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Abstract
Background  Autism spectrum disorder has been linked to a variety of organizational and developmental deviations 
in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to 
language-relevant regions of the brain or distributed more broadly.

Methods   In the present study, we estimated brain hemispheric lateralization in autism based on each participant’s 
unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential 
relationships between the lateralization of the language network and behavioral phenotypes including verbal 
ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries 
in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in 
lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 
autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated 
network asymmetries using a surface area-based approach. A series of multiple regressions were then used to 
compare network asymmetries for eight significantly lateralized networks between groups.

Results  We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-
lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction 
of these group differences indicating less asymmetry in autistic males. These differences were robust across different 
datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, 
with the greatest group differences in language lateralization occurring between autistic males with language delay 
and neurotypical individuals.

Conclusions  These findings evidence a complex pattern of functional lateralization differences in autism, extending 
beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing 
all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association 
between Language network lateralization and language delay in autistic males.
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Background
Autism spectrum disorder (ASD) is a heterogenous neu-
rodevelopmental condition characterized by challenges 
in social communication and the presence of restricted 
repetitive behaviors (Diagnostic and Statistical Manual-5; 
[1]). As a neurodevelopmental condition, ASD is linked 
to atypical timelines of social, cognitive, and physi-
ological development. A pivotal question in the study of 
autism revolves around the role that alterations in brain 
asymmetries may play in its development.

Hemispheric specialization, a key principle of brain 
organization and design, refers to the phenomenon 
whereby specific cognitive functions are predominantly 
localized in one hemisphere over the other. This spe-
cialization is akin to a division of labor within the brain, 
with each hemisphere assuming distinct yet not exclu-
sive cognitive responsibilities. In essence, it is as if the 
brain has a dominant hand for certain types of cognitive 
operations, such as emotion responsiveness, visuospa-
tial attention, conscious problem solving, and language 
processing, among others [2]. The near universality of 
these functional asymmetries in the human brain raises 
intriguing questions regarding their behavioral and cog-
nitive purposes. It has been hypothesized that the emer-
gence of lateralized cognitive functions may have been a 
crucial adaptation that allowed humans to excel in vari-
ous aspects of life, including improved mobility, more 
astute resource-seeking behavior, and more effective 
defense against predators [3]. The implications for brain 
function are also intriguing, and it is thought that func-
tional asymmetries reflect a dynamic trade-off between 
decreases in redundancy [4], processing speed [5], and 
interhemispheric conflict in function initiation [6, 7], and 
the loss of system redundancies and inter-hemispheric 
connections.

When considering neurodevelopmental conditions 
such as ASD, the consequences of atypical hemispheric 
lateralization or a lack thereof become particularly rel-
evant. Language laterality in particular is of interest to 
autism researchers, since the diagnosis includes a num-
ber of language-related features. Consequently, the field 
of autism research has a long history of investigating lat-
eralization, employing a variety of research methods. For 
instance, a dichotic listening task paradigm identified a 
reversal or reduction of lateralization for speech in ASD 
[8]. Subsequent electroencephalography studies arrived 
at a similar conclusion [9–12]. However, despite evidence 
from these and additional studies, it is unknown if differ-
ences in hemispheric lateralization in autism are local-
ized to language-relevant regions, as posited in the left 
hemisphere dysfunction theory of autism [13], or if they 
are more pervasive.

Current evidence surrounding this lateralization debate 
is inconsistent, with findings for generally increased 

activity in the right hemisphere in autism [14–18], gen-
erally decreased activity in the left hemisphere [19–21], 
both increased activity in the right hemisphere and 
decreased activity in the left hemisphere [22–24], and 
generally decreased connectivity across both hemi-
spheres [25]. Conversely, recent evidence for specific 
differences in lateralization for regions involved in lan-
guage processing in autism is compelling. For example, 
in a functional connectivity-based study, a reduction in 
left lateralization was observed for several connections 
involving left-lateralized hubs, particularly those related 
to language and the default network [26]. This was exam-
ined once more by Jouravlev et al. [27] with a functional 
language task on an individual level. Within the lan-
guage network, autistic participants showed less lateral-
ized responses due to greater right hemisphere activity 
[27]. Interestingly, there was no strong difference in lat-
eralization for the theory of mind and multiple demand 
networks between autistic and neurotypical (NT) par-
ticipants, suggesting that differences in lateralization are 
constrained to language regions [27].

Adding another layer to this debate is the potential role 
that language delay might play in stratifying differences 
in lateralization in autism. Using normative modeling, 
one team found that language delay explained the most 
variance in extreme rightward deviations of laterality in 
autism [28]. This is a promising direction, as it appears 
language delay is capable of parsing the heterogeneity of 
atypical lateralization patterns in autism. Furthermore, 
this result points to the behavioral relevance of atypi-
cal lateralization patterns to language development in 
autism. However, it is unclear as to if atypical lateraliza-
tion in language regions specifically or global alterations 
of lateralization are contributing to the observed lan-
guage deficits [29].

The aim of the present study is to address this ongoing 
debate regarding the specificity of atypical lateralization 
patterns to language-relevant regions in autism. This was 
undertaken by approaching both brain network parcella-
tions and network lateralization from an individual level. 
The use of these individualized elements is non-trivial, 
since functional networks vary more by stable group and 
individual factors than cognitive or daily variation [30]. 
Furthermore, group averaging can obscure individual 
differences and blur functional and anatomical details—
details which are potentially clinically useful [31, 32]. 
Thus, through the use of this individual approach, we are 
better positioned to capture idiosyncratic functional and 
anatomical details relevant to network lateralization.

The present study explored the following hypotheses. 
First, it was hypothesized that male autistic individuals 
would show reduced hemispheric lateralization only in 
areas associated with language compared with neurotypi-
cal individuals. Second, we examined the relationships 
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between language lateralization and three behavioral 
phenotypes: verbal ability, autism symptom severity, 
and language delay. More specifically, we hypothesized 
a positive relationship between language lateralization 
and verbal ability (as previously described by [33]), and 
a negative relationship between language lateralization 
and autism symptom severity. Finally, we hypothesized 
that language delay would stratify language lateralization, 
with the greatest expected differences in lateralization to 
occur between male autistic individuals with language 
delay and neurotypical individuals.

Methods
Participants
A previously collected dataset was used, and further 
information on participant recruitment and diagnosis 
can be found elsewhere [34–37]. All data were obtained 
with assent and informed consent according to the Uni-
versity of Utah’s Institutional Review Board. This data-
set was originally developed to understand ASD from 
a longitudinal perspective and includes up to six waves 
of data collection. For the purposes of this analysis, data 
from collection wave five were exclusively used due to the 
availability of multi-echo fMRI data, which were solely 
acquired during this particular wave. Participants under-
went two 15-minute resting-state multi-echo functional 
magnetic resonance imaging (fMRI) scans and were 
instructed to simply rest with their eyes open while let-
ting their thoughts wander [38]. A total of n = 89 ASD 
and n = 108 NT participants had fMRI data. Exclusion 
criteria included participants without age data, partici-
pants without handedness data (Edinburgh Handedness 
Inventory; [39]), participants older than 50 years, female 
participants, participants with less than 50% of volumes 
remaining after motion censoring, and participants with 

a mean framewise displacement greater than 0.2  mm 
and mean DVARS greater than 50. The exclusion crite-
rion of age greater than 50 was selected due to the lack of 
matched controls for participants older than 50. Female 
participants were excluded from the analyses due to their 
limited representation (n = 3). A total of n = 48 ASD and 
n = 70 NT male participants were included in the final 
analysis. In summary, ASD mean age was 27.22 years, 
range 14.67–46.42 years; NT mean age was 27.92 years, 
range 16.33–46.92 years; overall mean age was 27.63 
years. Additional demographic information can be found 
in Table 1.

Autistic participants and neurotypical participants 
did not significantly differ in mean age (t(96.87) = − 0.49, 
p = .62) or handedness (t(92.38) = -1.69, p = .09). However, 
the two groups did differ in data quality (mean frame-
wise displacement; t(93.81) = 2.51, p = .01) and quan-
tity (percent volumes available; t(85.13) = -2.61, p = .01). 
Furthermore, there was a significant difference between 
groups on available intelligence quotient (IQ) measures 
(p < .001). Details regarding IQ measures in this dataset 
have been previously reported [35, 37]. Using full-scale 
IQ score of 79 or lower as the criterion for low verbal 
and cognitive performance [40], there were three autistic 
participants who met this criterion. Additionally, 93.33% 
of the autistic participants had high verbal and cognitive 
performance and 100% of the NT sample had high verbal 
and cognitive performance.

Table 1 also presents the Autism Diagnostic Observa-
tion Schedule (ADOS) calibrated severity scores (CSS) at 
entry. The ADOS was administered by trained clinicians 
or research-reliable senior study staff as detailed previ-
ously [35, 37]. The ADOS CSS scores were then calcu-
lated based on ADOS module and participant age [41]. 
A few participants had ADOS CSS scores derived more 

Table 1  Demographics
Autism, n = 48 Neurotypical, n = 70 Group Comparison
Mean (SD) Range Mean (SD) Range t p

Age at Time 5 Scan (Years) 27.22 (7.71) 14.67–46.42 27.92 (7.24) 16.33–46.92 -0.49 0.62
Mean Framewise Displacement 0.09 (0.03) 0.04–0.19 0.08 (0.03) 0.04–0.16 2.51 0.01
Percent Volumes Available 76.79 (15.49) 50.17–98.98 83.75 (12.22) 55.38–100 -2.61 0.01
Handednessa 63.32 (43.24) -82.15–100 76.39 (38.04) -64.71–100 -1.69 0.09
Mean Performance IQb 105.31 (17.26) 67–150 117.4 (15.31) 79–155 -3.46 < 0.001
Mean Verbal IQc 103.13 (19.87) 61–142 118.59 (10.89) 99–140 -4.54 < 0.001
Mean Full-scale IQd 104.62 (18.81) 60–150 119.71 (11.69) 90–141 -4.53 < 0.001
ADOS CSSe 7.91 (1.89) 2–10 - - - -
ADI-Rf 28.2 (7.32) 12–40 - - - -
aHandedness scores were assessed using the Edinburgh Handedness Inventory [39]. Scores can range between − 100 (indicating left-handedness) to + 100 (indicating 
right-handedness)
bMean Performance IQ: Autism n = 45, Neurotypical n = 42
cMean Verbal IQ: Autism n = 45, Neurotypical n = 42
dFull-scale IQ: Autism n = 45, Neurotypical n = 42
eADOS CSS at Study Entry n = 41; ADOS CSS at wave 5 n = 6
fADI-R: Autism n = 44
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recently (n = 6). The ASD diagnosis of these select par-
ticipants was confirmed prior to study enrollment, so the 
ADOS was not administered at study entry to these par-
ticipants. Autism Diagnostic Interview-Revised (ADI-R) 
scores are also reported, and these scores act as a sum-
mary of autism severity during childhood.

Characteristics of autistic participants with and with-
out language delay can be found in Table 2. In accordance 
with prior work [28, 42], language delay was operation-
alized as having the onset of first words later than 24 
months and/or having onset of first phrases later than 33 
months as assessed via the ADI (not the ADI-R). These 
ADI items were available for 45/48 autistic participants, 
of which 29 met the threshold for language delay.

MRI acquisition parameters
MRI data were acquired at the Utah Center for Advanced 
Imaging Research using a Siemens Prisma 3T MRI scan-
ner (80 mT/m gradients) with the vendor’s 64-channel 
head coil (see [38]; Siemens, Erlangen, Germany). Struc-
tural images were acquired with a Magnetization Pre-
pare 2 Rapid Acquisition Gradient Echoes (MP2RAGE) 
sequence with isotropic 1.0  mm resolution (Repetition 
Time (TR) = 5000 milliseconds, Echo Time (TE) = 2.93 
milliseconds, and inversion time = 700 milliseconds). 
Resting-state functional images were acquired with a 
multiband, multi-echo, echo-planar sequence (TR = 1553 
milliseconds; flip angle = 65°; in-plane acceleration fac-
tor = 2; fields of view = 208  mm; 72 axial slices; resolu-
tion = 2.0 mm isotropic; multiband acceleration factor = 4; 
partial Fourier = 6/8; bandwidth = 1850  Hz; 3 echoes 
with TEs of 12.4 milliseconds, 34.28 milliseconds, and 
56.16 milliseconds; and effective TE spacing = 22.0 
milliseconds).

fMRI preprocessing
Preprocessing took place on raw Neuroimaging Informat-
ics Technology Initiative (NIfTI) files for the resting-state 
fMRI runs using a pipeline developed by the Computa-
tional Brain Imaging Group (CBIG;) [43, 44]. Briefly, pre-
processing steps included surface reconstruction (using 
FreeSurfer 6.0.1;) [45], removal of the first four frames 
(using FSL, or FMRIB Software Library;) [46, 47], multi-
echo integration and denoising (using tedana; [48], struc-
tural and functional alignment using boundary-based 
registration (using FsFast;) [49], linear regression using 
multiple nuisance regressors (using a combination of 
CBIG in-house scripts and the FSL MCFLIRT tool;) [46], 
projection to FreeSurfer fsaverage6 surface space (using 
FreeSurfer’s mri_vol2surf function), and smoothing with 
a 6 mm full-width half-maximum kernel (using FreeSurf-
er’s mri_surf2surf function;) [50]. As FreeSurfer recon-
structions were primarily used to map functional data, no 
additional quality-control steps were taken after success-
ful reconstructions were estimated. To take full advan-
tage of the multi-echo echo planar image scans in this 
dataset, the parameters of the CBIG preprocessing pipe-
line included tedana [48]. Multi-echo data are acquired 
by taking three or more images per volume at echo times 
spanning tens of milliseconds [51, 52]. This provides two 
specific benefits: (1) Echoes can be integrated into a sin-
gle time-series with improved blood oxygen level depen-
dent contrast and less susceptibility artifact via weighted 
averaging, and (2) the way in which signals decay across 
echoes can be used to inform denoising [53]. Therefore, 
to take advantage of these properties, tedana creates a 
weighted sum of individual echoes and then denoises the 
data using a multi-echo independent component analy-
sis-based denoising method [48]. Additionally, as sug-
gested by Kundu et al. [54], bandpass filtering was not 
included as a preprocessing step for the multi-echo data.

Table 2  Language delay demographics
No Language Delay
n = 16

Language Delay
n = 29

Group 
Comparison

Mean (SD) Range Mean (SD) Range t p
Age at Time 5 Scan (Years) 29.33 (7.09) 19.5–46.42 26.46 (7.98) 15.33–45.42 -1.24 0.22
Mean Framewise Displacement 0.09 (0.03) 0.04–0.14 0.09 (0.03) 0.06–0.19 -0.11 0.91
Percent Volumes Available 72.87 (16.04) 50.17–98.98 79.39 (14.89) 50.59–97.09 1.34 0.19
Handedness 70.79 (27.13) -15.27–100 56.39 (50.64) -82.15–100 -1.24 0.22
Mean Performance IQa 105.57 (17.38) 67–134 104.94 (18.15) 80–150 0.11 0.91
Mean Verbal IQb 99.96 (18.98) 61–134 108.44 (21.44) 80–142 -1.31 0.19
Mean Full-scale IQc 102.79 (17.81) 60–137 107.75 (21.2) 78–150 -0.79 0.44
ADOS CSSd 8.06 (1.65) 5–10 8.14 (1.6) 3–10 0.16 0.88
ADI-Re 26 (7.84) 12–38 29.46 (6.82) 15–40 1.48 0.15
aMean Performance IQ: No Language Delay n = 16, Language Delay n = 28
bMean Verbal IQ: No Language Delay n = 16, Language Delay n = 28
bMean Full-scale IQ: No Language Delay n = 16, Language Delay n = 28
dADOS CSS at Entry: No Language Delay n = 15, Language Delay n = 26. ADOS CSS at wave 5: No Language Delay n = 1, Language Delay n = 2
eADI-R: No Language Delay n = 16, Language Delay n = 28
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Individual network parcellation
After the implementation of multi-echo preprocessing, 
network parcellations were computed using a multi-ses-
sion hierarchical Bayesian modeling pipeline [43]. This 
pipeline was implemented in MATLAB R2018b [55]. 
In summary, the pipeline estimates group-level priors 
from a training dataset (37 Brain Genomics Superstruct 
Project subjects; [43, 56]) and applies those to estimate 
individual-specific parcellations. A k of 17 networks was 
selected for all subjects, following the 17-network solu-
tion found in Yeo et al. [57]. A Hungarian matching algo-
rithm was then used to match the clusters with the Yeo et 
al. [57] 17-network group parcellation.

Network surface area ratio
Following the generation of individual network parcel-
lations, lateralization was estimated using the network 
surface area ratio (NSAR) calculated in Connectome 
Workbench wb_command v1.5.0 [58]. This measure was 
previously examined for validity and reliability [59] and is 
calculated on an individual basis for each of 17 networks. 
NSAR values range from − 1.0 to + 1.0, with negative val-
ues indicating left hemisphere lateralization for a given 
network and positive values indicating right hemisphere 
lateralization. NSAR values closer to zero indicate less 
lateralization (e.g., hemispheric symmetry).

Statistical analysis
Validation of the neurotypical group
Before formally testing the hypotheses, the laterality pat-
tern of the NT group was first validated using a series of 
multiple regressions. Models consisted of NSAR values 
as the dependent variable with the covariates of mean-
centered age, mean-centered mean framewise displace-
ment, and handedness index score [39].

Group differences in network lateralization
A within-dataset replication was first performed using 
participants with two available resting-state runs (N = 97; 
ASD = 37, NT = 60). A demographics table for this subset 
of individuals is available in the Supplementary Materials 
(see Supplementary Table 1), as is a table describing data 
quality across the two available runs (see Supplemen-
tary Table  2). Using this subset of individuals, the first 
hypothesis regarding group differences in lateralization 
was tested using the first resting-state run (the Discovery 
dataset) and then the second resting-state run (the Rep-
lication dataset). To compare hemispheric lateralization 
between ASD and NT individuals, a series of multiple 
regressions was performed first within the Discovery 
dataset and then within the Replication dataset. Individ-
ual parcellations and lateralization values were calculated 
separately for the Discovery and Replication datasets. 
Models consisted of NSAR values as the dependent 

variable, group (ASD and NT) as the independent vari-
able, and the following covariates: mean-centered age, 
mean-centered mean framewise displacement, and hand-
edness. Multiple comparisons were addressed via Bon-
ferroni correction. Any networks with group differences 
identified in the Discovery dataset were tested in the 
Replication dataset.

Following the hypothesis testing in the Discovery and 
Replication datasets, models were implemented in all of 
the participants, with individual parcellations and cor-
responding lateralization values derived from all avail-
able data (the Complete dataset). Note that the Complete 
dataset includes 21 participants with only one available 
scan, and that NSAR values for participants with two 
available scans were derived from a single individual par-
cellation created using both scans as input. Models con-
sisted of NSAR values as the dependent variable, group 
(ASD and NT) as the independent variable, and the fol-
lowing covariates: mean-centered age, mean-centered 
mean framewise displacement, and handedness. Only 
networks with group differences identified in the Discov-
ery or Replication datasets were tested in the Complete 
dataset, with a corresponding Bonferroni correction. 
Effect sizes (Cohen’s d) for any potential group differ-
ences were calculated on contrasts extracted from the 
corresponding multiple regression model [60]. To pro-
vide additional rigor, sub-analyses using nearest neigh-
bor matching between the ASD and NT groups on the 
basis of mean framewise displacement, percent volumes 
available, and full-scale IQ were implemented using the R 
package MatchIt [61].

Network lateralization and behavioral phenotypes
To address the second hypothesis and examine the 
relationship between language network lateralization 
and verbal IQ across ASD and NT individuals, a mul-
tiple regression was used within the Complete dataset. 
Covariates included mean-centered age, mean-centered 
mean framewise displacement, and handedness. A simi-
lar analysis including language lateralization as a predic-
tor of autism symptom severity (measured via ADOS 
CSS scores) was also performed.

Lastly, the potential relationship between language 
delay and language lateralization in ASD was investigated 
within the Complete dataset. For these analyses, language 
lateralization measured via NSAR was the dependent 
variable while the predictor was group (NT, ASD Lan-
guage Delay, and ASD No Language Delay), and covari-
ates included mean-centered age, mean-centered mean 
framewise displacement, and handedness. All statistical 
analyses took place in R 4.2.0 [62].
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Results
Validation of the neurotypical group
In order to validate the neurotypical group as a refer-
ence group for the group analysis, multiple regressions 
were used to identify significantly lateralized networks, 
and eight networks were identified as being lateralized: 
Visual-B, Language, Dorsal Attention-A, Salience/Ven-
tral Attention-A, Control-B, Control-C, Default-C, and 
Limbic-B (see Supplementary Table 3 and Supplemen-
tary Figure S1). Network names conform with those 
used in references [59, 63] and are a slight variation on 
those from the 17-network parcellation in references [43, 
57]. The use of “-A” and “-B” denote that the networks 
are subnetworks of a larger network or potentially have 
a common function. For example, the Somatomotor-A 
and Somatomotor-B networks occupy cortical territory 
within the primary motor and primary somatomotor cor-
tex. This result aligns with prior findings [59], validating 
the neurotypical group from the Complete dataset as a 
reference group.

Group differences in network lateralization
To test the hypothesis regarding group differences in lat-
eralization, regression models were first implemented in 
Discovery and Replication datasets (composing a within-
dataset replication) followed by the Complete dataset.

The first hypothesis regarding group differences in 
lateralization was examined using a series of multiple 
regressions. Adjusted for multiple comparisons using a 
Bonferroni correction, group differences in the Discov-
ery dataset were found in the following networks: Lan-
guage (t(92) = -3.18, p-adjusted = 0.02), Salience/Ventral 
Attention-A (t(92) = 3.82, p-adjusted = 0.002), and Con-
trol-B (t(92) = 3.06, p-adjusted = 0.02; see Fig. 1 Panel B). 
Significant group differences in lateralization were iden-
tified for the Replication dataset for the Language (t(92) 
= -2.44, p-adjusted = 0.05) and Control-B (t(92) = 2.55, 
p-adjusted = 0.04) networks, but not for the Salience/Ven-
tral Attention-A network (t(92) = 1.83, p-adjusted = 0.21; 
see Fig. 1 Panel C). For a depiction of lateralization for all 
eight lateralized networks across the Discovery and Rep-
lication datasets, see Supplementary Figure S2.

Next, multiple regressions were used to examine 
potential differences between the ASD and NT groups in 
lateralization in the Complete dataset for the three net-
works previously identified in the Discovery and Replica-
tion datasets. A significant group effect on lateralization 
was found for the three networks after Bonferroni cor-
rection: Language (t(113) = -4.69, p-adjusted < 0.001, 
d = -0.89), Salience/Ventral Attention-A (t(113) = 2.89, 
p-adjusted = 0.01, d = 0.55), and Control-B (t(113) = 2.71, 
p-adjusted = 0.02, d = 0.51; see Fig.  1 Panel D). In order 
to understand which hemisphere was driving differences 
in lateralization, we examined network surface areas 

adjusted for mean-centered age, mean-centered mean 
framewise displacement, and handedness (see Fig. 2; lat-
eralization for all eight lateralized networks in the Com-
plete dataset is depicted in Supplementary Figure  S3). 
The symmetrical Language network in the autism group 
appears to be driven by increased surface area in the right 
hemisphere.

Given the significant difference in mean framewise 
displacement between the ASD and NT groups, a sub-
analysis of participants matched on mean framewise 
displacement (N = 96, the Complete dataset) was used. 
Similar conclusions to the unmatched analysis were 
reached, with group differences in lateralization identi-
fied for the Language (t(91) = -4.48, p-adjusted < 0.001), 
Salience/Ventral Attention-A (t(91) = 2.65, 
p-adjusted = 0.03), and Control-B (t(91) = 2.89, 
p-adjusted = 0.01) networks.

Previously, a significant group difference in the percent 
available volumes was identified, so a separate sub-anal-
ysis of participants matched on percent volumes avail-
able (N = 96, the Complete dataset) was undertaken. As 
with the unmatched analysis, group differences in later-
alization were identified for the Language (t(91) = -4.35, 
p-adjusted < 0.001) and Salience/Ventral Attention-A 
(t(91) = 2.69, p-adjusted = 0.02) networks, but not for the 
Control-B network (t(91) = 2.32, p-adjusted = 0.07).

Likewise, given the significant difference in full-scale 
IQ between the ASD and NT groups, a separate sub-
analysis of participants matched on full-scale IQ scores 
was undertaken (N = 84, the Complete dataset). Group 
differences in lateralization were identified for the Lan-
guage (t(79) = -3.71, p-adjusted = 0.001), Salience/Ventral 
Attention-A (t(79) = 2.67, p-adjusted = 0.03), and Control-
B (t(79) = 3.21, p-adjusted = 0.01) networks.

Verbal ability, ASD symptom severity and language 
lateralization
To examine the potential relationship between verbal 
ability (measured via verbal IQ and Language network 
lateralization, a multiple regression with the covariates of 
mean-centered age, mean-centered mean framewise dis-
placement, and handedness was used (N = 87; ASD = 45, 
NT = 42). Language lateralization was not a significant 
predictor of verbal IQ (t(81) = -0.63, p = .53).

Next, the relationship between language lateraliza-
tion and autism symptom severity (measured via ADOS 
CSS scores, n = 47 ASD) was examined using a multiple 
regression with the covariates of mean-centered age, 
mean-centered mean framewise displacement, and hand-
edness. Language lateralization was not a significant pre-
dictor of ADOS CSS scores (t(42) = 1.1, p = .28).



Page 7 of 13Peterson et al. Journal of Neurodevelopmental Disorders           (2024) 16:23 

Language delay and language lateralization
The potential relationship between language delay and 
language lateralization was investigated using a mul-
tiple regression with the covariates of mean-centered 
age, mean-centered mean framewise displacement, and 
handedness. A significant group difference was found 
between the ASD with Language Delay and NT groups 
(t(109) = 4.62, p < .001, Cohen’s d = 1.05; see Fig.  3). A 
significant group difference was also found between the 
ASD No Language Delay and NT groups (t(109) = -2.44, 
p = .02; Cohen’s d = 0.69). No significant group difference 
between the ASD Language Delay and ASD No Language 
Delay groups was found (t(109) = 1.21, p = .23).

Discussion
In this study, we examined network lateralization in 
autistic and neurotypical individuals using a network 
surface area-based approach. We first hypothesized that 
group differences in lateralization would be constrained 
to areas associated with language. As expected, we iden-
tified differences in lateralization for the Language net-
work. However, differences in network lateralization did 
not end there, and included the Salience/Ventral Atten-
tion-A and Control-B networks. Common among these 
three group differences was a reduction in asymmetry in 
the autism group, trending towards symmetric distribu-
tions. Additionally, of these three networks, the group 
difference in lateralization for the Language network 
showed the greatest effect size. Together, these findings 
evidenced a nuanced pattern of differences in network 
lateralization in autism, which were not restricted to the 

Fig. 1  Group differences in network lateralization. Panel A depicts an individual parcellation from a neurotypical subject of three networks for which 
group differences in lateralization were identified. These networks include the Language (LANG), Salience/Ventral Attention-A (SAL-A), and Control-B 
(CTRL-B) networks. Panels B-D depict three networks on the y-axis and model-adjusted NSAR values on the x-axis, with negative values representing 
left hemisphere lateralization and positive values representing right hemisphere lateralization. NSAR values were adjusted by regressing out the ef-
fects of mean-centered age, mean-centered mean framewise displacement, and handedness using the following formula: NSARadjusted = NSARraw - 
[β1(mean-centered ageraw - mean of mean-centered ageraw) + β2(mean-centered FDraw - mean of mean-centered FDraw) + β3(groupraw - mean groupraw) 
+ β4(handednessraw - mean handednessraw)]. NSAR adjustment occurred separately for each network and each group. A significant group effect on lateral-
ization was found for three networks following Bonferroni correction in the Discovery dataset: Language (t(92) = -3.18, p-adjusted = 0.02), Salience/Ventral 
Attention-A (t(92) = 3.82, p-adjusted = 0.002), and Control-B (t(92) = 3.06, p-adjusted = 0.02). Significant group differences in lateralization for the Language 
(t(92) = -2.44, p-adjusted = 0.05) and Control-B (t(92) = 2.55, p-adjusted = 0.04) networks were replicated in the Replication dataset. In the Complete da-
taset, group differences in lateralization were identified for the Language (t(113) = -4.69, p-adjusted < 0.001), Salience/Ventral Attention-A (t(113) = 2.89, 
p-adjusted = 0.01), and Control-B (t(113) = 2.71, p-adjusted = 0.02) networks
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Language network, nor were they pervasive across all 
examined lateralized networks.

Next, we explored the connection between behavioral 
phenotypes and language lateralization. No significant 
relationships between verbal ability or autism symptom 
severity and language lateralization were found. How-
ever, language delay was identified as a stratification 
marker of language lateralization, with the greatest group 
difference found between the ASD with Language Delay 
and NT groups. This result suggests that the difference in 

language lateralization between the ASD and NT groups 
was predominantly driven by autistic individuals who 
experienced delayed language onset during development 
and does not reflect current language ability. In combi-
nation with prior research identifying no developmental 
changes in lateralization between ages 11–36 years [59], 
this also suggests that differences in language lateral-
ization occurring early in development are responsible 
for the differences in language lateralization in autism 
observed in the present study. Taken as a whole, these 

Fig. 2  Percent surface area for 17 networks in ASD and NT individuals. Depicted in the top of Panel A is the model-adjusted percentage of the left hemi-
sphere surface area occupied by a given lateralized network. Percent surface area was adjusted using the following formula: Surface areaadjusted = Surface 
arearaw - [β1(mean-centered ageraw - mean of mean-centered ageraw) + β2(mean-centered FDraw - mean of mean-centered FDraw) + β3(groupraw - mean 
groupraw) + β4(handednessraw - mean handednessraw)]. Depicted in the bottom portion of Panel A is the model-adjusted percentage of the right hemi-
sphere surface area occupied by a given network. Points represent individual outliers. Depicted in Panel B is the adjusted mean percentage of surface area 
occupied by a lateralized network, with 95% confidence intervals. The left and right hemisphere estimates are displayed side-by-side. Black boxes have 
been used to indicate the networks for which a significant group difference was found
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results provide further evidence for differences in func-
tional lateralization in autistic males, which appear to 
be behaviorally and clinically relevant in the case of lan-
guage lateralization and language delay.

In the context of our research, network lateraliza-
tion refers to the organizational principle whereby spe-
cific brain networks are predominantly based in one 
hemisphere versus distributed equally between both 
hemispheres. Of particular significance to our inves-
tigation is the lateralization of brain regions associ-
ated with language, given that language dysfunction 
is addressed within the social and repetitive behavior 
symptom domains for the autism diagnosis. Our explo-
ration extended beyond examining lateralization within 
eight networks, including the Language network, previ-
ously identified as lateralized in neurotypical individuals 
[59]. We also sought to uncover relationships between 
language lateralization and three behavioral phenotypes, 

which together with a prior study [59], point to a poten-
tial developmental timeframe in which differences in 
language lateralization in autism may emerge, although 
additional studies are needed to directly assess this.

Evidence for differences in functional lateralization in ASD
The present study shed light on three networks—Lan-
guage, Salience/Ventral Attention-A, and Control-B—
where lateralization differed between male ASD and 
NT individuals. Previously, language regions have been 
implicated in connectivity and asymmetry differences, 
leading to the postulation of the left hemisphere dysfunc-
tion theory of autism [13]. Interestingly, the direction of 
group differences identified here indicates that the Lan-
guage network in ASD is less asymmetrical than in NT 
individuals (see Fig.  1 Panels B-D). This appears to be 
driven by an increase in Language network surface area 
in the right hemisphere compared with the NT group 
(see Fig. 2). Other functional work has similarly identified 
a rightward shift in asymmetry in autism [14–18].

Perhaps, as suggested by the expansion-fractionation-
specialization hypothesis, differences in the fractionation 
or specialization of the interdigitated theory of mind and 
language networks may contribute to the development of 
autism symptoms [64]. This hypothesis proposes that as 
the cerebral cortex expands, certain core organizing areas 
act as anchors, while areas farther from these anchors 
self-organize into association cortex [65]. These unteth-
ered association regions may exhibit a proto-organization 
at birth, which then fractionates and specializes through 
processes including competition and inherent connectiv-
ity differences. Any differences in the processes of expan-
sion or fractionation may impact network specialization 
and potentially network lateralization. Considering the 
interdigitated nature of functional networks such as lan-
guage and default networks, disturbances in the expan-
sion or fractionation of one core area are likely to impact 
multiple networks both directly and indirectly. Our find-
ings, demonstrating differences in lateralization across 
multiple networks in autism, align with this hypothesis.

The present study also identified a decrease in later-
alization in the Control-B network in autistic males. 
A mapping between resting-state functional connec-
tivity and task activation has identified an executive 
control network as being associated with action–inhibi-
tion, emotion, and perception–somesthesis–pain [66]. 
This has since been disentangled into two functionally 
distinct control networks, which are linked to initiat-
ing and adapting control and the stable maintenance of 
goal-directed behavior [67]. In ASD specifically, prior 
evidence has supported differences in control network 
structure [68], as well as increased right-lateralization 
in frontoparietal network components [25]. However, 
because there is no standardized network taxonomy [69], 

Fig. 3  Language lateralization and language delay. Participants were 
binned into NT (n = 70), ASD Language Delay (n = 29), and ASD No Lan-
guage Delay (n = 16), with three participants missing language delay data. 
On the y-axis are model-adjusted NSAR values for the Language network, 
with negative values representing left hemisphere lateralization and posi-
tive values representing right hemisphere lateralization. NSAR values were 
adjusted by regressing out the effects of mean-centered age, mean-cen-
tered mean framewise displacement, and handedness using the follow-
ing formula: NSARadjusted = NSARraw - [β1(mean-centered ageraw - mean of 
mean-centered ageraw) + β2(mean-centered FDraw - mean of mean-cen-
tered FDraw) + β3(groupraw - mean groupraw) + β4(handednessraw - mean 
handednessraw)]. NSAR adjustment occurred separately for each group. A 
significant group effect on language lateralization was found between the 
NT and ASD Language Delay groups (t(109) = 4.62, p < .001) and between 
the NT and ASD No Language Delay groups (t(109) = -2.44, p = .02). Circles 
represent group mean adjusted NSAR values while bars represent the 
standard error of the mean
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we cannot definitively determine if the previous findings 
in control and frontoparietal networks directly relate to 
the observed lateralization differences in the Control-B 
network in the present study.

Unexpectedly, our research revealed a decrease in lat-
eralization within the Salience/Ventral Attention-A net-
work in ASD compared with NT individuals. Although 
this outcome was surprising, it could be partly attributed 
to the individualized approach taken in the present study, 
which may be more sensitive to differences in lateraliza-
tion than group-averaged approaches. Regardless, the 
salience network is thought to identify relevant stim-
uli from internal and external inputs in order to direct 
behavior and is distinct from executive control networks 
[70, 71]. Complementary in function to the salience net-
work, the ventral attention network is involved in spa-
tial selective attention [72, 73]. Our finding is intriguing 
considering that attention-deficit/hyperactivity disor-
der, a condition characterized by deficits in attention, 
is a frequent co-occurring diagnosis with autism, with 
some recent estimates ranging between 38.5 and 87% co-
occurrence [74–79]. Neuroimaging studies have comple-
mented this observation. Of note, Farrant & Uddin [80] 
reported hyperconnectivity in the ventral and dorsal 
attention networks in children with ASD, while hypo-
connectivity was observed in the dorsal attention net-
work in adults. However, the present study specifically 
identified decreased lateralization in the ventral attention 
network in autistic males. Regardless, a salience network 
dysfunction theory of ASD has been proposed, suggest-
ing that deviations in the salience network and anterior 
insula in particular may contribute to social communica-
tion and theory of mind deficits in ASD [81, 82].

Language delay as a stratification marker for ASD
The present study identified a significant difference in 
language lateralization between NT and ASD with Lan-
guage Delay individuals, similar to a previous study 
which found that language delay explained the most 
variance in extreme rightward deviations of laterality in 
autism [28]. This finding is notable considering the dis-
parities in datasets and modeling techniques between 
this study and that of Floris et al. [28]. In the prior study, 
gray matter voxels were the subject of laterality, as 
opposed to functional connectivity-derived language net-
work surface area. Additionally, significant group differ-
ences were identified using individual deviations from a 
normative pattern of brain laterality across development 
rather than from group mean comparisons. Another 
challenge, highlighted by Marek et al. [83] and Liu et al. 
[84], is the difficulty of establishing relationships between 
scanner-derived data (such as functional connectivity) 
and out-of-scanner behavioral measures. This is of par-
ticular concern with the use of the ADI for determining 

language delay, since this measure is retrospective and 
susceptible to memory errors such as telescoping [85]. 
Thus, there is a clear need for prospective investigations 
of the relationship between language delay and language 
lateralization.

Regardless of these challenges, the causal direction 
and origins of the relationship between language delay 
in ASD and language lateralization remain unknown. 
Bishop [86] proposed several explanations for these dif-
ferences. It was suggested that genetic risk may lead to 
language impairment, subsequently resulting in weak lat-
erality (the neuroplasticity model). Alternatively, genetic 
risk might independently cause weak laterality and lan-
guage impairment (the pleiotropy model), or weak lat-
erality caused by genetic risk could subsequently lead to 
language impairment (the endophenotype model). An 
alternative model suggested by Berretz and Packheiser 
[87] posits that within any given neurodevelopmental or 
psychiatric condition, there is a singular, distinct endo-
phenotype uniquely associated with altered asymmetries. 
Evidence from Nielsen et al. [26] suggests that deficits in 
language development may result in the abnormal lan-
guage lateralization observed in ASD. This is supported 
by several pieces of evidence observed in the present 
study as well as in unpublished data [59]. Notably, no 
consistent age-related effects on lateralization were iden-
tified previously [59], and the present study evidenced 
no direct relationship between language lateralization 
and verbal ability. However, language delay was found to 
act as a stratification marker for language lateralization, 
with the greatest effect occurring between the ASD with 
Language Delay and NT groups. Together, this suggests 
that differences in language lateralization likely occur-
ring early in development could underlie the differences 
in language lateralization observed in autism, although 
additional studies are needed to assess this claim.

Limitations
It should be noted that the dataset chosen for this study 
has certain characteristics which restrict the generaliz-
ability of our findings. First, the participant sample con-
sisted entirely of males, which restricts the applicability 
of our results to females with ASD and may overlook 
potential sex differences. Additionally, the overwhelming 
representation of high verbal and cognitive performance 
individuals within the dataset further impacts the gener-
alizability of our findings.

Further investigations should focus on replicating 
these findings in larger and more diverse samples, as 
well as exploring the longitudinal trajectories of net-
work lateralization in individuals with ASD. Given the 
present evidence suggesting that differences in language 
lateralization may be occurring early in development, 
it may be informative to explore differences in network 
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lateralization in infancy and early childhood. Addition-
ally, the incorporation of multimodal neuroimaging 
techniques could provide a more comprehensive under-
standing of the relationship between language network 
lateralization and language delay in ASD.

Conclusions
In this study, we examined network lateralization in 
ASD and NT male individuals using an individual-level 
approach based on participant network parcellations. 
First, we hypothesized that group differences in later-
alization would be constrained to language-relevant 
regions. We identified group differences in lateraliza-
tion for the Language, Salience/Ventral Attention-A, 
and Control-B networks, evidencing a selective pattern 
of functional lateralization differences in autism rather 
than a pervasive one. Additionally, we hypothesized that 
language delay would stratify language lateralization, 
such that the greatest group differences would be found 
between the NT and ASD with Language Delay groups. 
Support for this hypothesis was found, suggesting that 
language lateralization is behaviorally and clinically rel-
evant to autism.
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