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Machine learning‑based algorithm 
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Abstract 

Background  Evidence suggests that hepatocyte mitochondrial dysfunction leads to abnormal lipid metabolism, 
redox imbalance, and programmed cell death, driving the onset and progression of non-alcoholic steatohepatitis 
(NASH). Identifying hub mitochondrial genes linked to NASH may unveil potential therapeutic targets.

Methods  Mitochondrial hub genes implicated in NASH were identified via analysis using 134 algorithms.

Results  The Random Forest algorithm (RF), the most effective among the 134 algorithms, identified three genes: 
Aldo–keto reductase family 1 member B10 (AKR1B10), thymidylate synthase (TYMS), and triggering receptor expressed 
in myeloid cell 2 (TREM2). They were upregulated and positively associated with genes promoting inflammation, 
genes involved in lipid synthesis, fibrosis, and nonalcoholic steatohepatitis activity scores in patients with NASH. 
Moreover, using these three genes, patients with NASH were accurately categorized into cluster 1, exhibiting height-
ened disease severity, and cluster 2, distinguished by milder disease activity. 

Conclusion  These three genes are pivotal mitochondrial genes implicated in NASH progression.
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Introduction
Non-alcoholic steatohepatitis (NASH) is characterized by 
the deposition of hepatic lipids, inflammatory responses, 
hepatocellular necrosis, and fibrosis [1]. NASH is a major 
contributor to end-stage liver disease globally [2] due to 
its complex pathophysiology [3–6]. Given its association 
with severe liver conditions and metabolic disorders [7–
9], research on NASH is imperative. While liver biopsy 
serves as the benchmark for diagnosing NASH [10], its 

invasiveness and associated risks have led to poor patient 
acceptance [11], particularly considering the global 
increase in NASH prevalence [10, 12]. Due to its invasive-
ness, susceptibility to sampling and observer variations, 
and impracticality for a population of up to one billion 
individuals worldwide, liver biopsy is inadequate [13]. An 
urgent need exists for non-invasive diagnostic markers 
for NASH. Treatment remains challenging owing to the 
absence of approved specific drugs [14], highlighting fur-
ther the importance of identifying potential therapeutic 
targets.

A previous study reported a correlation between endo-
plasmic reticulum stress and mitochondrial dysfunction 
in pathogenesis [15]. The transmembrane 6 superfamily 
member 2 located in the endoplasmic reticulum regulates 
lipid metabolism and is associated with the advancement 
of non-alcoholic fatty liver disease (NAFLD) [16, 17]. 
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However, the precise contribution of mitochondrial dys-
function to NAFLD pathogenesis remains unclear. Mito-
chondria are essential for cellular function, generating 
energy through oxidative and phosphorylation processes 
[18]. In patients with NASH, mitochondrial function is 
often compromised because of excessive fat oxidation 
and oxidative imbalance [19], resulting in mitochon-
drial impairment, thus worsening the pathophysiology 
of NASH [20, 21]. Numerous studies have documented 
abnormalities in mitochondrial structure and function 
in patients with NASH, including reduced mitochon-
drial respiratory chain activity, decreased adenosine 
triphosphate levels, elevated free fatty acid synthesis, 
and increased oxidative stress [22–26]. As NASH pro-
gresses, mitochondrial adaptability diminishes, resulting 
in suppressed function and the accumulation of damaged 
mitochondria [27]. Additionally, increased cholesterol 
synthesis and lipid peroxidation further damage mito-
chondrial function [28].

Recognizing the essential mitochondrial genes associ-
ated with NASH progression is crucial, as it may unveil 
potential therapeutic targets. The novel aspects of the 
study are the formulation of a NASH prediction model 
with the selected pivotal genes and the classification of 
NASH patients for non-invasive diagnosis and targeted 
therapy of NASH.

Methods
Analyzing Gene Expression Omnibus (GEO) data
Eight liver and one blood sample datasets related to 
NASH were obtained from the GEO database. Every 
dataset underwent processing with its corresponding 
platform files (Supplementary Table  1). Samples from 
GSE135251 and GSE48452 were merged to create a train-
ing cohort (merged cohort), and the batch correction 
method, ComBat, was applied to the combined dataset 
simultaneously. Subsequently, a principal component 
analysis (PCA) was conducted. The remaining seven 
cohorts were used as validation cohorts. Eight liver data-
sets were merged to create another validation set (meta-
cohort), and the ComBat method was simultaneously 
applied to this merged dataset.

Choosing mitochondria‑related genes (MRGs)
In the Merge-Cohort, differentially expressed genes 
(DEGs) underwent filtration based on an absolute value 
of log(FC) > 0.5 and an adjusted P-value < 0.05. The MRGs 
were obtained from the MitoCarta database [29] and 
complemented with gene sets [30], as listed in Supple-
mentary Table  2. DEGs were intersected with MRGs to 
identify mitochondria-related DEGs. Metascape [31, 32] 
and GeneMANIA [33] offer comprehensive bioinfor-
matics analysis. These platforms aid in predicting gene 

function and analyzing potential biological pathways 
associated with the mitochondria, thereby revealing their 
biological significance.

Identifying core MRGs and constructing a mitochondrial 
model
Twelve machine-learning algorithms were selected. Each 
algorithm was paired, resulting in 134 combinations, 
with one focused on variable selection and the other on 
predictive model development. In these pairs, the for-
mer screens the variables, whereas the latter constructs 
predictive models. Using the training dataset (Merge 
Cohort), these 134 algorithms were applied to identify 
crucial genes among the 15 MRGs and to develop predic-
tive models using these genes.

Biological mechanisms and immunological signatures 
within NASH
Gene set variation enrichment analysis (GSVA) can scru-
tinize gene expression and evaluate alterations in specific 
pathways, functionalities, or gene collections [34]. In 
the NASH group, GSVA identified enriched pathways. 
To examine alterations in the immunological signatures 
within NASH, 13 immune functions, and 22 immune cell 
signatures were obtained [35, 36]. This analysis deter-
mined the potential differences in the immune landscape 
between two groups.

Exploring the immune landscape of genes
GSVA indicated the significant enrichment of various 
pathways that were influenced by the model genes. The 
exploration of the potential functions of these model 
genes encompassed the areas of inflammatory infiltra-
tion, lipid transportation, fatty acid metabolism, and 
immunological signatures.

Single‑cell profiling exploration
The dataset GSE129516 was acquired. First, the cohort 
was standardized with the “Seurat” package. Subse-
quently, the samples were divided into clusters based 
on the cell type. Following this, functional and cellular 
annotations were performed using the “Single R” pack-
age. Clusters were constructed for cellular reclassification 
based on immune cell markers.

Categorizing individuals suffering from NASH
A consensus clustering analysis was used to categorize 
patients with NASH into distinct subgroups. Differ-
ences among various groups were compared to assess the 
extent of inflammatory infiltration, lipid accumulation 
status, severity of liver fibrosis, immune cells, and biolog-
ical pathways across clusters. Weighted gene co-expres-
sion network analysis (WGCNA) [37] was conducted 
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by establishing an appropriate soft threshold to screen 
DEGs between subgroups.

Verification at the mRNA level and protein level
Information regarding the reagents used in this experi-
ment and their suppliers is provided in Supplementary 
Table 3. Six liver specimens were obtained from patients 
with normal weight, and six were collected from patients 
diagnosed with obesity. Liver specimens from normal-
weight patients and patients with obesity were fixed, 
embedded, and sectioned. Specimens from normal-
weight patients showed no lesions, whereas all specimens 
from patients with obesity were diagnosed with NASH. 
RNA was extracted from the samples, followed by cDNA 
synthesis. The cDNA was then quantified. Expression 
levels of the target genes were determined and compared 
with t-tests. The primer sequences are located within 
Supplementary Table 4.

Four normal liver specimens and four NASH speci-
mens were selected for protein extraction and western 
blotting (WB), respectively. Antibodies against AKR1B10 
and TYMS and the internal control β-actin antibody 
were sourced from Abcam (UK). Initially, 20 mg of liver 
tissue frozen in liquid nitrogen was obtained from each 
sample and mixed with pre-cooled steel beads and lysis 
buffer. Subsequently, the tissues were homogenized using 

a tissue homogenizer at 60 Hz for 120 s to ensure thor-
ough grinding. Upon homogenization, the steel beads 
were eliminated, and the protein lysate was transferred to 
a separate centrifuge tube, then placed on ice for 30 min 
to ensure thorough tissue lysis. Following lysis, the 
supernatant was extracted via ultracentrifugation. Pro-
tein concentrations were assessed. A 10% separation gel 
was selected based on the size of the target protein mol-
ecules. Proteins underwent gel electrophoresis and were 
then transferred to a membrane utilizing the wet transfer 
method. Subsequently, the membrane underwent wash-
ing and blocking with tris-buffered saline containing 
tween and 5% skim milk. Following this, the specimen 
was subjected to overnight incubation with the primary 
antibodies at 4  °C, after which it underwent rinsing and 
subsequent incubation with the secondary antibodies. A 
schematic representation of the experimental procedure 
is depicted in Fig. 1.

Results
Statistics of samples
The number of normal liver specimens (Fig.  2A) and 
NASH specimens (Fig.  2B) included in the study from 
the 8 GEO datasets were represented in the donut chart. 
GSE135251 and GSE48452 were selected and merged 
into a new cohort termed Merge-Cohort, serving as the 

Fig. 1  Flowchart of the design idea of this study
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training set (Fig. 2C). Following the elimination of batch-
related biases, samples from these two cohorts were 
effectively integrated (Fig. 2D). Moreover, within the new 
Merge-Cohort, normal liver samples and NASH samples 
were discernibly distinguished (Fig.  2E), affirming the 
inherent differences between these sample types.

Fifteen MRGs related to the progression of NASH
Within the training dataset, 197 DEGs were distin-
guished between normal liver samples and those afflicted 
with NASH (Fig. 3A). In addition, 78 genes were under-
expressed, whereas 119 showed the opposite trend 
(Fig.  3B). Through the intersection of 197 DEGs with 
2,030 MRGs, 15 genes were identified (Fig.  3C). In the 
training dataset, five genes were downregulated, whereas 
ten genes displayed the opposite pattern (Fig. 3D). These 
15 genes participate in diverse metabolic pathways, 
encompassing cholesterol metabolism, monocarboxylic 
acid metabolism, lipid metabolism, and mitochondrial 
tissue regulation (Fig.  3E and F). Additionally, these 15 
genes are linked to numerous diseases, with the most 
pronounced correlation observed in NAFLD (Fig. 3G).

Establishment of a predictive model encompassing three 
MRGs
Utilizing a combination of 12 algorithms, a total of 134 
machine learning algorithms were generated. Following 
this, the 134 algorithms were employed to screen these 15 
MRGs, aiming to establish a diagnostic model for NASH 
utilizing the selected genes. Among 134 algorithms, the 
RF algorithm exhibited the highest C-index value, and 
the predictive model constructed by the RF algorithm 
consisted of AKR1B10, TYMS, and TREM2. Using this 
model, the AUC values for diagnosing NASH patients 
in the training cohort and validation cohort (Merge-
Cohort, GSE55645, GSE61260, GSE89632, GSE115193, 
GSE115198, GSE130970, GSE164760, meta-Cohort) were 
0.999, 0.710, 0.942, 0.989, 1.000, 0.976, 0.913, 0.854, and 
0.933, respectively (Fig.  4A). Additionally, the AUC val-
ues for diagnosing NASH patients using this model were 
higher than those of the model genes alone (Fig. 4B-I).

Furthermore, the three model genes were compared 
among different groups (normal vs. NASH group, F0-F2 
vs. F3-F4 fibrosis group, and NAFLD vs. HCC group). 
Individuals with NASH displayed significantly higher 
levels of the three model genes than those in healthy 

Fig. 2  The handling for data. A The quantity of normal liver samples in each of the 8 GEO datasets. B The quantity of NASH specimens in each 
of the 8 GEO datasets. C Before the removal of batch effects, the PCA plot shows a distinction between samples from the two batches. D After 
eliminating batch effects, the PCA plot demonstrates the removal of batch effects, with samples from the two batches mixed together. E In the PCA 
plot, normal liver samples and NASH samples in the Merge-Cohort are distinguished
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individuals (Figs.  5A-H). Additionally, AKR1B10 and 
TYMS were associated with fibrosis advancement, 
exhibiting elevated expression levels in stages F3-F4 
(Fig.  5I-IM). Furthermore, AKR1B10 and TYMS were 
upregulated in hepatocellular carcinoma patients com-
pared to NAFLD (Fig. 5N).

The heightened expression of three MRGs implies 
a advanced stage of NASH
Notable differences between patients with NASH 
and controls were observed in “nitrogen metabolism”, 
“cysteine and methionine metabolism”, and “nicotinate 
and nicotinamide metabolism”, all were upregulated in 
NASH (Fig.  6A). Additionally, mitochondrial pathways 
including “OXPHOS”, “complex IV”, and “Fe–S cluster 
biosynthesis” were upregulated (Fig. 6B). Across diverse 
biological processes, these signaling cascades are intri-
cately linked to metabolic governance and oxidative 

stress. Furthermore, “HLA” and “inflammation-promot-
ing” pathways were upregulated in NASH, indicating 
heightened inflammation promotion (Fig. 6C). The abun-
dance of pro-inflammatory cytokine-producing “mac-
rophages M1” was higher in the NASH group, whereas 
the number of anti-inflammatory cytokine-producing 
“macrophages M2” was diminished (Fig. 6D).

The three MRGs were significantly heightened in 
pathways related to metabolic abnormalities such as 
“lysine degradation” and “glycine, serine, and threonine 
metabolism” (Figs.  7A-C). Furthermore, these genes 
exhibited significant and positive correlations with pro-
inflammatory genes (CCL2, IL1B, CSF1, HLA-DRA, 
IL10, PDGFA, TGFB1, TGFB2, TGFB3, and TNF) as 
well as fibrotic genes (COL1A1 and COL3A1) (Fig.  7D). 
Additionally, TREM2 and TYMS demonstrated signifi-
cant positive associations with the lipid synthesis gene 
(peroxisome proliferator-activated receptor gamma 

Fig. 3  Discovery of 15 MRGs. A, B 197 DEGs were identified from the comparison between normal liver samples and NASH samples, comprising 78 
downregulated genes and 119 upregulated genes. C Identification of 15 genes by the intersection of DEGs and MRGs. D Among these 15 genes, 
5 genes were downregulated, and 10 genes were upregulated. E Nine biological pathways are related to the 15 genes. F The genes interacting 
with these 15 genes and the biological pathways they collectively involve. G The types of diseases affected by these 15 genes
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[PPARG​]), whereas the three MRGs showed signifi-
cant negative associations with genes related to per-
oxisome proliferator-activated receptor alpha [PPARA​
]. The three MRGs demonstrated a marked correlation 
with the highly ranked NASH genes contained in the 
GeneCards database (Fig.  7E). These three genes dis-
played a positive relationship with diverse immunologi-
cal signatures, especially those related to inflammatory 
processes (Fig.  7F). The three MRGs showed significant 
associations with monocytes and macrophages, display-
ing positive correlations with M1 macrophages and nega-
tive correlations with M2 macrophages. Moreover, these 
three MRGs were positively linked with NAFLD activity 
score (NAS) (Fig. 7G).

Mitochondrial attributes of the three MRGs
When these three MRGs are highly expressed in NASH, 
they exhibit significant enrichment in the “lysine metabo-
lism” and “glycine metabolism” pathways (Figs. 8A-C). On 
the contrary, “glycine metabolism” pertains to the meta-
bolic processes involving glycine and is linked to irregu-
larities in hepatic lipid and carbohydrate metabolism. 

Moreover, the correlation of these three genes with genes 
associated with mitochondrial respiratory chain Com-
plex I (I-V) in NASH (Figs.  8D-H) implies their poten-
tial contribution to NASH advancement by modulating 
mitochondrial function and metabolic irregularities.

MRGs are abundant in M1 macrophage
From the GSE129516 dataset, 30,038 single cells were iso-
lated. To streamline the analysis, dimensionality reduc-
tion was applied to the corrected data at a resolution of 
1.5 (Fig.  9A). Following this, the single-cell data were 
segregated into 28 discrete clusters and automatically 
categorized into eight distinct cell types (Fig.  9B). The 
distribution patterns of the eight cell types are illustrated 
in Fig.  9C. Due to recognized limitations of the “Single 
R” package, a manual annotation process was initiated. 
Immune cell surface markers were utilized for the re-
annotation of the single-cell data. Markers representative 
of the eight immune cell types are depicted in Fig.  9D. 
Following re-annotation, the single-cell data were cat-
egorized into M1 macrophages, M2 macrophages, fibro-
blasts, CD8 + T cells, CD4 + T cells, neutrophils, and B 

Fig. 4  Machine learning techniques employed to formulate diagnostic models for NASH. A The model built with the RF algorithm demonstrated 
the highest predictive accuracy, boasting a C-index value of 0.928. B-I The AUC values of the three model genes for the separate diagnosis of NASH 
in both the training set and the external validation set were relatively high
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cells (Fig. 9E). AKR1B10 and TREM2 demonstrated sig-
nificant overexpression in M1 macrophages, suggesting 
their involvement in inflammatory processes (Fig. 9F).

Grouping individuals with NASH into two distinct 
categories
Through the expression profiles of the three model genes, 
individuals diagnosed with NASH were divided into two 
clusters, referred to as Cluster 1 and Cluster 2 (Supple-
mentary Fig.  1A). Successful stratification of patients 

with NASH into distinct subgroups was validated using 
PCA (Supplementary Fig.  1B). The three MRGs were 
increased in the Cluster 1 subgroup (Supplementary 
Fig.  1C), whereas patients with NASH in the Cluster 2 
subgroup demonstrated low expression levels of these 
genes. Furthermore, individuals belonging to Cluster 1 
exhibited a higher occurrence of NAS and fibrosis stages 
ranging from F3 to F4 (Supplementary Fig.  1D and E). 
In the Cluster 1 subgroup, there was an increase in pro-
inflammatory and fibrotic genes (Supplementary Fig. 1F). 

Fig. 5  Analysis of three model genes based on their differential expression among various subgroups. (A-H) The three model genes were 
upregulated in NASH samples across the eight datasets. (I-M) TYMS and AKR1B10 exhibited upregulation in the advanced-stage liver fibrosis phase 
across the five datasets. (N) In comparison to NAFLD, TYMS and AKR1B10 exhibited significant upregulation in hepatocellular carcinoma samples 
linked with NAFLD. * P < 0.05, ** P < 0.01, *** P < 0.001
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Moreover, there is an upregulation in the expression of 
the lipid synthesis gene (PPARG) in Cluster 1, whereas 
β-oxidation gene (PPARA​) expression is downregulated. 
The “CCR”, “cytolytic activity”, “HLA”, “inflammation-pro-
moting”, “MHC class I”, and “parainflammation”, exhib-
ited significant upregulation in Cluster 1 (Supplementary 
Fig. 1G). The C1 subgroup displayed a higher abundance 
of neutrophils and M1 macrophages, whereas NK cells 
and M2 macrophages demonstrated an inverse trend 
(Supplementary Fig.  1H). Moreover, pathways related 
to inflammatory infiltration, such as “keg alanine aspar-
tate and glutamate metabolism”, “keg glycine serine and 
threonine metabolism”, and “keg cysteine and methionine 
metabolism”, were upregulated in Cluster 1 (Supplemen-
tary Fig.  1I). Moreover, “lipoate insertion” and “glycine 
metabolism” exhibited significant upregulation in Cluster 
1 (Supplementary Fig.  1  J). Consequently, patients with 
NASH in Cluster 1 exhibited more severe disease mani-
festations than those in Cluster 2.

Given the substantial disparities between the two clus-
ters, the co-expression network analysis (soft thresh-
old = 2) was conducted to identify differentially expressed 

genes (Supplementary Figs. 2A and B). The yellow mod-
ule, consisting of 217 genes, exhibited the strongest 
positive correlation with C1 (Supplementary Fig.  2C). 
The yellow module genes were significantly enriched in 
“chemokine receptors bind chemokines”, “IL-18 signaling 
pathway”, “regulation of response to wounding”, and “cel-
lular response to tumor necrosis factor” (Supplementary 
Figs. 2D and E). Additionally, among the diseases affected 
by genes in the yellow module, “inflammation”, “chronic 
liver disease”, and “fibrosis” rank high (Supplementary 
Fig. 2F).

Upregulation of three MRGs in NASH
Six liver specimens obtained from morbidly obese 
patients were subjected to hematoxylin and eosin stain-
ing, revealing a NAS exceeding 4, indicating NASH 
(Fig.  10A). At the mRNA level, the three MRGs were 
significantly upregulated in these patients (Figs.  10B-
10D). Furthermore, their mRNA expression levels were 
positively correlated with AST and ALT levels in the 
blood and NAS levels in the liver (Fig.  10E). For the 
western blot analysis, four liver samples from healthy 

Fig. 6  Distinct pathways and immune signatures between two groups. A Biological pathways altered in NASH are analyzed. B 
Mitochondrial-related pathways altered in NASH. C Two immune function scores were upregulated in the NASH group. D The abundance of M1 
macrophages significantly increased in NASH, while M2 macrophages showed the opposite trend
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individuals and four samples from patients with NASH 
were selected. The protein expression levels of AKR1B10 
and TYMS mirrored their mRNA levels, and both were 
upregulated in NASH cells (Fig. 10F). Additionally, quan-
titative visualization of Western blot results through bar 
graphs reveals significant upregulation of AKR1B10 and 
TYMS proteins in NASH (Fig. 10G).

Discussion
The rising prevalence of obesity has led to a surge in the 
incidence of metabolic disorders associated with obesity 
in patients with NAFLD [38]. NASH, a severe subtype 
of NAFLD marked by inflammatory cell infiltration and 
lipid deposition, can escalate to cirrhosis, liver fibrosis, 
and HCC if left unchecked [39]. Given the complexity 
of NASH treatment, no definitive therapy is currently 

available. Studies have underscored the pivotal role of 
mitochondrial dysfunction in NAFLD pathogenesis [40]. 
Hence, identifying MRGs crucial for NASH may be cru-
cial for NASH diagnosis and treatment.

In this study, 15 MRGs were observed to be differen-
tially expressed. These genes play significant roles in 
cholesterol, fatty acid, and monocarboxylic acid metabo-
lism in NASH [41–44]. These 15 MRGs are involved in 
various metabolic pathways that lead to NASH develop-
ment. To delve deeper into the significance of mitochon-
drial genes in NASH, 134 machine-learning combination 
algorithms were employed to filter the 15 genes from the 
training dataset. Among these, the RF algorithm emerged 
as the most effective, identifying the minimum number 
of genes (AKR1B10, TYMS, and TREM2) and yielding 
the most accurate predictive model for NASH diagnosis. 

Fig. 7  Association between TREM2, TYMS, and AKR1B10 expression levels, and metabolism-related genes, and immune cell content in NASH. A-C 
The upregulation of the three genes was associated with the enrichment of specific biological pathways. D These three genes showed positive 
correlations with inflammation, lipid accumulation, and fibrosis, while exhibiting negative correlations with β-oxidation (PPARA​). E Connections 
are evident between these three genes and the NASH-associated genes extracted from the GeneCard database, especially those genes 
with NASH relevance scores surpassing 10. F These three genes exhibited a positive correlation with pro-inflammatory immune function scores 
and the abundance of M1 macrophages, while demonstrating an inverse correlation with the abundance of M2 macrophages. G These three genes 
exhibited a significant positive correlation with NAS
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Compared to the other 133 algorithms, the predictive 
model generated by the RF algorithm demonstrated the 
highest diagnostic accuracy for NASH across both the 
training and eight external testing datasets.

Unlike other NASH cohorts, GSE55645 contains data 
from NASH blood samples. A predictive model using 
patient blood information precisely predicted NASH 
across diverse patient populations (AUC > 0.7), under-
scoring the promising clinical utility of this predictive 
model. NASH can be predicted accurately by collecting 
blood samples from patients. Furthermore, compared to 
an invasive liver biopsy, using this predictive model to 
analyze a small blood sample from patients significantly 
enhances patient compliance and boosts the detection 
rate of NASH. Patients with NASH can be classified 
into two groups based on their disease activity levels. 
The C1 group exhibited more severe disease, showing 
higher NAS, more pronounced inflammatory infiltration, 

increased lipid deposition, and elevated levels of proin-
flammatory M1 macrophages than those in the C2 group.

AKR1B10, which is pivotal for the metabolism of vari-
ous aldehydes and ketones, is crucial for the metabolism 
of endogenous and exogenous carbonyl compounds [45]. 
TYMS, also known as thymidylate synthase, encodes an 
enzyme pivotal to DNA synthesis [46]. TREM2 encodes 
a membrane receptor protein predominantly expressed 
on the surfaces of human monocytes, macrophages, and 
dendritic cells. TREM2 affects regulating cell migration 
and phagocytosis, thereby influencing inflammatory and 
immune responses [47]. In this study, the three MRGs 
were upregulated in patients with NASH compared with 
those in healthy individuals. Moreover, compared to liver 
fibrosis stages F0 to F2, AKR1B10, and TYMS exhibited 
increased expression in fibrosis stages F3 to F4. Addition-
ally, AKR1B10 and TYMS were upregulated in individu-
als with HCC compared to those with NAFLD. Thus, the 

Fig. 8  The attributes of mitochondria exhibited by three MRGs. A Based on TYMS expression levels, NASH was stratified into two groups, 
with the GSVA plot demonstrating significant enrichment of distinct mitochondrial-related pathways in each group. B Based on TREM2 expression 
levels, NASH was stratified into two groups, with the GSVA plot demonstrating significant enrichment of distinct mitochondrial-related pathways 
in each group. C Based on AKR1B10 expression levels, NASH was stratified into two groups, with the GSVA plot demonstrating significant 
enrichment of distinct mitochondrial-related pathways in each group. D-H Notable relationships between the three MRGs and the genes encoding 
the mitochondrial respiratory chain complexes, specifically complexes I through V
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upregulation of the three MRGs may contribute to the 
progression of liver fibrosis and HCC development.

When these three MRGs are upregulated in the 
hepatic tissue, they promote inflammatory infiltra-
tion and lipid synthesis, exacerbate liver fibrosis, acti-
vate pro-inflammatory M1 macrophages, and inhibit 
fatty acid beta-oxidation and anti-inflammatory M2 
macrophages [48–51]. In NASH, AKR1B10 upregula-
tion may lead to mitochondrial dysfunction, disrupt 
redox reaction balance, and cause excessive reactive 
oxygen species production, thereby inducing oxidative 
hepatocyte damage [52]. TYMS upregulation may lead 
to reduced adenosine triphosphate synthesis within 
the mitochondria, thereby affecting hepatic energy 
metabolism and hampering fatty acid oxidation [53]. 
Additionally, TREM2 upregulation may contribute to 
mitochondrial dysfunction, impacting macrophage 
activation and function, thereby exacerbating the 
inflammatory response in NASH [54].

Study strengths and limitations
This study’s strength resides in employing machine learn-
ing algorithms to pinpoint three pivotal mitochondrial 
genes (AKR1B10, TYMS, and TREM2) implicated in 
NASH. Based on these three genes, patients with NASH 
can be categorized into two groups with different disease 
severity levels, aiding in the precise treatment of severe 
NASH lesions in clinical practice. Moreover, the develop-
ment of a non-invasive diagnostic model for NASH using 
the RF algorithm addresses the invasive nature of liver 
biopsy, thereby overcoming its limitations. However, the 
limitations of this study were attributed to budget con-
straints, which prevented further experimental investiga-
tions to elucidate the specific mechanisms by which these 
three genes function in NASH.

Conclusion
The clinical importance of this study resides in the accu-
rate identification of MRGs in NASH, namely AKR1B10, 
TYMS, and TREM2. Their upregulation in patients with 

Fig. 9  Single-cell analysis. A The dendrogram depicts the hierarchical clustering of the data into distinct clusters. B Automatic categorization 
of data into eight distinct cell types using the “Single R” package. C The distribution pattern of the eight identified cell types. D Expression profiles 
of seven immune cell surface markers across the 28 clusters. E The classification of data into seven immune cells. F AKR1B10 and TREM2 exhibit 
notable enrichment in M1 macrophages
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NASH promotes inflammatory infiltration, lipid accu-
mulation, liver fibrosis, and the activation of pro-inflam-
matory immune cells. Moreover, based on these three 
genes, a non-invasive diagnostic model for NASH can 
be constructed using the RF algorithm, but subtyping of 
patients with NASH can be achieved. In clinical practice, 
the discoveries of this study can assist in precisely iden-
tifying and subclassifying patients with NASH, circum-
venting the invasiveness linked with liver biopsies. Early 
detection of severe cases is advantageous for preventing 
disease progression to cirrhosis or liver cancer by avoid-
ing delays in diagnosis.
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