
Comprehensive Prostate Fluid-Based Spectral Libraries for
Enhanced Protein Detection in Urine
Published as part of Journal of Proteome Research virtual special issue “Canadian Proteomics”.

Annie Ha,● Amanda Khoo,● Vladimir Ignatchenko, Shahbaz Khan, Matthew Waas, Danny Vesprini,
Stanley K. Liu, Julius O. Nyalwidhe, Oliver John Semmes, Paul C. Boutros, and Thomas Kislinger*

Cite This: J. Proteome Res. 2024, 23, 1768−1778 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Biofluids contain molecules in circulation and from
nearby organs that can be indicative of disease states. Character-
izing the proteome of biofluids with DIA-MS is an emerging area of
interest for biomarker discovery; yet, there is limited consensus on
DIA-MS data analysis approaches for analyzing large numbers of
biofluids. To evaluate various DIA-MS workflows, we collected
urine from a clinically heterogeneous cohort of prostate cancer
patients and acquired data in DDA and DIA scan modes. We then
searched the DIA data against urine spectral libraries generated
using common library generation approaches or a library-free
method. We show that DIA-MS doubles the sample throughput
compared to standard DDA-MS with minimal losses to peptide
detection. We further demonstrate that using a sample-specific
spectral library generated from individual urines maximizes peptide detection compared to a library-free approach, a pan-human
library, or libraries generated from pooled, fractionated urines. Adding urine subproteomes, such as the urinary extracellular vesicular
proteome, to the urine spectral library further improves the detection of prostate proteins in unfractionated urine. Altogether, we
present an optimized DIA-MS workflow and provide several high-quality, comprehensive prostate cancer urine spectral libraries that
can streamline future biomarker discovery studies of prostate cancer using DIA-MS.
KEYWORDS: mass spectrometry, data-independent acquisition, data-dependent acquisition, prostate cancer, spectral library, urine

■ INTRODUCTION
Biofluids such as blood and urine contain proteins in
circulation of, for example, genitourinary organs, and are
ideal for biomarker discovery as they enable noninvasive
identification and quantification of proteins that reflect varying
disease states in human tissues.1,2 It is of great interest to
enable rapid and deep proteomic profiling of biofluids in large-
cohort studies consisting of hundreds to thousands of patients
for statistical power and generalizability that facilitate
biomarker discovery and validation.3 Mass spectrometry
(MS)-based bottom-up proteomics is a powerful tool for
characterizing the proteome and quantifying protein abundan-
ces.4−6 However, profiling large biofluid cohorts is challenging
for mainly two reasons. First, the high dynamic range of
protein concentrations in fluids can mask the detection of low-
abundance proteins. Second, profiling large cohorts is
challenging due to the low sample throughput of many
currently used methods such as DDA-MS.7

Data-independent acquisition (DIA)-MS is an emerging tool
for characterizing proteomes for its ability to increase
throughput and reproducibility,8−12 yet there is limited

consensus on an ideal downstream data analysis approach for
the highly convoluted data generated.13 To investigate the
utility of DIA-MS workflows for clinical biofluid cohorts, we
evaluated various commonly used DIA-MS data analysis
approaches14−17 using a large clinically heterogeneous cohort
of urines from 199 patients with prostate cancer. These
patients spanned the risk spectrum, from clinical ISUP grade
Group 1 disease (associated with better prognosis) to clinical
ISUP grade Group 5 disease (associated with worse
prognosis).18 In particular, we performed proteomics analysis
on patient-derived expressed prostatic secretions (EPS)-
urine.19 EPS-urine is a form of prostate proximal fluid
collected following a digital rectal exam (DRE), which we
and others have previously shown to be enriched in prostate-
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derived molecules.19,20 Enabling large-scale proteomics studies
on EPS-urine with DIA-MS would be appealing for biomarker
discovery efforts to answer unmet needs in prostate cancer.21

In this study, several published DIA-MS acquisition
schemes10 were compared against a well-established DDA-
MS workflow to determine an optimal method that optimizes
sample throughput and peptide detection. We show that a
sample-specific spectral library resulted in the highest number
of peptides detected compared to a library-free approach16 and
a pan-human library.15 Our group has previously shown that
analysis of extracellular vesicles (EV) isolated from EPS-urine
further increases the number of prostate proteins in EPS-
urine.22 We leveraged these data sets to generate an enhanced
urine spectral library that includes EV proteins. This enhanced
spectral library further increased the detection of prostate
proteins in unenriched urine without the need for laborious EV
isolation. Furthermore, we highlighted the trade-offs between
the various data analysis approaches to guide future research.
Although generating a cohort-specific library is labor-intensive
and often not feasible, it maximizes the detection depth across
heterogeneous clinical cohorts to an extent that is not captured
by pooled samples. Altogether, we have generated several
comprehensive, high-quality EPS-urine spectral libraries as a
resource for the community that can enable the in-depth
detection of proteins in urine for future studies of prostatic
disease.

■ EXPERIMENTAL SECTION

Human Subjects
Samples were obtained from patients following informed
consent and use of Institutional Review Board-approved
protocols at Eastern Virginia Medical School (EVMS, Norfolk,
Virginia, IRB# 06-12-FB-0343) and the Research Ethics
Review Board at the University Health Network (UHN,
Toronto, Ontario, Canada, 10-0159 and 19-5009). Clinical
details are listed in Table S1.
Urine Collection
First-catch urine (15 mL) was collected after digital rectal
exam (EPS-urine) as previously described.19,20,23 EPS-urine
was centrifuged at 2000g for 15 min at 4 °C to pellet cellular
debris, and the resulting urine supernatant was stored at −80
°C.
Protein Digestion
EPS-urine was prepared for proteomics using the MStern
protocol.24 For each sample, 2 pmol of Saccharomyces cerevisiae
invertase (SUC2) (Sigma-Aldrich) was added as a sample
processing control. Proteins in each sample were reduced with
5 mM dithiothreitol (DTT) (BioShop Canada) and incubated
for 30 min at 60 °C, then alkylated with 25 mM iodoacetamide
(IAA) (Sigma-Aldrich) followed by incubation at room
temperature for 30 min in the dark. The MStern membrane
(Millipore Sigma, MSIP4510) was equilibrated with 50 μL of
70% ethanol (Commercial Alcohols) and then washed twice
with 100 mM ammonium bicarbonate (ABC) (BioShop

Canada). 250 μL of EPS-urine was added to individual wells
and passed through the membrane by vacuum suction. Each
well was washed twice with 100 μL of ABC to remove salts,
then proteins were digested with 1 μg of mass spectrometry-
grade Trypsin/Lys-C enzyme mix (Promega) in 50 μL of
digestion buffer (100 mM ABC, 1 mM CaCl2 (Bioshop
Canada), 5% acetonitrile [ACN (Fisher Scientific)], pH 8.0).
The digestion buffer was passed through the membrane by
centrifugation, and the flow-through was reapplied on top of
the membrane. Protein digestion was performed at 37 °C for 4
h. Samples were resuspended in each well by gentle pipetting
every 2 h. Peptides were then collected by centrifugation, and
membrane-bound peptides were eluted with 50 μL of 50%
ACN and combined with the flow-through from the previous
step. Samples were then dried in a SpeedVac vacuum
concentrator (Thermo). Dried peptides were resuspended in
0.1% trifluoroacetic acid in water and desalted using in-house
solid phase extraction stage tips containing 3 plugs of 3 M
Empore C18 membrane.25 Peptides were reconstituted in 0.1%
formic acid (FA) (Millipore Sigma) in water, and peptide
concentration was determined by NanoDrop (Thermo).
Samples for DIA Method Evaluation

For the evaluation of DIA methods (Figure 1), 50 mL of EPS-
urine from a single clinical ISUP grade Group 1 patient was
used. The urine was prepared for proteomics using the MStern
protocol described above. Desalted peptides were reconsti-
tuted in 0.1% FA in water and quantified by NanoDrop prior
to mass spectrometry analysis.
Pooled Samples for Fractionated Spectral Libraries

For generating fractionated spectral libraries, 50 μL of EPS-
urine from 159 patients were pooled and processed with the
MStern protocol as described above. Peptides were recon-
stituted in 0.1% FA in water and quantified by NanoDrop prior
to fractionation.
High-pH Reversed-Phase Fractionation

The high-pH reversed-phase fractionated urine spectral library
was generated from the pooled urine described above (159
patients) using the Pierce high-pH reversed-phase fractiona-
tion kit (Thermo). 100 μg of peptides dissolved in 300 μL of
0.1% trifluoroacetic acid were loaded onto the spin column
following column equilibration. Ten fractions were collected
with 10 elution buffers of increasing concentrations of ACN (5,
7.5, 12.5, 15, 17.5, 20, 30, 50, and 80% ACN) in 0.1%
triethylamine. All peptides were dried by SpeedVac and
reconstituted in 0.1% FA in water. 2 μg of peptides per fraction
was then analyzed by DDA-MS.
Liquid Chromatography

All LC-MS data were acquired using an EASY-nanoLC 1000
system (Thermo), equipped with 1.5 cm trap column (1.5 cm
x 75 μm) (Thermo) and an EASY-Spray reversed-phase HPLC
analytical column (500 mm x 75 μm inner diameter x 2 μm,
C18 beads) (Thermo), coupled to a Q-Exactive HF mass
spectrometer with an EASY-Spray ion source (Thermo). iRT

Figure 1. Schematic of the DIA-MS method evaluation of pooled EPS-urine.
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peptides (Biognosys) were spiked into each sample prior to
LC-MS analysis at 1:10 concentration prior to acquisition. 2 μg
of peptides was used. Solvent A (0.1% FA in water), and
Solvent B (0.1% FA in ACN) were used for liquid
chromatography. For samples acquired by DDA-MS, peptides
were eluted on a nonlinear gradient of 130 min, starting with
5% B for 5 min, 5 to 25% B over 100 min, then from 25 to 48%
B in 10 min, followed by a wash step of 48 to 95% B for 4 min
and 95% B for 10 min. For samples acquired by DIA-MS,
chromatographic gradients were first optimized using single-
patient pooled EPS-urine (Table S2). The main cohort of EPS-
urines was acquired using the following DIA method (45 min
with 16 m/z staggered windows).
Mass Spectrometry

For samples acquired with DDA-MS, MS1 and MS2 scans
were acquired at a resolution of 60,000 and 17,500,
respectively. Data was acquired in Top 15 mode with HCD
fragmentation at NCE 27, maximum injection time of 110 ms,
and dynamic exclusion 40 s. For samples acquired with DIA-
MS, details of evaluated methods are documented in Table S2,
with each method acquired in technical triplicates. The
selected DIA-MS method was then used to acquire the entire
EPS-urine cohort. The selected DIA-MS method acquires a full
MS1 scan from 350−1800 m/z (60,000 resolution, 40 ms max
IT, AGC 3 × 106), interspersed between every 38 MS2 scans
of 30,000 resolution, 55 ms maxIT, and AGC target 1 × 106.
Window sizes were optimized by Skyline.26

Gas-Phase Fractionation

The gas-phase fractionated EPS-urine spectral library was
generated in DIA-MS mode as previously described.27 Peptides
were reconstituted in 0.1% FA in water, and 2 μg of peptides
were loaded on a column for each fraction. Six DIA-MS runs
were acquired with a mass range of 100 m/z each, sequentially
covering the overall mass range from 395 m/z to 1005 m/z
(395−495, 495−605, 595−705 m/z, etc.). Each DIA-MS
acquisition was acquired with two types of MS1 scans (60,000
resolution, AGC target 1 × 106, max IT 60 ms, 27 NCE), a
wide range spectrum of 395−1000 m/z followed by a narrow
range spectrum of 100 m/z corresponding to the mass range
fraction of each acquisition, interspersed every 25 MS2 scans
acquired using 4 m/z DIA overlapping windows (30,000
resolution, AGC target 1 × 106, max IT 60 ms, 27 NCE).
Spectral Library Generation

Spectral libraries were generated using FragPipe (v.18.1)16

with the preloaded workflow “DIA_SpecLib_Quant”. The
platform included MSFragger28 (v.3.5), Philosopher29 (v.4.5.1-
RC21), IonQuant30 (v.1.8.10), Python (v.3.9.7), EasyPQP
(v.0.1.36), and DIA-NN31 (v.1.8.1). MS2 spectral matching
was done in MSFragger against the human UniProt-SwissProt
database (2020-06-02, 42,042 sequences from canonical and
isoform). Database search was performed with the default
settings (precursor mass tolerance = 20 ppm, enzyme =
trypsin, missed cleavages = 2, minimum peaks = 15). Search
results were then statistically validated through Philosopher
and MSBooster.32 PSMs with FDR < 1% were processed in
EasyPQP for the generation of consensus spectrum of
confident peptides (RT loess fraction = 0.05, CiRT for RT
alignment for gas-phase fractionation library). Individual
spectral libraries were generated using the .raw files from
three single-shot label-free DDA data sets, one from this study

(uEPS, 199 urine samples) and two from previously published
cohorts22 (uEV-P20:153 samples, uEV-P150:151 samples).
LC-MS/MS Data Analysis

DDA-MS .raw files were searched using the “LFQ-MBR”
workflow with FragPipe (v.18.1). MSFragger search parame-
ters were the same as above, with match-between runs (MBR)
default settings. PSMs, peptides, and proteins with FDR < 1%
were exported in the combined_modified_peptide.tsv, combi-
ned_peptide.tsv, combined_ion.tsv, and combined_pro-
tein.tsv. DDA-MS peptide intensities from the combined_-
peptide.tsv file were median normalized and then grouped to
proteins using an in-house pipeline that utilizes the Abacus
algorithm.33 Proteins mapped with only one peptide were
removed from further analysis. Protein intensity was calculated
using the iBAQ method.34

DIA-MS data was analyzed with the “DIA_SpecLib-Quant”
workflow on FragPipe (v.18.1). Following conversion of the
DIA-MS .raw files to mzML format using ProteoWizard
MSConvert (v.3.0),17 DIA-MS.mzML files were searched with
FragPipe. Data generated for method evaluation was searched
with a library-free workflow,31 and other analyses were
performed with either library-free or against spectral libraries
from this study as specified in the Results and Discussion
section. For the library-free workflow, the data was searched
with MSFragger with the same parameters as indicated above,
then quantified individually by DIA-NN (v.1.8.1) (quantifica-
tion strategy = AnyLC (high precision), unrelated runs =
TRUE). For searches performed with spectral libraries,
MSFragger, Philosopher, and EasyPQP were disabled. Spectral
libraries were assigned with the parameter “�lib library.tsv”
for quantification in DIA-NN with the same quantification
parameters as described above. Precursors and proteins with
FDR < 1% were reported in the output tables diann-output.tsv
files individually. Results from all runs were concatenated from
individual diann-output.tsv files. Ion intensity values from the
“Precursor.Normalised” column were summed per peptide
sequence as peptide intensity. Peptide intensities were
normalized by median normalization. Subsequent protein
grouping and filtering were the same as above.
Data Quality Control

To assess the quality of our data, we considered the intensity
and retention time of spike-in yeast protein SUC2 and
synthetic iRT peptides, respectively. Any large shifts in the
abundance of SUC2 peptides, large shifts in the retention time
of iRT peptides (>10 min), or low peptide counts (<500
peptides per sample) may indicate a poor-quality sample. We
did not identify any low-quality samples in our data. All
samples were retained for further analysis.
Bootstrapping for Library Generation

Bootstrapped libraries were generated by randomly drawing
(with replacement) a defined number of EPS-urine DDA-MS
samples for library generation. The number of samples for
library generation input was set at 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 40, 60, 80, 100, 120, 140, 160, 180, and 199. File names of
the DDA samples were randomly drawn using Python (v.3.9)
with Python package numpy (v.1.24.2) per sample increment
for 25 iterations. Filenames selected for each step and each
iteration were piped into FragPipe (v.18.1) for spectral library
generation as described above. Spectral libraries with the
median number of peptide entries per sample increment were
then used for DIA-MS analysis with DIA-NN (v.1.8.1). Smaller
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cohorts were subsetted by selecting 10, 20, 50, 100, and 150
samples at random from the full cohort. Spectral libraries were
generated by subsampling each cohort with 3 iterations each.

The list of number of samples as input for library generation is
listed in Table S2.

Table 1. Parameters of the Best DIA-MS Method Per Chromatographic Gradient Tested

method ID
gradient
(min)

window size
(m/z) placement

mass range
(m/z)

cycle time
(s)

points per
peak peptide count peptide CV

protein
count protein CV

120 min−1 120 16 staggered 450−950 2.91 5.14
(±3.42)

10,590
(±218.09)

15.42
(±20.78)

1678
(±10.44)

14.94
(±25.24)

120 min−11 120 1.4 DDA 350−1800 1.2 7486
(±187.09)

16.05
(±22.27)

1323
(±24.33)

19.36
(±25.43)

60 min−1 60 16 staggered 450−950 2.91 3.86
(±2.16)

9053
(±114.9)

17.6
(±20.92)

1452
(±12.12)

17.52
(±23.68)

45 min−1 45 16 staggered 400−1000 3.37 3.56
(±1.76)

7951
(±54.01)

22.52
(±23.55)

1337
(±19.63)

22.75
(±28.1)

30 min−1 30 24 staggered 450−950 1.95 3.88
(±2.06)

6091
(±18.33)

17.87
(±22.53)

1125
(±10.6)

18.13
(±27.6)

Figure 2. Evaluation of commonly used DIA-MS data analysis approaches for EPS-urines. (A) Schematic of the sample-specific spectral libraries.
(B) Library size of the generated sample-specific spectral libraries. (C) Schematic of DIA-MS data analysis using the generated libraries, DPHLv2,15

and library-free approaches.16 (D) Number of peptides detected in more than 10% of samples in total (top) and per sample (bottom). (E) Number
of peptides of the generated libraries from subsampling of the DDA-MS EPS-urine cohort. (F) Percent of peptides detected in DIA-MS data using
the subsampled spectral libraries.
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Bioinformatics and Statistical Analysis

Where appropriate, the quantitative analyses are described in
the relevant sections of the Experimental Section. Unless stated
otherwise, bioinformatic or statistical analyses and plotting
were performed using R (v.4.3.0 and 4.2.1) and RStudio
(v.2022.02.0 and v.2022.07.2 + 576). Data were visualized
using R packages BoutrosLab.plotting.general (v.7.0.3), ggplot2
(v.3.4.0), ggbeeswarm (v.0.6.0), ggpubr (v.0.4.0), cowplot
(v.1.1.1), eulerr (v.7.0.0), ComplexHeatmap (v.2.16.0), ggrepel
(v.0.9.3), corrplot (v.0.92), and tidyverse (v.2.0.0). For all
pairwise comparisons, unless stated otherwise, correlation
coefficients were determined by Spearman’s method (cor.test),
with P-values calculated by asymptotic t approximation using
an Edgeworth series.
Pathway Analysis

Pathway analysis was performed in g:prof iler (v.0.2.1)35,36

against Gene Ontology: Cellular Component gene sets. Over-
represented, significant terms (FDR < 0.05) from library-
unique gene sets from Figure 4 were visualized in Cytoscape
(v.3.9.1) using the EnrichmentMap app (v.3.3.4; Jaccard
overlap combined index: 0.375) and annotated with the
AutoAnnotate (v.1.3.5) and clusterMaker App (v.2.2; cluster
algorithm: MCL Cluster).

■ RESULTS AND DISCUSSION

Evaluation of DIA-MS Method for Rapid EPS-Urine
Analysis

To determine a suitable DIA-MS method that increases sample
throughput and peptide detection, we evaluated various
published methods10 in technical triplicate against a standard
DDA-MS method with a 120 min chromatographic gradient
using a pooled EPS-urine sample. Parameters such as window
placements (variable, staggered, and static), window sizes,
mass range, and chromatographic gradients were considered
(Figure 1). Resulting peptide and protein detection rates,
number of points across peak elution, and coefficient of
variation (CV) were ranked per method tested (Table S2).
Between the chromatographic gradients and methods tested,
the 45 min method with 16 m/z staggered windows (45
min−1) resulted in increased detection rates with comparable
CVs as the standard DDA-MS method (Table 1). We decided
that the 45 min method would be suitable for doubling of
sample throughput without compromising proteome coverage
when compared to a standard DDA-MS.
Comparisons of DIA Data Analysis Strategies

To evaluate the performance of spectral libraries generated
from commonly used approaches, we generated three spectral
libraries from EPS-urine: two libraries from a pooled sample
(159 patients) that was fractionated by high-pH reverse-phase
fractionation14 (lib-HighpH) or gas-phase fractionation17 (lib-
GPF), and a third library from individual EPS-urines (lib-IS;
199 patients) (Figure 2A). All EPS-urines used for generating
the spectral libraries were from patients with prostate cancer
that spanned the risk spectrum of the localized disease (Table
S1). Of the three EPS-urine libraries, the library generated
from single-shot DDA of 199 individual EPS-urines (lib-IS)
was the largest (68,208 peptides, 5238 proteins), with 39,642
peptides (58.11%) unique to lib-IS (Figure S1A). In line with
other studies, spectral libraries generated from individually
analyzed samples better characterize the proteome of a diverse

cohort than libraries generated from extensive fractionation of
pooled samples.37,38

Next, to benchmark the performance of these libraries, we
acquired DIA-MS data for 195 EPS-urines and searched the
data against each of the EPS-urine spectral libraries (Figure
2C). We also compared our EPS-urine libraries to a published
pan-human library (DPHLv2) that includes various tissues and
biofluids,15 and a commonly used library-free approach that
uses MSFragger and DIA-NN.16 Between the search
approaches, DPHLv2 detected the most peptides (68,428)
(Figure S1B), and the highest number of unique peptides
(19,880) (Figure S1C). However, when considering only
peptides that are reproducibly detected in more than 10% of
samples, only 32.9% of peptides detected by DPHLv2 were
reproducibly detected. In contrast, lib-IS resulted in the highest
number of urine peptides that were reproducibly detected,
closely followed by the library-free approach (Figure 2D). The
lib-GPF and lib-HighpH libraries resulted in the least number
of uniquely detected peptides.
These observations suggest that while repository-scale

libraries (e.g., DPHLv2, pan-human library, etc.) increase
detection rates, many peptides are not consistently detected
across samples. This was also observed in Muntel et al.,39

where authors showed that for urines, using sample type-
specific libraries resulted in more reproducible peptide
detection and quantification compared to a pan-human library.
This is likely due to matching against a large fraction of
peptides in the library that are not present in the sample,
introducing false positives and challenging error-rate control.40

Similar to other studies,38,39 among the different approaches
for generating sample-specific libraries, the library using
individually analyzed samples (lib-IS) can maximize detection
rates compared to the libraries using pooled samples, likely by
increasing the detection of patient-specific proteins that can be
masked by pooling. Thus, we continued to investigate the use
of lib-IS for the EPS-urine analysis.
However, generating such a library from large clinical

cohorts is time- and resource-intensive, and access to large
clinical cohorts may be limited. To investigate the influence of
library size on peptide detection, we generated spectral
libraries by subsampling the EPS-urine DDA-MS samples
with bootstrapping (Experimental Section) and evaluated the
performance of these libraries using our DIA-MS cohort. Both
the library size and detection rates increased with the number
of samples used for library generation (Figure 2E,F). Peptide
detection reached 81.3% when the DIA-MS data was matched
against a library generated from 60 samples (∼1/3 of the
cohort). Matching against smaller libraries resulted in biases
toward more frequently detected and slightly more abundant
peptides (Figure S1D−E). To investigate the influence of
library size on other cohort sizes of urine samples, we subset
our cohort into smaller sizes and generated subsampled
spectral libraries. We observed that smaller cohorts (n = 10,
20) require a larger fraction (60%) of the samples for library
generation to achieve ∼80% peptide coverage (Figure S1F).
This suggests for smaller urine cohorts (n ∼ 20), proteome
coverage will benefit from the use of a spectral library
generated by DDA analysis of the full cohort. On the contrary,
generating a spectral library from at least one-third of the
cohort in larger cohorts (n > 50) would provide a balance
between depth of detection and instrument time. These
observations illustrate that it is less laborious generating
spectral libraries using a smaller subset of samples, but
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searching against smaller libraries results in lower proteome
coverage. Here, we show that lib-IS can maximize the detection
of urinary peptides compared to pan-human and fractionated
library approaches.
Matched Cohort Comparisons of DIA and DDA

Many studies have extensively benchmarked DIA-MS against
DDA-MS,8,37,38,41,42 but many of them are limited to cell lines
or small patient cohorts with reduced biological or
interindividual heterogeneity. To investigate how data acquired
by DIA- or DDA-MS differ in a large clinical heterogeneous
cohort, we compared the number of proteins detected in EPS-
urines (195 patients) that were acquired by DIA-MS and
DDA-MS. Overall, more peptides and proteins were detected
by DIA-MS than by DDA-MS (Figures 3A and S2A), adding
an additional 17.3 to 57.3% of proteins per patient (Figure
3B). Of the 3449 proteins observed in both DIA- and DDA-
MS, 3109 were detected more consistently by DIA-MS (Figure
3C). This phenomenon was more pronounced for lower-
abundance proteins, as quantified by DDA-MS (Figure S2B).
Median protein intensities across samples and per-sample
protein intensities were highly correlated between both scan
modes (Figures 3D and S2C). We show that our 45 min DIA-
MS method outperforms our 120 min DDA-MS method by
increasing peptide and protein detections per sample and
reducing missing values while maintaining high quantitative
correlation with DDA-MS.

Increasing Proteome Coverage Using Sample-Relevant
Libraries

We have shown that DIA-MS can improve protein detections,
but lower-abundance and less frequently detected prostate-
derived proteins may be missed in spectral libraries derived
from unfractionated urine (lib-IS) due to the high dynamic
range of the urinary proteome. Our group has previously
shown that more prostate proteins can be detected in urinary
extracellular vesicles (uEV) isolated from EPS-urine compared
to unfractionated EPS-urine.22 uEVs were isolated by differ-
ential ultracentrifugation at 20,000g and 150,000g. However,
since uEV isolation is time- and resource-intensive, we sought
to determine if uEV proteins can be detected in unfractionated
EPS-urine via DIA-MS data utilizing spectral libraries of
published uEV data sets (Figure 4A). Of the three urine-
derived spectral libraries, the lib-EVP20 was the largest (93,800
peptides, 7649 proteins), whereas the size of the lib-EVP150
(64,663 peptides, 5462 proteins) was similar to that of lib-IS
(Figure 4B). The EV libraries also covered an additional 3628
proteins compared to lib-IS (Figure 4C), providing a more in-
depth prostate cancer urinary proteome.
We then matched the EPS-urine DIA-MS data against the

two EV libraries and compared them to the lib-IS results to
evaluate whether protein detection in unfractionated EPS-urine
can be improved (Figure 4D). We observed that the lib-IS
resulted in the highest number of proteins and peptides
detected (Figure S3A, Figure 4E), but the majority of proteins
(71.9%, 2869) were also detected by the EV libraries (Figure

Figure 3. Comparing matched EPS-urine samples acquired by DDA- or DIA-MS. (A) Number of proteins detected in matched samples
(Wilcoxon’s signed-rank test). (B) Percentage of proteins unique to DDA-MS (orange), DIA-MS (blue), or shared (gray) per patient. (C)
Frequency of detection for each protein between DDA- and DIA-MS. Spearman’s correlation and its P-value. (D) Spearman’s correlation of the
median log2 protein intensities of shared proteins between the scan modes.
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4F). On the contrary, searching against the EV libraries
resulted in the detection of an additional 761 proteins. These
results indicate that querying the unfractionated EPS-urine
data against libraries generated from EV proteomes can
increase protein detection without the need for EV isolation.
To determine if the additional proteins were EV-derived, we

compared the frequency of detection of the uniquely detected
proteins to their corresponding fractions in the aforementioned
DDA-MS data set.22 Proteins unique to lib-EVP20 were more
frequently detected in the uEV-P20 fraction of EPS-urine in
DDA data (Figure 4G). As expected, proteins uniquely
detected by each of the EV libraries were also more frequently
detected in the corresponding urinary fraction by DDA-MS
(Figure S3C−E), indicating that they are likely EV-derived
proteins. Compared to the lib-IS unique proteins detected, the
uEV-library-unique proteins were enriched in pathways related
to extracellular vesicles and intracellular trafficking, while EPS-
urine-unique proteins were enriched in pathways related to the

plasma membrane and extracellular space (Figure 4H). To
investigate whether these unique proteins are prostate-derived,
we compared them to two published prostate cancer tissue
data sets.43,44 Of the uniquely detected proteins by the EV
libraries, 548 were found in tissues, suggesting that the use of
the EV libraries can better represent the prostate proteome in
urine (Figure 4I). These observations illustrate that using
sample-relevant subproteomes enables the detection of
prostate- and EV-derived proteins that would otherwise be
missed in unfractionated EPS-urine.
Combined EPS-Urine Library for Comprehensive Peptide
Detection

We have shown that the protein coverage of unenriched EPS-
urine can be further maximized by searching against EV
spectral libraries. To provide an extensive spectral library
specific to EPS-urine, we generated an enhanced prostate
cancer urine spectral library using all of the described EPS-

Figure 4. Evaluation of sample-relevant spectral libraries for data analysis of unfractionated EPS-urine DIA-MS data. (A) Schematic of spectral
library generation from the aforementioned EPS-urine samples, and the two populations of urinary extracellular vesicles (uEV) isolated by
ultracentrifugation at 20,000g (lib-EVP20) and 150,000g (lib-EVP150).22 (B) Library size and (C) intersection of proteins of the generated spectral
libraries. (D) Schematic of DIA-MS data analysis using each of the generated libraries. (E) Number of detected proteins and (F) intersection of
proteins detected in EPS-urine data using each spectral library. (G) Percent observations of the uniquely detected proteins using lib-EVP20 in the
DDA-MS data.22 (H) Pathway analysis of genes uniquely detected by each spectral library. (I) Number of uniquely detected proteins mapped
against prostate cancer tissue data sets.43,44
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urine and EV samples (Figure 5A). To demonstrate the
performance of the lib-EPS against the other search
approaches, we compared the search results against the
DPHLv2 library and library-free approach described above.
The lib-EPS detected the highest number of urine peptides in
total (68,794) (Figure S4A) and per sample (median 13,671)
compared to the DPHLv2 library and library-free approach
(Figure 5B). Consistent with the observations above, lib-EPS
resulted in the highest number of reproducibly detected urine
peptides (Figure S4B). Although the number of proteins
detected was comparable between the search approaches, lib-
EPS improved protein sequence coverage significantly and thus
improved confidence of the protein detection (Figure 5C).
These observations illustrate that the lib-EPS library can
maximize peptide detection in EPS-urines compared to a
publicly available resource library and the library-free. Here, we
present an extensive resource library specific to the EPS-urine
proteome that can allow scalable biomarker discovery of
prostate cancer using hundreds of samples with DIA-MS.
While DIA-MS has advantages for biomarker discovery,

there remains no consensus as to how to best select a data
analysis approach. When applying DIA-MS to large cohorts,
sample processing time, computational runtime, and resulting
proteome coverage are important factors to consider, and the
ideal search strategy would maximize all of these factors (Table
2). For example, although a library-free approach does not
require de novo spectral library generation, it requires almost 10

times the computational runtime compared to that of a
spectral library approach (Table S2). On the other hand,
DPHLv2 is the largest publicly available spectral library for
analysis of human samples, but it resulted in less peptides
detected in EPS-urine compared to our prostate urine library
that is one-third its size. Furthermore, spectral libraries
generated from pooled samples with commonly used
fractionation protocols is a viable option when the sample
amount is limited but did not result in high proteome coverage
in our cohort. Given these trade-offs, our study delivers a
comprehensive prostate urine library (lib-EPS) that contains
spectral data from unfractionated EPS-urines and urine-derived
EVs to increase the detection of prostate proteins in
unfractionated EPS-urines acquired by DIA-MS. The gen-
erated lib-EPS reduces the overhead time and resources for
spectral library generation for future studies applying DIA-MS
on EPS-urines and facilitates the expansion of large-scale
studies for prostate cancer biomarker discovery.

■ CONCLUSIONS
DIA-MS has the potential to enable large-scale clinical
proteomics studies of hundreds of patient urine samples for
the study of prostatic diseases such as prostate cancer. Here,
we evaluated commonly used DIA-MS data analysis workflows
and generated several sample-specific EPS-urine libraries from
a large, diverse cohort of prostate cancer patients. We showed
that sample-specific libraries generated from large numbers of
individuals (lib-IS) resulted in the highest and most
reproducible peptides detected. By adding data acquired
from previously isolated urinary EVs22 to our EPS-urine
library (lib-IS), we were able to further increase the number
and sequence coverage of proteins that can be detected in
unfractionated EPS-urine. We also showed that at least 60
patient samples were required for library generation to achieve
moderate proteome coverage, in which the diversity and
amounts of samples can be difficult to collect clinically. To
enable future large-cohort studies that use EPS-urines for
prostate cancer research, we present a comprehensive prostate
fluid library (lib-EPS) generated from 503 EPS-urines and
urine-derived EVs consisting of 115,801 peptide sequences
(8151 proteins). The generated library can maximize peptide
detection in EPS-urines and enable expansion of more
reproducible proteomics analysis for urine prostate cancer data.

Figure 5. Evaluation of the combined EPS-urine library. (A) Schematic of generation of a combined EPS-urine and EVs spectral library. (B)
Number of peptides detected using lib-EPS, library-free, and DPHLv2. (C) Protein sequence coverage of proteins reported by FragPipe with
protein group Global Q Value <0.01.

Table 2. Summary of the Pros and Cons for the DIA-MS
Data Analysis Approaches Evaluated (+: Least
Advantageous, ++: Moderately Advantageous, +++: the
Most Advantageous)

approach

sample
processing

time
computational

runtime
depth of
detection

data
consistency

cohort library (lib-
IS, lib-EPS)

+ +++ +++ +++

subset cohort
library

++ +++ ++ ++

pooled sample
library (lib-GPF,
lib-HighpH)

++ +++ + +++

library-free +++ + ++ +++
publicly available
resource library
(DPHLv2)

+++ ++ +++ +
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EPS: expressed prostatic secretion
DRE: digital rectal exam
MS: mass spectrometry
LC-MS/MS: liquid chromatography-coupled tandem mass

spectrometry
AGC: automatic gain control
DDA: data-dependent acquisition
DIA: data-independent acquisition
EV: extracellular vesicles
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CV: coefficient of variation
NCE: normalized collision energy
maxIT: maximum injection time
ISUP: International Society of Urological Pathology
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