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Abstract 

Apolipoprotein L1 (APOL1) coding variants, termed G1 and G2, are established genetic risk factors for a growing 
spectrum of diseases, including kidney disease, in individuals of African ancestry. Evidence suggests that the risk 
variants, which show a recessive mode of inheritance, lead to toxic gain-of-function changes of the APOL1 protein. 
Disease occurrence and presentation vary, likely due to modifiers or second hits. To understand the role of the epige-
netic landscape in relation to APOL1 risk variants, we performed methylation quantitative trait locus (meQTL) analysis 
to identify differentially methylated CpGs influenced by APOL1 risk variants in 611 African American individuals. We 
identified five CpGs that were significantly associated with APOL1 risk alleles in discovery and replication studies, 
and one CpG-APOL1 association was independent of other genomic variants. Our study highlights proximal DNA 
methylation alterations  that may help explain the variable disease risk and clinical manifestation of APOL1 variants.
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Main text
Two APOL1 risk variants (G1 and G2) have been identi-
fied as genetic risk factors for a wide spectrum of diseases 
including chronic kidney disease (CKD), hypertension-
attributed kidney failure (odds ratio [OR] 7), HIV-1 
associated nephropathy (OR 29–89), focal segmental 
glomerulosclerosis (FSGS) (OR 17), and more recently, 
COVID-19-associated nephropathy and pregnancy-
induced hypertension (preeclampsia) in individuals of 
African descent [1, 2]. Our studies in African American 
postmenopausal women additionally identified asso-
ciations of APOL1 risk variants with heart failure [3]. 
These diseases contribute to substantial morbidity and 

mortality as well as poor maternal and fetal outcomes. 
APOL1 is a gene involved in innate immunity, and G1/G2 
variants are believed to be under recent selective pres-
sure driven by resistance to African trypanosomiasis [1]. 
The prevalence of APOL1 high risk genotypes comprising 
any two risk alleles is 13% in African American individu-
als and ~ 1% in Hispanics/Latinos of African descent [4, 
5]. The mechanisms relating APOL1 to disease and pos-
sible treatment are under investigation [4, 6]. Some new 
therapies in this area are based on the hypothesis that 
APOL1 G1/G2 variants are related to gain-of-function 
protein toxicity [7] and exploit the observation that the 
APOL1 protein is not required for life since middle-aged 
humans carrying two null alleles are healthy, and most 
non-human primates and all non-primate mammals lack 
the APOL1 gene [8, 9].
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The relationship between APOL1 risk variants and the 
epigenome  has been understudied and could provide 
insights into targets to prevent or treat APOL1 associated 
diseases. Differences in  DNA methylation (DNAm) can 
be driven by genomic sequence variants and can modu-
late local gene expression. Studies have shown that many 
functionally relevant changes in DNAm occur in regula-
tory elements such as enhancers [10]. Prior studies identi-
fied African ancestry-related differential gene expression 
of APOL1 in hepatocytes of African American individu-
als [11]. To understand the relationship between APOL1 
risk variants  and the epigenome, we performed  DNA 
methylation quantitative trait locus (meQTL) analysis in 
African Americans. The number of G1 and G2 risk alleles 
were combined for analyses (see Methods).

Whole blood DNAm was measured using the Illumina 
450 K array in two studies sampled from the Women’s 
Health Initiative (WHI), a cohort study of postmeno-
pausal women aged 50–79 years. Analysis was restricted 
to African American participants (WHI-BAA23, n = 410 
discovery; WHI-EMPC, n = 201 replication) who also 
had APOL1 risk genotypes. APOL1 G1 and G2 risk were 
computed as 0, 1 or 2 copies of the risk alleles. We used 
linear models to test the association of DNA methyla-
tion with APOL1 allele copies in models adjusted for age, 
recruitment center, smoking status (current, past, never) 
and smoking pack-years, blood cell composition, batch 
effects and the first 10 principal components derived 
from genome-wide genotypes. For each associated 
CpG we compared the consistency of findings between 
cohorts (WHI-BAA23 and WHI-EMPC studies).

The average age of participants was 61.8 and 61.0 years 
and the average estimated glomerular filtration rate 
(eGFR) was 92.3 and 93.6 ml/min/1.73m2 for participants 
of WHI-BAA23 and WHI-EMPC, respectively. Chronic 
kidney disease (defined by an eGFR< 60 ml/min/1.73m2) 
was present in 6% of participants. Two copies of APOL1 
risk alleles were present in 13% of participants (Table S1). 
We identified five CpGs that were significantly associated 
with the number of APOL1 risk alleles after Bonferroni 
correction, all of which replicated, showing consistent 
association and direction of effect (Table S2, Fig. S1). Fig-
ure 1 shows the location of identified meQTL CpGs and 
an example at cg10543947, which is in a candidate regu-
latory region (Fig. 1a) and, like other significant meQTL 
CpGs, shows consistent direction of effect in both 
cohorts (Fig. 1b, Table S2).

Table S3 shows additional single nucleotide polymor-
phisms (SNPs) that were significantly associated with 
four out of the five CpGs in models adjusting for the 
number of APOL1 risk alleles. Specifically, we identi-
fied additional significant meQTLs for 4 of the 5 CpGs 

(cg10543947, cg15716373, cg16121206, and cg21855316). 
The additional identified meQTLs for these 4 CpGs were 
also shown to attenuate APOL1 association with DNA 
methylation (Table S3). For cg21092464 no additional 
significant meQTLs were identified, even after rerun-
ning analysis on SNPs within 5 kb of this CpG. In short, 
4 out of the 5 CpGs show association with SNPs that 
were also found to attenuate APOL1 association with 
DNA methylation in these CpGs, while 1 out of the 5 
CpGs did not. eFORGE analyses shows that 3 out of the 
5 CpGs (cg10543947, cg15716373, and cg16121206) are 
in DNase I hotspots in kidney and other tissues, while 
CpG cg21855316 is in a blood enhancer, and cg21092464 
is in a B cell and liver enhancer (Tables S4, S5 and S6). 
Taken together, these results indicate an meQTL effect of 
APOL1 risk alleles that is independent of additional vari-
ants in the region, and put APOL1 associations in context 
with additional genotype data.

There is little understanding of why only a subset of 
carriers of two APOL1 risk variants develop disease. 
Prior studies suggest that APOL1 G1 and G2 are gain-
of-function variants [4]. In our study, we identify epige-
netic differences at this locus, which may occur prior to 
chronic kidney disease, given that our participants had 
an average normal eGFR. Epigenetic regulation may con-
tribute to the heterogeneity in disease risk and manifes-
tation among individuals of African descent  who carry 
APOL1 risk alleles. The relationship between these epi-
genetic differences and gene regulation will need to be 
further explored, as well as their potential contribution to 
kidney toxicity and hypertensive conditions.

Our findings highlight epigenetic differences associated 
with disease risk variants, including for variants derived 
from African ancestry that are common in African 
Americans. This is an important consideration for studies 
focusing on disease-associated ancestry-specific variants 
[12, 13], given that epigenetic marks such as DNAm may 
be targets to modify disease risk. Novel therapies tested 
for APOL1-associated kidney disease include small mol-
ecule compounds that bind to the APOL1 protein to 
inhibit APOL1 channel function [14]. Antisense oligonu-
cleotides that block APOL1 transcription in Apol1-trans-
genic mice models have been shown in two independent 
studies to ameliorate proteinuria and reduce kidney dys-
function [15, 16]. However, at least 6 other mechanisms 
for APOL1 related disease have been proposed includ-
ing mitochondrial and endolysosomal dysfunction, and 
inflammasome pathways, which may provide targets 
for therapeutic intervention [17]. Our study supports 
research to better understand differences  in the epige-
netic landscape associated with APOL1 risk variants in 
individuals of African descent.
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Methods
Population
WHI is a study of postmenopausal women (aged 
50–79 years), comprising 161,808 women recruited from 
40 U.S. clinical centers to participate in an observational 
study or in clinical trials during 1993–1998 [18–21]. The 
study has comprehensive information on risk factors 
including lifestyle, medical history, medication, physical 
measures and biomarkers obtained at a baseline clinical 
examination and follow-up. All participants have pro-
vided informed consent for genetic research. Two DNA 
methylation studies of WHI African American partici-
pants were included.

DNA methylation profiling
Blood DNAm was assayed using the Illumina 450 K array 
in 3927 WHI participants from two studies: the Broad 
Agency Award 23 (WHI-BAA23), a case-control study of 
cardiovascular disease, and the Epigenetic Mechanisms 
of PM-Mediated Cardiovascular Disease Risk (WHI-
EMPC), a stratified, random sample of participants exam-
ined between 1993 and 2001. To correct the beta value 
distributions of the two types of probes on the 450 K array, 
β-values were normalized using  the beta-mixture quan-
tile (BMIQ) normalization method, [22] extreme outliers 
were removed, and ComBat was used to adjust for tech-
nical artifacts across batches [23]. Cell proportions were 
estimated using the Houseman method [24].

Fig. 1  The proximal epigenetic landscape of APOL1 risk alleles: A Shown is the chromosome region with genes (top), and histone marks (middle) 
from Encyclopedia of DNA Elements (ENCODE) data. B Shown are meQTL CpGs for APOL1 G1/G2 number of risk alleles (0, 1 or 2). An example 
of a DNAm position associated with APOL1 genotypes is highlighted at cg10543947 showing consistent direction of effect in two distinct studies 
(WHI-EMPC and WHI-BAA23). Replicated significant CpGs are shown in red
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APOL1 and genome‑wide genotyping
APOL1 G1 (rs73885319 & rs60910145, two amino acid 
substitutions: S342G and I384M) and G2 (rs71785313, 
two-amino acid deletion: del388N389Y) (Table S2) were 
directly genotyped using the Taqman assay (Thermo 
Fisher Scientific). APOL1 G1 and G2 variants were coded 
as 0, 1 or 2 copies of the risk alleles. Genome-wide geno-
types were available in approximately 8500 WHI African 
American women who were genotyped using the Affym-
etrix 6.0 array. Genetic data was imputed using TOPMed 
freeze 8 data. We included SNPs available in the 1000 
Genomes Project AFR data, and trimmed SNPs based 
on linkage disequilibrium (r2 = 0.8) using SNPclip from 
LDlink [25]. Genome-wide genotypes were used to esti-
mate principal components among unrelated individuals 
using standard methods [26].

Statistical analysis and functional annotation
We tested the association of methylation at CpGs within 
2 MB of the APOL1 risk variants using linear models 
adjusted for age, recruitment center, smoking status (cur-
rent, past, never), pack-years, cell composition and 10 
principal components derived from genome-wide geno-
types, and performed robust standard error calculations 
via the ‘sandwich’ package [27]. Statistical significance 
was considered after Bonferroni correction for the num-
ber of DNA methylation CpGs tested within the region 
(n = 972 CpGs). For each identified meQTL CpG, we 
compared the consistency of findings between WHI-
BAA23 discovery and WHI-EMPC replication stud-
ies. We provided functional annotation using the UCSC 
genome browser and data from the Encyclopedia of DNA 
Elements (ENCODE) [28], and eFORGE (https://​eforge.​
altiu​sinst​itute.​org/) [29, 30]. We also tested for asso-
ciation of SNPs with the 5 CpGs using the same covari-
ates listed above, in models adjusted for the number of 
APOL1 risk alleles with a significance threshold based on 
the number of SNPs tested.
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The online version contains supplementary material available at https://​doi.​
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Additional file 1: Table S1. Characteristics of WHI African American par-
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nificant meQTL CpGs of APOL1 risk variants in WHI-BAA23 and replication 
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map Epigenomics consortium. Table S6: eFORGE annotations for top 5 
CpGs across histone mark broadPeaks from the Roadmap Epigenomics 
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