	MHCsig acquisition
	MHCsig was positively correlated with immune response and infiltration
	MHCsig predicted immunotherapy outcome
	Potential therapeutic targets screened from MHCsig
	Hub-MHCsig acquisition
	The landscape of Hub-MHCsig among different tumor types
	Hub-MHCsig was associated with multiple tumor prognoses
	LGG-related Hub-MHCsig acquisition
	LGG-related Hub-MHCsig was related to survival
	Construction of the prognostic model in LGG
	Somatic mutation characteristics and druggability of LGG-related Hub-MHCsig
	Immune infiltration characteristics in LGG
	Regulatory network construction


	Discussion
	Conclusions
	References




