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Most of the currently used cancer immunotherapies inhibit the programmed

cell death protein 1 (PD1)–programmed cell death 1 ligand 1 (PDL1) axis of

T-cells. However, dendritic cells (DCs) controlled by natural killer (NK) cells

via the FMS-related tyrosine kinase 3 (FLT3) axis are necessary for activation

of T-cells. The aim of the study was to evaluate FLT3 as a prognostic factor

and determine its role in immune infiltration (with emphasis on NK cells and

DCs). Using The Cancer Genome Atlas (TCGA) database, we performed bio-

informatic analysis of the gene expression datasets of 501 lung squamous cell

carcinoma (LUSC) and 515 lung adenocarcinoma (LUAD) patient who had

corresponding clinical data [analysis was performed in R (version 4.2.0)].

Disease-free survival (DFS) differed between the FLT3-low and FLT3-high

expression groups, respectively, in LUSC (61.0 vs 71.3 months P = 0.075)

and LUAD (32.7 vs 47.5 months P = 0.045). A tumor microenvironment

(TME) with high immune infiltration and rich in T-cell exhaustion markers

was observed in the FLT3-high group. We showed overexpression of NK cell

and DC gene signatures in the FLT3-high expression group as well as overex-

pression of key effector genes of the cyclic GMP-AMP synthase (cGAS)–stim-

ulator of interferon genes protein (STING) pathway, which is crucial in

response to radiotherapy. High expression of FLT3 in the TME was associ-

ated with immune cell infiltration (especially of NK cells and DCs), increased

expression of T-cell exhaustion markers and expression of effector genes of

the cGAS-STING pathway, which may consequently increase susceptibility

to immunotherapy and radiotherapy. High FLT3 expression correlated with

prolonged DFS in the LUSC and LUAD cohorts.
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1. Introduction

Immunotherapy is one of the major breakthroughs in

cancer treatment in recent years; the number of cancer

types and patients treated with immunotherapy is

steadily increasing [1,2]. The most thoroughly

researched and with the widest clinical use are immu-

notherapies based on T cells checkpoint inhibitors

(programmed cell death receptor 1 (PD1/PDL1) and

cytotoxic T-lymphocyte protein 4 (CTLA4)) axes [3].

Discovery of these mechanisms was the basis for the

Nobel Prize in medicine in 2018 [1]. However, despite

the enormous and constantly growing possibilities,

treatment with immunotherapy is effective in a moder-

ate number of patients only in 12.46% of all treated

patients in 2018, as shown in metanalysis [1]. Ineffec-

tiveness of immunotherapy in an unfavorable scenario

may result in rapid resistance or even hyperprogression

[2]. Many currently conducted studies show the possi-

bility of increasing the effectiveness of immunotherapy

in influencing the immune infiltration of the tumor

microenvironment other than T cells, but supporting

them [2,4,5]. Dendritic cells (DCs) may play a signifi-

cant role in this context as they prime antigen presenta-

tion and T cell activation [5,6]. Dendritic cells

(particularly conventional dendritic cells 1 (cDC1s)) are

essential for effective response to immune checkpoint

inhibitors (CTLA4, PD1/PDL1) that has been shown

in vivo [7,8].

The new perspective on control of the activity of

DCs by lymphocytes, mainly natural killer cells (NK)

has been published [9]. The FMS-related tyrosine

kinase 3 (FLT3), which is type III receptor

tyrosine kinase expressed exclusively on hematopoietic

stem cells and DCs, is considered to be crucial in

FLT3 ligand (FLT3LG)-mediated control of dendritic

cells by NK cells [9–11]. For an illustrative example,

genetic and cellular ablation of NK cells in melanoma

mice turned off FLT3-mediated control and NK cells

did not form conjugates with stimulatory dendritic

cells (BDCA3+) (sDCs) [9]. Preclinical data also indi-

cate a key role of NK-FLT3/FLT3LG-DC axis in the

efficacy of the radio-immunotherapy combination [12].

The activation of NK cells within the tumor microen-

vironment (TME) was shown to be viable strategy for

NK cell-based immunotherapy to counteract resistance

in T cells deficient HPV-negative orthotopic models of

head and neck squamous cell carcinomas [12]. The

addition of FLT3L to radiotherapy and anti-CD25

treatment significantly diminished MOC2 buccal

tumors [12]. Radiotherapy damaging cancer cells

induces antitumor adaptive immunity by releasing

tumor antigens, RNA, DNA to cytoplasm [13].

Conventional dendritic cells 1 uniquely respond to

those signals making radiotherapy a natural candidate

for combination with dendritic cell-based immunother-

apy and in view of above-mentioned axis also for NK

cells [13,14].

The cyclic GMP–AMP synthase (cGAS)–stimulator

of interferon genes (STING) pathway is particularly

interesting in the context of the present work as it is

one of most promising pathways in the context of

immunomodulating anti-cancer activity. The cGAS-

STING pathway signaling is activated in response to

dsDNA that is present as a result of the action of ion-

izing radiation and triggers dendritic cells [15,16]. The

cGAS-STING is believed to be crucial in radiation-

induced DNA damage immune response [17].

The FLT3/FLT3L axis, widely recognized for its

role in hematopoiesis, has yet to be clearly established

in the context of TME regulation [18]. As shown

above, this perspective is evolving, as recent preclinical

models reveal that the FLT3/FLT3L axis may also

play a significant role in modulating responses to

radiotherapy and immunotherapy [12]. It is particu-

larly important to explore these possibilities in the con-

text of lung cancer, where chemoradiation with

consolidating immunotherapy is the standard of care

in stage III, and trials are ongoing regarding other

indications [19].

Here we show the relationship between FLT3 gene

expression and disease-free survival in patients with

lung squamous cell carcinoma (LUSC) and lung ade-

nocarcinoma (LUAD) and immune cell infiltration

with particular emphasis on the role of NK and

stimulatory DC cells subpopulations. We present rela-

tionship between the FLT3 and the expression of

cGAS-STING pathway genes pivotal in the activation

of dendritic cells and response to radiotherapy [15,20].

2. Materials and methods

The lung squamous cell carcinoma (LUSC) and lung

adenocarcinoma (LUAD) gene expression data sets

were obtained from The Cancer Genome Atlas

(TCGA) repositories through GDAC Firehose (RNA-

seqV2, RSEM normalized, data status of 28th Jan

2016) including 501 and 515 patients, respectively, with

corresponding clinical data [21]. The method of bios-

pecimen procurement, mRNA isolation and sequenc-

ing in TCGA cohort has been previously described

[22,23]. All patients provided written informed consent

to conduct genomic studies in accordance with local

Institutional Review Boards. Only patients with

expression and Disease-Free Survival (DFS) data were

included into further analysis. Spearman’s rank
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correlation test was used to correlate the relationship

between FLT3 and FLT3LG expression.

Evaluate Cutpoints RShiny application through the

maxstat algorithm for R environment was used to

evaluate correlation of FLT3 gene expression and DFS

according to defined optimal cutpoint [24]. Variable

such as “patient.person_neoplasm_cancer_status” was

regarded as event and “patient.days_to_last_followup”

as time of observation for DFS. Subsequently, patients

were stratified into subgroups of FLT3-low and FLT3-

high expression according to defined cutpoint (i.e.

expression below and above the determined cutpoint,

respectively).

Microenvironment cell-population (MCP)-counter

method was used for quantification of immune infiltra-

tion through deconvolution of transcriptomic data

among FLT3-low and FLT3-high groups [25]. The

analysis was extended with the association of FLT3-

low/FLT3-high with infiltration by sDCs (BDCA3+)
and NK cells. As a surrogate for sDCs and NK cells

abundance, expression of previously described signa-

ture genes of sDCs (KIT, CCR7, BATF3, FLT3

(excluded from MCPcounter analysis), ZBTB46, IRF8,

BTLA, MYCL1) and NK (GNLY, KLRC3, FLT3LG

KLRD1, KLRF1, NCR1) has been adopted [9,26,27].

Spatial partitioning of LUSC and LUAD patients

regarding their clinical characteristics was performed

based on models of FLT3-low/FLT3-high and T-cell

exhaustion marker gene expression (PDCD1 (PD1),

CD274 (PDL1), PDCD1LG2 (PDL2), CTLA4, LAG3,

HAVCR2 (TIM3), GZMB, BTLA, CD160, CD244

(2B4), TIGIT ) through the Multiple Factor Analysis

(MFA) being an extension of the Principal Component

Analysis (PCA) allowing to mix variables of different

types [28–31].
The cGAS-STING pathway genes such as C6orf150

(CGAS), DDX41, DTX4, IFI16, IRF3, MRE11A,

NLRC3, NLRP4, PRKDC, STAT6, TMEM173

(STING1), TBK1, TREX1, TRIM21, XRCC5, XRCC6

were retrieved from Molecular Signatures Database

(MSigDB) and analyzed based on Reactome Pathways

database [32–34]. Models explaining association of

FLT3-low and FLT3-high with cGAS-STING pathway

genes expression that differentiate LUSC and LUAD

patients were performed with MFA. Commonly used

gene aliases have been placed in parentheses.

All analyses were performed within R v.4.2.0 envi-

ronment and packages such as FACTOMINER, FACTOEX-

TRAR, SURVIVAL, and IMMUNEDECONV [35]. The entire

bioinformatics analysis code in the R environment and

the database obtained and processed is available at:

https://1drv.ms/f/s!AqwHYmZlPESTgo11GL6ZpFpm

NnK5Uw?e=ReYm1G.

3. Results

3.1. Clinical characteristics of cohort

Five hundred and fifteen patients (277 women, 238

men) with lung adenocarcinoma and 501 patients (130

women, 371 men) with lung squamous cell carcinoma

with expression and data enabling evaluation of

disease-free survival (DFS) data were included in the

analysis. Median age was 66 (38–88) in LUAD and 68

(39–90) in LUSC. In LUAD 426 patients had smoking

history, 512 were previously untreated, 3 had neoadju-

vant treatment. In LUSC 471 patients had smoking

history, 494 were previously untreated, 7 had neoadju-

vant treatment. Patients were predominantly in local-

ized stage; 397 out of 515 in LUAD (stage I-275, stage

II-122, stage III-84, stage IV-26), 406 out of 501 in

LUSC (stage I-244, stage II-162, stage III-84, stage

IV-7). Only clinical stage from above-mentioned clini-

cal features was associated with DFS (Fig. S1).

3.2. FLT3 as a prognostic factor

Gene expression data and variables such as “patient.-

person_neoplasm_cancer_status”, “patient.days_to_-

last_followup” data were available for 422 LUAD and

392 LUSC patients and those individuals were included

into further analysis. FLT3 expression was moderately

correlated with FLT3-L expression in both cases

(LUSC: rho = 0.52, P < 0.001, LUAD: rho = 0.48,

P < 0.001) (Fig. S2).

The dichotomization into FLT3-low/FLT3-high

groups was performed according to DFS. Optimal cut-

point was determined as 14.51 for LUSC and 11.31 for

LUAD. Disease-free survival differed between the

FLT3-low and FLT3-high group, respectively, for both

LUSC (61.0 vs 71.3 months HR = 0.61, 95% CI: 0.35–
1.06, P = 0.075) and LUAD (32.7 vs 47.5 months

HR = 0.69, 95% CI: 047–0.99, P = 0.045) (Fig. 1).

3.3. FLT3 expression and immune infiltration

The results of the Microenvironment Cell-Population

(MCP)-counter method for the LUSC and LUAD

cohorts show differences in the relative abundance of

various cell populations in the tumor microenvironment

of the two types of lung cancer according (Table S1,

Fig. 2). In both the LUSC and LUAD cohorts, the

FLT3-high expression group had higher infiltration of

all assessed immune cells (T cells, T cells CD8+, cyto-
toxic score, NK cells, B cells, monocytes, macrophages,

myeloid dendritic cells, neutrophils, endothelial cells)

and cancer-associated fibroblasts compared to the
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FLT3-low expression group (Table S1, Fig. 2). NK cells

were the rarest in tumor microenvironment infiltration

but significantly more common in the FLT3-high group;

value – 3.28, 3.46 for the FLT3-low group and 7.74, 6.20

for the FLT3-high group for LUSC and LUAD, respec-

tively. sDCs infiltrated the microenvironment in greater

numbers similar to NK to a much greater extent in the

FLT3-high group; value: 56.68, 115.57 for the FLT3-

low group and 152.75, 241.27 for the FLT3-high group

for LUSC and LUAD, respectively.

To confirm above findings gene signature of natural

killers cells (GNLY, KLRC3, FLT3LG, KLRD1,

KLRF1, NCR1) and stimulatory dendritic cells (KIT,

CCR7, BATF3, ZBTB46, IRF8, BTLA, MYCL1) was

derived from previously published research and used

for partitioning of LUAD and LUSC patients accord-

ing to their FLT3-NK1-sDC gene expression patterns

through MFA [9,26,27]. The model revealed surpris-

ingly significant spatial grouping of patients according

to FLT3 expression group (Fig. 3). Our model

explained large proportion of the variation in the data

for LUAD (dimension 1–2 41.64%) and for LUSC

(dimension 1–2 42.96%) pointing the strong correla-

tion between FLT3 expression with expression of NK

cells and sDCs gene signature as shown by correlation

circle and individual factor map. FLT3-high expression

group had higher infiltration of both natural killer

cells and stimulatory dendritic cells. Lowered FLT3

expression correlated with increase in MYCL1, and

additionally KIT in LUSC (Fig. 3).

3.4. Correlation of FLT3 with T-cell exhaustion

markers

We derived T-cell exhaustion marker genes (PDCD1

(PD1), CD274 (PDL1), PDCD1LG2 (PDL2), CTLA4,

LAG3, HAVCR2 (TIM3), GZMB, BTLA, CD160,

CD244 (2B4), TIGIT) from previously published papers

and analyzed above-mentioned gene expression accord-

ing to FLT3-low/FLT3-high expression group [28]. Our

model successfully accounted for a meaningful amount

of the variability in dimensions 1 and 2 in the LUAD

dataset (62.64%) and the LUSC dataset (66.14%).

These data indicate a strong association between FLT3

expression and T-cell exhaustion markers, as demon-

strated by the correlation circle and individual factor

map (Fig. 4) for both LUAD and LUSC. Individuals

from FLT3-high group had high expression of all

accessed T-cell exhaustion marker genes.

3.5. Role of cGAS-STING pathway in NK-FLT3-

sDC

The cGAS-STING pathway genes (C6orf150 (cGAS),

DDX41, DTX4, IFI16, IRF3, MRE11A, NLRC3,

NLRP4, PRKDC, STAT6, TMEM173 (STING1),

TBK1, TREX1, TRIM21, XRCC5, XRCC6) were used

to associate cGAS-STING pathway involvement in

FLT3-FLT3LG signaling. The members of the cGAS-

STING pathway were divided into subgroups accord-

ing to convergent branch of the pathway based on

Reactome analysis [32].

According to the correlation circle (Fig. 5A,B)

XRCC5, XRCC6 and PRKDC expression for both

LUAD and LUSC, C6orf150 (cGAS) for LUSC were

corelated predominantly in FLT3-low group.

Genes such as TRIM21, DDX41, TREX1, NLRC3,

STAT6, TBK1, IRF3, TMEM173 (STING1), DTX4,

NLRP4 corresponded with the position of the individ-

uals with FLT-high both for LUAD and LUSC

(Fig. 5A,B). According to the above analyses,

increased expression of FLT3 was associated with the

expression of TRIM21/DDX1, TREX1 as initial mes-

sengers stimulating STING signaling but not with

Fig. 1. Disease-free survival of the

patients with lung adenocarcinoma

(LUAD) and lung squamous cell

carcinoma (LUSC) according to

FMS-related tyrosine kinase 3

(FLT3)-low and FLT3-high gene

expression group in tumor

microenvironment. DFS for LUAD

cohort is shown on left, DFS for

LUSC cohort is shown on right.

Cutpoints RShiny application

through the maxstat algorithm for

R environment was used for

calculations.
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C6orf150 (cGAS) or Ku70:80 dimer (XRCC5,

XRCC6)/PRKDC patterns. High expression of

NLRC3, STAT6, TBK1, IRF3, TMEM173 (STING1),

DTX4, genes constituting the central part of the

cGAS-STING (Fig. S3) analysis was present in the

FLT3-high group. All above-mentioned genes, except

for NLRC3, has cGAS-STING stimulating function.

4. Discussion

In our study, we show that FLT3 expression is a

favorable prognostic factor in patients with lung squa-

mous cell carcinoma and lung adenocarcinoma. Those

with higher expression of FLT3 (i.e. above the cut-

point) had prolonged disease-free survival (DFS). To

Fig. 2. Immune cell infiltration assessed using microenvironment cell-population according to FMS-related tyrosine kinase 3 (FLT3)-low and

FLT3-high gene expression group in tumor microenvironment of the patients with lung adenocarcinoma (LUAD) and lung squamous cell car-

cinoma (LUSC). The figure shows comparison of abundance of various immune cells between FLT3-low and FLT3-high gene expression

group in tumor microenvironment within two different types of lung cancer (LUAD and LUSC). The immune cells are itemized on the right,

with each type corresponding to the color of the bars displayed in the chart.
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the best of our knowledge, so far there are no other

studies investigating the role of FLT3 as prognostic

factor in patients with lung cancer. Recently published

data from patients with breast (FLT3) and cervical

cancer (FLT3LG ) stay in line with our results [29,36].

Subsequently, we tried to explain the mechanisms

responsible for the relationship of FLT3 and DFS.

FLT3/FLT3LG is involved in hematopoiesis and natu-

ral killer cell-mediated control of dendritic cells [5,9].

We observed a strong association of high FLT3

expression with immune cell infiltration, which was

also observed in the cervical and breast cancer studies

[29,36]. Immune cell infiltration (especially cytotoxic

CD8+ lymphocytes) is a recognized prognostic factor

Fig. 3. Multiple factor analysis (MFA) of natural killer (NK) cells 1 and stimulatory dendritic cells (DCs) gene signature expression and FMS-

related tyrosine kinase 3 (FLT3)-low/FLT3-high gene expression group in tumor microenvironment of the patients with lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC). A correlation circle demonstrates the relationship between the expression of signature

genes of NK cells 1 and stimulatory DCs (left) and the spatial distribution of individuals with low and high FLT3 gene expression (right).

These patterns are depicted for LUAD (A) at the top and LUSC (B) at the bottom of the figure.
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in lung cancer, which may partially explain the benefi-

cial effect of FLT3 expression on DFS [37,38]. More-

over, our analysis revealed strong correlation of FLT3

expression and T-cell exhaustion markers genes (as a

brief recap, MFA explained 62% and 66% of data

variation in LUAD and LUSC, respectively). TME

with high immune infiltration and rich in T-cell

exhaustion markers, which was observed in FLT3-high

group is prone to positive effect of immunotherapy [9].

We extended our analysis with an evaluation of the

genetic signature of natural killer cells and dendritic

cells. The MFA revealed clear spatial partitioning of

patients; individuals with high FLT3 expression had

heightened expression of marker genes of DCs and

Fig. 4. Multiple factor analysis (MFA) of T-cell exhaustion gene signature expression and FMS-related tyrosine kinase 3 (FLT3)-low/FLT3-

high gene expression group in tumor microenvironment of the patients with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC). A correlation circle demonstrates the relationship between the T-cell exhaustion gene signature (left) and the spatial distribution of

individuals with low and high FLT3 gene expression (right). These patterns are depicted for LUAD (A) at the top and LUSC (B) at the bottom

of the figure.
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NK cells. NK cells activate DCs via the

FLT3/FLT3LG signaling pathway [5]. DC’s in turn

prime cytotoxic CD8 + lymphocytes, which are pivotal

in mediating anti-cancer immunity [38]. FLT3/

FLT3LG axis may be important player in this cascade.

Recently published report stressed out the key role of

NK cells in radiotherapy-driven immune response [39].

NK infiltration is low in NSCLC (similarly to other

malignancies) patients and associated with better sur-

vival if present in greater extend [40,41]. In view of

above analysis, FLT3 expression plays as marker of

NK/DC infiltration. In our previous study, we

demonstrated increased blood levels of FLT3LG dur-

ing chemoradiotherapy and discussed the possible

implications for combining radiotherapy with immuno-

therapy [42]. CXCL8/IL-8–dependent mechanism of

Fig. 5. Multiple factor analysis (MFA) of the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway gene

expression and FMS-related tyrosine kinase 3 (FLT3)-low/FLT3-high gene expression group in tumor microenvironment of the patients with

lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). A correlation circle demonstrates the relationship between the

cGAS-STING genes (left) and the spatial distribution of individuals with low and high FLT3 gene expression (right). These patterns are

depicted for LUAD (A) at the top and LUSC (B) at the bottom of the figure.
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radiation-induced chemoattraction of NK was

described recently, FLT3/FLT3LG axis may act simi-

larly in view of our previous reports.

We observed high expression of key effector genes

of the cGAS-STING pathway in FLT3-high expression

group, despite increased expression of TRIM21 and

TREX known as inhibitors of cGAS-STING initia-

tion. Of the initial tracks, only the DDX41 overexpres-

sion was present in individuals with FLT3-high in our

MFA. Both TREX1 and TRIM21 are of interest in the

context of the immune effect induced by radiation

therapy. TRIM21 has the ability to regulate the degra-

dation of Oct-1, which in turn makes cancer stem cells

more responsive to chemoradiation treatment [43].

Additionally, the activation of TRIM21 by Dihydroar-

temisinin (DHA) was discovered to modulate EMT-

related proteins by blocking PDL1, thereby increasing

the sensitivity of non-small-cell lung cancer to radia-

tion therapy [44]. TREX1, which is activated by

radiation doses higher than 12–18 Gray, degrade cyto-

solic DNA accumulated as a result of radiation and in

turn diminishes the immunogenicity [45].

While the basic concept of FLT3L-induced NK cells,

DCs expansion and hematopoiesis is established, our

work contributes to the field by exploring these mecha-

nisms in tumor microenvironment of NSCLC cohort of

patients what can be crucial in response to treatment as

describe above [11]. Analogically it has been shown for

currently used PD1/PDL1 immunotherapies [46]. Pre-

clinical studies have highlighted, as well, the importance

of the NK-FLT3/FLT3LG-DC axis in the efficacy of

combined radio-immunotherapy, as demonstrated by

Bickett et al [12]. FLT3LG concentration in blood is ele-

vated during chemoradiotherapy what we presented

recently [42]. This adds significance to current study.

The major limitation of our study is that it is a quantita-

tive, not qualitative, data analysis and lacks in valida-

tion due to unavailability of appropriate independent

cohorts. Nevertheless, our study was performed includ-

ing a total of 1016 NSCLC TCGA patients. Addition-

ally, MFA which we used could identify underlying

patterns or factors that may not be apparent from a sim-

ple analysis of individual variables or groups. Our

results derived thus a hypothesis; more in-depth conclu-

sions can be drawn from prospective single-cell function

evaluation that we plan as next step.

5. Conclusion

In conclusion, our study, the first of its kind, analyzes

genomic material from 1016 NSCLC cases and shows

the effect of high expression of FLT3 on tumor microen-

vironment. Notably, high FLT3 expression arouses as

positive prognostic factor for disease-free survival. We

demonstrated a significant association of FLT3 expres-

sion and immune cell infiltration (especially NK cells

and DCs), T-cell exhaustion markers, effector genes of

the cGAS-STING pathway. This gives valuable insights

into sensitivity of NSCLC to immunotherapy and radio-

therapy. Our research may contribute to the design of

new therapies based on NK-DCs. Other studies provide

evidence for combining radiotherapy with DC-NK-

targeted therapies [39]. Additionally, first clinical trials

show the activity of FLT3LG in combination with ste-

reotactic radiotherapy in non-small cell lung cancer [47].

Last but not least, the FLT3-based treatment is well

researched and widely used in FLT3-mutated acute

myeloid leukemia, which may facilitate simple applica-

tion to solid tumors [48].
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