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SUMMARY

Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to 

neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the 

effects of genetic variation within regulatory elements on neural progenitors remain obscure. We 

use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 

conserved regions in 2,227 enhancers active in the developing human cortex and determine effects 

on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental 

disorders and show biased expression in specific fetal human brain neural progenitor populations. 

Although enhancer disruptions overall have weaker effects than gene disruptions, we identify 
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enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated 

regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation 

phenotypes with chromatin interactions reveals regulatory relationships between enhancers and 

their target genes contributing to neurogenesis and potentially to human cortical evolution.

In brief

Geller et al. use CRISPR knockout screens in human neural stem cells (hNSCs) to identify genes 

and transcriptional enhancers required for hNSC proliferation. Their results provide insight into 

the comparable effects of genetic disruptions in regulatory elements and protein-coding genes on 

human neurodevelopment.

Graphical Abstract

INTRODUCTION

The development of the human cerebral cortex depends on the precise spatial, temporal, 

and quantitative control of gene expression by transcriptional enhancers.1 Genetic variants 

with the potential to alter gene expression in the developing brain have been implicated 

both in neurodevelopmental disorders and in the expansion and elaboration of the cortex 

during human evolution.2–13 Despite growing evidence showing that regulatory variation 

influences human brain phenotypes, the biological effects of genetic changes that occur 

within enhancers active during neurodevelopment have not been systematically studied. 
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Previous screens have focused on characterizing regulatory disruptions at specific loci 

or have not extensively targeted candidate enhancers that are known to be active in the 

developing human brain.14–21 Moreover, the effect size distribution of enhancer disruptions 

in neural cell types is poorly understood, and addressing this question would require 

disrupting thousands of enhancers across the genome in a single screen.

Here we employed a massively parallel single-guide RNA-Cas9 (sgRNA-Cas9) genetic 

screen in H9-derived human neural stem cells (hNSCs) to identify enhancers required for 

normal hNSC proliferation (Figure 1A).14–16,22 We disrupted 26,385 potentially functional 

conserved regions within 2,227 candidate enhancer sequences that are marked by histone 

H3 lysine 27 acetylation (H3K27ac), which is associated with enhancer activity both in the 

developing human cortex and in hNSCs (Figure S1; STAR Methods).23 We also disrupted 

10,674 expressed protein-coding genes to compare the effects of gene and enhancer 

disruptions on hNSC proliferation.24 The candidate enhancers we targeted are specifically 

active during human corticogenesis compared with other human cell types and tissues 

(Figure S1). Characterizing the effects of disruptions within these enhancers may thus be of 

particular relevance for understanding the impact of regulatory variants on human cortical 

development.

We chose hNSCs as our screening platform because of the fundamental role of the NSC 

niche in neurogenesis and the specification of cortical size.25,26 Regulatory variants that 

alter NSC proliferation and self-renewal could result in changes to the number, type, and 

proportion of cortical neurons generated during cortical development, and these changes 

may contribute to disorders of brain development and function.27 In addition, the human 

cortex exhibits an expanded number of progenitor cells during development compared with 

other primates, suggesting that modification of hNSC proliferation programs contributed to 

the increase in cortical size during human evolution.26,27

Our screen identified more than 2,000 genes and more than 1,000 disruptions within 

enhancers that significantly affected hNSC proliferation in vitro. The set of gene 

targets with significant effects was enriched for genes associated with risk for multiple 

neurodevelopmental and neuropsychiatric disorders and showed enriched expression in 

specific neuronal progenitors in the developing human brain, including outer radial glia. 

Although gene disruptions overall had stronger effects on hNSC proliferation than enhancer 

disruptions, we identified enhancer disruptions with severe phenotypes. Using chromatin 

interaction data, we were able to link a subset of enhancers with proliferation phenotypes, 

including enhancers implicated in human brain evolution, to target genes and compare 

their effects. Collectively, our findings identify genes and enhancers required for hNSC 

proliferation as well as insight into the effects of genetic perturbation across thousands of 

enhancers active in the developing human cortex.

RESULTS

Screen design and approach

We used a commercial H9-derived hNSC line generated by Life Technologies (STAR 

Methods) These cells are not immortalized and express multiple NSC markers, including 
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NES, SOX2, PAX6, and HES1, and are stated by the supplier to be multipotent, capable of 

differentiating into neurons, oligodendrocytes, and astrocytes (STAR Methods).24 This line 

doubles approximately every 40–50 h. These cells do not express anterior NSC markers such 

as FOXG1, suggesting a generic NSC-like cell state.24 However, because we are targeting 

putative enhancers specifically active during both human corticogenesis and in these hNSCs, 

our screen aims to provide insight into the biological role of these cortex-specific regulatory 

elements in hNSC self-renewal. To determine the competency of these cells to generate 

neurons, we used two commonly used differentiation protocols: undirected differentiation 

via removal of recombinant human fibroblast growth factor (bFGF; growth factor reduced 

[GFR]); and B27-driven differentiation into neurons (STAR Methods).28,29 In both cases, 

after 20 days, cells exhibited a neuron-like morphology as well as expression of neuronal 

marker genes (Figure S2). We observed upregulation of neuronal markers, including TUJ1, 

NEUROD1, and DCX1, as well as the deep and upper cortical layer markers TBR1 and 

CUX1 (Figure S2B) in both GFR and B-27 driven conditions.27,30 In the GFR condition, we 

found strong activation of ALDH1, consistent with the supplier’s claim that this protocol 

also yields astrocytes.31 We observed downregulation of the oligodendrocyte markers 

PGDFRA and CSPG4, and we did not detect expression of OLIG1, suggesting a lack of 

oligodendrocyte production (Figure S2).32,33 We did not detect attenuation of expression of 

PAX6 or SOX2, which may be due to the production of astrocytes expressing these genes in 

the mixed cultures we generated using the GFR condition.34,35 It may also suggest that the 

neurons generated by each protocol are relatively immature after a 20-day induction, with 

some cells remaining in a progenitor-like state. However, in general, our results support the 

hypothesis that these hNSCs have neurogenic potential.

To validate that the hNSC line was competent for CRISPR perturbation screens, we 

individually targeted three genes, TFRC, GRN, and UBQLN2, which have been used 

previously to validate other cell types for CRISPR screening.36 We independently 

transduced cells with a lentivirus carrying Cas9:GFP and sgRNAs targeting each gene 

at an MOI of 0.30 and sorted GFP-positive cells to ensure that each cell was infected 

exactly once. Western blot analysis showed a significantly reduced level of UBQLN2 protein 

expression in targeted cells compared with non-targeting controls (Figures S3A and S3B). 

Using RT-qPCR, we found significantly reduced expression of TFRC and GRN compared 

with non-targeting controls (Figure S3C). These results support the hypothesis that the 

hNSC line we used is suitable for CRISPR perturbation screening.

To disrupt regions likely to encode transcription factor binding sites within enhancers, 

we targeted 26,385 conserved regions (47,978 total sgRNAs) across the 2,227 enhancers 

included in our screen.37 We selected these enhancers based on two criteria. First, the 

candidate enhancers are marked by H3K27ac, a histone modification associated with 

enhancer activity, both in hNSCs and in human cortical tissue during developmental periods 

that include the expansion of proliferative zones and the onset of neurogenesis.2,24 Second, 

we filtered these enhancers for evidence of strong H3K27ac marking in the developing 

cortex relative to other human tissues (Figure S1; STAR Methods) to enrich for enhancers 

with cortex-specific activity.
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The enhancers we targeted also included representatives from two classes of enhancers 

implicated in human brain evolution: 93 human accelerated regions (HARs) and 129 

human gain enhancers (HGEs). HARs harbor an excess of human-specific substitutions 

and exhibit human-specific activities during development.4,6,7,38,39 HGEs have increased 

levels of enhancer-associated chromatin marks in the developing human cortex relative to 

other species.2,40 Chromosome conformation studies in the developing cortex suggest that 

both HARs and HGEs interact with genes involved in neurogenesis, axon guidance, and 

synaptic transmission.8–10 However, a functional role for HARs and HGEs in regulating 

human neurogenesis has not been established.

To directly compare the effects of enhancer and gene disruptions, we also targeted 10,674 

protein-coding genes (21,663 sgRNAs) that are actively transcribed in hNSCs (Figure 

1A).24 Additionally, we included 2,624 genomic background regions (4,497 sgRNAs) 

and 500 non-targeting sgRNA controls to account for non-specific effects of inducing 

small genetic lesions that require repair and background effects, respectively, of lentiviral 

transduction (STAR Methods). We defined genomic background regions as non-coding 

sequences that exhibited no evidence of function based on epigenetic marking in human 

tissues and cells (STAR Methods). In total, this yielded a library of 74,138 sgRNAs that 

we transduced into hNSCs across 8 sub-libraries (Figure S4). Two independent biological 

replicate transductions were carried out for each sub-library. The abundance of each 

integrated sgRNA was determined using PCR followed by high-throughput sequencing, 

initially after lentiviral transduction and then at 4, 8, and 12 cell divisions (Figure 1A; 

STAR Methods). Modeling the change in abundance of each sgRNA across the time 

series provided a quantitative basis for measuring effects of enhancer and gene disruption 

on cellular proliferation.41 We hypothesize that alterations in hNSC proliferation may 

encompass diverse cellular changes, including disrupted cell cycle regulation, differentiation 

of hNSCs into derived cell types, and reduced cell survival.

Quantifying gene and enhancer disruption phenotypes

We first quantified the biological effects of targeted disruption on hNSC proliferation, the 

beta score (β), for each gene, conserved region, or genomic background control relative 

to a set of non-targeting controls (Figures 1B–1D; STAR Methods). These biological 

effects were determined using reproducible sgRNA read abundances collected across both 

replicates and multiple time points (Pearson correlation > 0.9) (Figures S5–S7; Table S1) 

and demonstrate high levels of on-target specificity (Figure S8). We then performed linear 

discriminant analysis (LDA) to partition gene, enhancer, and background control disruptions 

into proliferation-decreasing, proliferation-increasing, or neutral classes (Figure S9; STAR 

Methods). We performed this analysis on a training set including known proliferation-

decreasing genes, background controls, and the top proliferation-increasing effects at each 

time point (empirical false discovery rate [FDR] < 0.05).42 The trained classifier was then 

applied to the full dataset and filtered for consistency in classification and the direction 

of the effect across time points to identify genetic disruptions resulting in proliferation 

phenotypes (Figure 1A).
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We identified 2,263 genes (21.2% of all targeted genes) that alter hNSC proliferation 

at 12 cell divisions (Figure 1B and 1D; Table 1; Table S2). Of these, nearly all gene 

disruption phenotypes showed decreased proliferation, while only 8 gene disruptions 

resulted in increased proliferation (Figure 1B; Table 1; Table S2). Many gene disruptions 

that altered proliferation have known roles in NSC biology relating to the balance between 

self-renewal and neuronal differentiation (e.g., CCND2 and SOX2) or response to growth 

factor signaling (e.g., FGFR1 and TCF7L1) (Figure 1B).43–46 Disruption of genes associated 

with microcephaly (e.g., ASPM, CEP135, and MCPH1) decreased hNSC proliferation, 

consistent with their known roles in human cortical development (Figure 1B).47 Disruptions 

of genes associated with risk for other neurodevelopmental disorders, notably autism 

spectrum disorder (e.g., DYRK1A, DIP2A, and CHD8) and X-linked intellectual disability 

(e.g., UBE2A), also resulted in significant alterations of hNSC proliferation.47–49

We found 1,175 conserved regions (4.5% of all conserved regions) across 708 cortex-

associated enhancers (31.7% of all targeted enhancers) that alter hNSC proliferation by 

12 cell divisions. (Figures 1C and 1D; Table 1; Table S3). In contrast to genes, a greater 

proportion (16%) of disruptions in enhancers increased proliferation (188 proliferation 

increasing versus 987 proliferation decreasing; Table 1). We also discovered 46 conserved 

regions within HGEs and 15 within HARs that alter proliferation when disrupted at 12 

cell divisions (Figure 1C; Table 1), supporting the hypothesis that HARs and HGEs 

contribute to human neurodevelopment. Disruption of HGEs affecting proliferation has been 

identified as proximal to genes with molecular functions in chromosome segregation (e.g., 

NSL1) or associated with intellectual disability (e.g., PTDSS1).50,51 Disruption of conserved 

regions within three HARs that contained human-specific substitutions also altered hNSC 

proliferation; these HARs were located in introns of genes with known functions in brain 

development (e.g., NPAS3) and cognitive function (e.g., USH2A) (Figure 1C).52,53

Globally, disruptions within enhancers had comparatively weaker effects on proliferation 

than gene disruptions (Figure 1D) (Wilcoxon rank-sum test, p < 2.2 × 10−16). Although 

many enhancer disruptions resulted in biological effects of a magnitude comparable with 

gene disruptions, we observed differences in the onset of their biological effects (Figure 

1D). The majority of gene disruption phenotypes (61% of total gene phenotypes) were 

detected by 4 cell divisions. In contrast, fewer enhancer disruption phenotypes (30% of all 

conserved-region phenotypes) were detected at this early time point. The total number of 

phenotypes within enhancers approximately doubled at 8 cell divisions and doubled again at 

12 cell divisions (Table 1).

To validate significant hits from the screen, we individually targeted 2 enhancers with 

proliferation-increasing effects and 2 enhancers with negative proliferation effects (Figure 

S10; STAR Methods).54,55 We also targeted 2 genes with negative proliferation effects. For 

each target, we carried out two independent replicate transductions (MOI = 0.3) using a 

lentivirus delivering lenti-CRISPRv2GFP and a single guide RNA used in the main screen. 

We maintained the cells in a 24-well culture format and monitored the proportion of GFP-

positive cells at multiple time points spanning 10 cell divisions (STAR Methods). Although 

we observed variability in the effect of guide RNAs targeting the same gene or enhancer, 

at least one guide RNA for each target resulted in a proliferation phenotype consistent with 
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the phenotypes detected in the massively parallel screen (Figure S10). We also found that 

disruption of some of the negative-proliferation targets was poorly tolerated by the entire 

cell population in each well, including GFP-negative cells. This resulted in general cell 

death in the entire population at later time points (Figure S10). We did not observe such 

population-wide cell death for non-targeting controls or the positive-proliferation targets. 

This may reflectnon-cell-autonomous effects due to disruption of each negative-proliferation 

effect target, possibly due to release of cellular contents into the culture environment or 

a reduction in overall cell density leading to sparse culture conditions poorly tolerated by 

untransduced cells. Such effects may be more evident in individual disruptions targeting the 

relatively small number of cells we used in these experiments as opposed to the massively 

parallel screen, where cells with negative proliferation phenotypes are a minority in a very 

large population of unaffected cells.

To further evaluate the performance of our screen, we then compared our significant gene 

hits with gene hits reported previously by Tian et al.36 as affecting viability in human 

induced pluripotent stem cells (hIPSCs) and neurons at three post-differentiation time points 

(Table S4; STAR Methods). This study targeted 2,325 genes representing the “druggable 

genome.” We found that 96 gene hits with negative effects on hNSC proliferation in our 

screen were also detected as having negative effects on hIPSCs, which is ~29% of the 

unique genes reported by Tian et al.36 We also found that 128 of our gene hits with negative 

effects were detected as having negative effects at one or more of the neuronal time points, 

or ~22% of the unique genes reported in that study. Even given that our screen and the 

screens by Tian et al.36 were conducted in different cell types and used different criteria for 

selecting gene targets, our screen still detected a substantial fraction of genes identified in 

that study.

Linking gene disruptions to biological processes

Measuring the effect of gene and enhancer disruptions across multiple time points allowed 

us to distinguish the overall magnitude of the effect on proliferation from temporal changes 

across cell divisions. Principal-component analysis (PCA) of the observed proliferation 

changes revealed that the first principal component (PC1 = 94.3% of total variance) is 

correlated with the severity of the effect on cellular proliferation (Figure 2A; Figure S11). 

This analysis enabled us to assign a proliferation score to each disruption, which we could 

then use to rank disruptions based on their cumulative effect on cellular proliferation 

across multiple time points. The second component (PC2 = 3.9% of total variance) 

correlated with effect changes across time points. Examples include the continued increase 

in proliferation resulting from genetic disruption of the X-linked intellectual disability gene 

UBE2A (Figure 2A) and the decrease in proliferation due to disruption of KIF20B (Figure 

2A), a gene implicated in microcephaly.47,49 These findings support the hypothesis that 

both proliferation-increasing and proliferation-decreasing phenotypes, revealed by massively 

parallel screening in hNSCs, provide insight into human neurodevelopmental disorders. 

Together, these two components explain nearly all of the variability in the biological effects 

of disruption of genes and enhancers (>98% of total variance) and were further utilized to 

dissect the functional characteristics of hNSC proliferation (Figure 2A; Tables S2 and S3).
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We first examined whether gene disruptions converge on specific biological pathways and 

known human disease phenotypes. We hypothesized that gene disruptions with stronger 

effects might be functionally distinct from disruptions with weaker effects. We therefore 

grouped the proliferation phenotypes into categories based on their proliferation scores and 

performed overrepresentation testing of proliferation phenotypes across neurodevelopmental 

and neuropsychiatric disorder risk loci, Gene Ontology biological processes, and biological 

signaling pathways (Figures 2B and 2D; Table S5–S8). We found that genes associated with 

neurodevelopmental disorders were significantly overrepresented among gene disruptions 

that decreased hNSC proliferation (Table S5). Genes associated with microcephaly were 

enriched in all three categories and were most strongly enriched in the most severe set 

(hypergeometric test, p = 3.4 × 10−4) (Figure 2C). This is consistent with known disease 

processes that impair cell division in the developing human cortex.47 Genes located within 

large copy number variants (CNVs) associated with autism spectrum disorder (ASD) also 

showed strong enrichment in severe phenotypes (hypergeometric test, p = 1.1 × 10−3), 

providing the means to identify new potential candidate genes in these regions (Table 

S5).48 CNVs associated with developmental disorders (hypergeometric test, p = 1.6 × 

10−3), as well as constrained genes intolerant to loss-of-function mutations (hypergeometric 

test, p = 5.1 × 10−17) exhibited moderate enrichment across all phenotypes (Figure 

2C).48,56,57 Many risk genes associated with developmental disorders and ASD have been 

identified based on a significant excess of gene-disrupting loss-of-function mutations in 

affected individuals.56,58,59 These genes are also significantly enriched among proliferation-

altering gene disruptions (hypergeometric test p = 3.2 × 10−6 for genes associated with 

developmental disorders and hypergeometric test p = 9.8 × 10−3 for genes associated with 

ASD) (Figure 2C), suggesting that loss-of-function mutations in these genes may contribute 

to developmental disorders in part by altering hNSC proliferation. Finally, we also examined 

sets of genes recently implicated in risk for schizophrenia (SCZ), bipolar disorder (BD), 

attention deficit hyperactivity disorder (ADHD), and major depressive disorder (MDD).60 

We found that risk genes associated with each of these disorders were significantly 

overrepresented among gene disruptions that decreased hNSC proliferation in our screen 

(Figure 2C; Table S6).

We then used Gene Ontology analysis to identify biological processes enriched among 

proliferation-altering gene disruptions (Table S7). In severe proliferation phenotypes, 

we observed the strongest fold-enrichment for gene functions related to histone 

acetyltransferase activity (modified exact test, Benjamini-Hochberg [BH]-corrected p = 2.1 

× 10−3) and translational initiation (modified exact test, BH-corrected p = 1.4 × 10−12) 

(Figure 2C). Additional processes exhibiting elevated fold enrichment in severe phenotypes 

include sister chromatid cohesion (modified exact test, BH-corrected p = 1.7 × 10−6), mRNA 

splicing (modified exact test, BH-corrected p = 4.3 × 10−12), transcriptional elongation 

(modified exact test, BH-corrected p = 2.4 × 10−5), and DNA replication (modified exact 

test, BH-corrected p = 1.3 × 10−8), demonstrating that genetic disruption of a wide variety of 

biological processes leads to severe proliferation phenotypes in hNSCs.

To gain insight into the biology associated with changes in hNSC proliferation, we utilized 

a public database of manually curated and peer-reviewed pathways (Reactome Project; 

STAR Methods) to test the enrichment of gene proliferation phenotypes within signaling 
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pathways (Table S8).61 We found that gene disruption phenotypes are also enriched for the 

WNT signaling pathway (Reactome: R-HSA-201681; hypergeometric test, BH-corrected p 

= 4.5 × 10−2) (Table S8), which contributes to cortical patterning via a signaling center 

in the cortical hem.62 We also observed enrichment for ROBO signaling (Reactome: R-

HSA-9010553; hypergeometric test, BH-corrected p = 8.8 × 10−10), supporting evidence 

from mammalian genetic models showing that this pathway alters hNSC self-renewal.63 

In addition, proliferation-decreasing gene disruption phenotypes are significantly enriched 

for the fibroblast growth factor (FGF) signaling pathway (Reactome: R-HSA-1226099; 

hypergeometric test, BH-corrected p = 2.8 × 10−2) (Figure 2D; Table S8), consistent with 

its role in anterior forebrain cortical patterning.45,64 During human corticogenesis, neural 

progenitors are influenced by signaling molecules released from nearby patterning centers, 

and these morphogenetic gradients result in the specification of neuronal cell types and 

cortical areal identity.62 Genetic disruption impacting these signaling pathways may alter 

neurogenesis and possibly result in changes to the specification of cortical size and areal 

identities.45,62

Identifying transcription factor binding site disruptions in enhancers that alter proliferation

To explore genetic disruptions altering enhancer function, we used PCA to isolate the 

magnitude and temporal effects of disruption for all conserved enhancer regions included 

in our screen (Figure 3A; Table S3). We combined this analysis with genome-wide 

predictions of transcription factor binding sites (TFBSs) to identify binding sites enriched 

in proliferation-altering enhancer disruptions (Table S9). Most conserved regions included 

in our screen (90.7% of total conserved regions) include a predicted TFBS, with a total 

of 152,110 motifs predicted across all targeted regions.65 To obtain an initial view of 

the effect of genetic disruption on predicted TFBS motifs, we individually interrogated 

8 conserved regions targeted in our screen, including a subset exhibiting proliferation 

phenotypes. We performed high-throughput amplicon sequencing on the targeted conserved 

regions after genetic disruption to determine the molecular effects on enhancer TFBS motif 

content (Figures S12 and S13; Table S10). In most cases (87.5% of replicated sgRNAs), 

we observed genetic variation at the sgRNA-Cas9 target site. The proportion of alleles 

modified following disruption ranged from 33% to 96% (Table S10), and deletions were 

the most common type of genetic variation observed (average deletion size of 6–7 bp). 

The 8 individually targeted conserved regions overlap 50 predicted TFBS motifs, and 41 

motifs were likely disrupted due to proximity (within 10 bp) to the predicted sgRNA-Cas9 

cleavage site. One proliferating-decreasing disruption destroyed a putative TBX2/TBX20 

TFBS motif that includes human-specific substitutions within HACNS96 (Figures 3A and 

3C; Figure S12). TBX2 mediates regulation of FGF signaling during anterior neural cell 

specification.66 Transgenic assays demonstrate that HACNS96, which is located within the 

intron of the transcription factor NPAS3, acts as a transcriptional enhancer during vertebrate 

neurodevelopment.67 NPAS3 is expressed in the developing brain, and genetic disruption of 

NPAS3 and HACNS96 results in a proliferation-decreasing phenotype (Figure 2A; Figure 

S12D), suggesting that disruption of the TBX2/TBX20 motif within HACNS96 may lead to 

the proliferation-decreasing phenotype we observed by altering NPAS3 regulation.
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To identify predicted TFBS motifs that are overrepresented in proliferation-altering enhancer 

disruptions, we partitioned the proliferation-decreasing phenotypes within enhancers into 

severe, strong, and all decreasing categories (Figure 3B). Conserved regions exhibiting 

severe proliferation-decreasing phenotypes are enriched in E2F4 and E2F6 binding motifs 

(hypergeometric test, BH-corrected p = 2.6 × 10−2 and p = 5.9 × 10−4, respectively) (Figure 

3D), consistent with the role of E2F factors in the transcriptional control of cell cycle 

dynamics and cell specification.68 We also observed enrichment of ZNF263, SP1, and SP2 

(hypergeometric test, BH-corrected p = 6.8 × 10−12, p = 6.3 × 10−4, p = 4.7 × 10−3, 

respectively), indicating that binding of broadly expressed general transcription factors is 

important in facilitating normal enhancer function. We did not observe enrichment for 

TFBSs within proliferation-increasing disruptions, potentially due to the smaller number of 

conserved regions involved in this cellular phenotype.

Distribution of proliferation-altering phenotypes across enhancers

To describe the proliferation-altering phenotypes at the level of whole enhancers, we 

summarized the number of conserved-region disruptions impacting proliferation within each 

targeted enhancer (Table S11). While many enhancers include only one disrupted site that 

results in a proliferation phenotype (66.9% of proliferation-altering enhancers), we also 

identified many enhancers that included multiple conserved regions impacting proliferation 

(Figure 4A). On average, 15% of conserved regions within proliferation-altering enhancers 

were associated with a proliferation phenotype (Figure 4B). The cumulative burden of 

proliferation-altering disruptions within whole enhancers scales linearly with the number of 

targeted sites (Figure 4C), supporting the hypothesis that the total proliferation phenotype 

burden is proportional to the number of conserved regions disrupted within each enhancer.

We then identified regulatory elements that we termed “mutation-sensitive enhancers,” 

which are a subset of enhancers found by permutation analysis to contain a significant 

excess of conserved regions yielding a proliferation phenotype (Table S11; STAR Methods). 

One mutation-sensitive enhancer (permutation test, BH-corrected p = 7.4 × 10−3) is 

proximal to SPRY2 (Figure 4D), a known regulator of FGF signaling, illustrating the 

potential vulnerability of hNSCs to variation influencing this developmental signaling 

pathway.69 We also identified two mutation-sensitive enhancers that include the HARs 

HACNS610 (permutation test, BH-corrected p = 4.4 × 10−3) and HAR122 (permutation test, 

BH-corrected p = 4.4 × 10−3), located within introns of SOX5 and NPAS3, respectively. 

The identification of mutation-sensitive enhancers containing HARs suggests candidates 

for human-specific regulatory activity at important positions within regulatory networks 

impacting hNSC self-renewal.

Comparing enhancer-target gene disruption phenotypes

To link enhancers exhibiting proliferation phenotypes with their putative target genes, we 

used a high-resolution map of long-range chromatin contacts ascertained from human neural 

precursor cells (Table S12; STAR Methods).70 Chromatin interaction maps (Figure 5A) 

identified 180 enhancer-gene pairs between enhancers and genes that exhibit proliferation 

phenotypes in hNSCs (Table S12). These maps capture a diverse range of regulatory 

interactions, including interactions between a single enhancer and a single gene target 
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(82, 45.5% of the total), interactions between multiple enhancers converging on a single 

gene target (59, 32.7% of the total), and a single enhancer that interacts with multiple 

target genes (39, 21.6% of the total). Likely because of this diversity, we did not observe 

a correlation (Pearson correlation r = 0.01 for all 180 pairs; r = −0.14 for 82 single gene-

single enhancer pairs) between the effect of enhancer and target gene disruptions, and we 

elaborate this point under Discussion and Limitations of the study. However, individual 

enhancer-gene interactions provided insight into the relative effects of enhancer versus target 

gene disruption on proliferation.

The microcephaly-associated gene CEP135 interacts with a single enhancer active during 

human corticogenesis (Figure 5B).47 Disruption of the enhancer and of CEP135 results in 

comparable negative effects on hNSC proliferation, suggesting that cortical phenotypes may 

arise through changes in the regulation of neurodevelopmental risk genes. We also identified 

a human cortical enhancer (Figure 5C) interacting with two target genes with known roles in 

cell proliferation, STARD13 and PDS5B.71,72 Genetic disruption of the enhancer results in 

a stronger effect on proliferation than disruption of either target gene (Figure 5C, bottom), 

suggesting that genetic variation within a single enhancer can lead to severe biological 

effects through dysregulation of multiple genes.

We also utilized this chromatin interaction map to identify gene targets for 9 HARs and 8 

HGEs that contribute to hNSC proliferation. One example, shown in Figure 5C, is an HGE 

that targets NSL1, which functions in neural progenitor cell division and has been associated 

with cognitive phenotypes in humans.51,73 Disruption of NSL1 negatively affects hNSC 

proliferation (Figure 5D, bottom). Disruption of the interacting HGE also negatively alters 

proliferation, resulting in a weaker but significant biological effect compared with the gene 

disruption (beta score = −0.5485, FDR < 3.6 × 10−4 at 12 cell divisions; Table S3). These 

findings provide the basis for determining whether gains in activity in HARs and HGEs alter 

expression of specific gene targets during neurogenesis.

Characterizing cell-type-specific expression of gene hits in the developing human cortex

The developing human cortex contains a diversity of neural progenitor types. To determine 

whether genes exhibiting proliferation phenotypes are expressed in particular classes of 

cortical progenitors, we used a previously published fetal human cortex single-cell RNA 

sequencing (scRNA-seq) atlas that included samples from Carnegie stage 14 (CS14) to 

gestational week 25 (GW25).74,75 We first identified progenitor types based on expression of 

known marker genes: intermediate progenitor cells (IPCs) expressing EOMES, outer radial 

glia (ORG) expressing HOPX and PTPRZ1, and radial glia (RG) that lacked expression 

of these marker genes (STAR Methods).76,77 We further sub-divided these populations 

according to their inferred cell cycle phase based on expression of TOP2A and MKI67, 

which mark cells in G2/M phase.78 We then clustered the average expression of the gene 

hits we identified across each progenitor type and cell cycle phase to identify groups of gene 

hits with expression profiles biased toward specific cell types or cell cycle phases (Figure 

6). We identified multiple gene clusters that showed biased expression profiles (Figure 6A; 

Table S13). For example, we identified a cluster including 129 gene hits that showed biased 

expression in ORG and a cluster including 68 gene hits showing biased expression in IPCs. 
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ORG-biased gene hits included NPAS3, which, as supported by our earlier findings, is 

regulated in part by the HAR HACNS96 (Figure 5; Figure 6B; Figure S12). IPC-biased 

gene hits included the ASD risk genes CHD8, CUL3, and DYRK1A.58 We also identified 

gene clusters with biased expression at particular cell cycle phases, including a G2/M-biased 

cluster (145 genes) comprised of genes showing high expression across progenitor types 

specifically at this cell cycle phase (Figure 6A). This cluster included genes associated 

with microcephaly, such as CEP135 and CEP152 (Figure 6B; Table S13).47 Together, these 

results identified subsets of genes with proliferation phenotypes in our screen that have 

expression profiles unique to specific cortical progenitor populations and at specific stages 

of the cell cycle.

We next sought to determine whether genes within the progenitor-type- or cell-cycle-

phase-specific clusters were associated with specific biological functions. To this end, 

we performed Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses (Table S13).79,80 Genes in the G2/M-

biased gene cluster were enriched for KEGG cell cycle, DNA replication, and mismatch 

repair pathways and GO biological processes associated with chromosome segregation 

during mitosis, mitotic spindle organization, and other cell-cycle- and cell-division-related 

categories. IPC-biased genes were associated with KEGG pathways and GO biological 

processes associated with the regulation of RNA splicing. Genes in the ORG-biased cluster 

were enriched in multiple KEGG pathways associated with metabolic processes, including 

oxidative phosphorylation, glycolysis, and fatty acid metabolism. Finally, genes in the RG 

(G1/S) cluster were enriched in KEGG pathways associated with DNA replication and 

oxidative phosphorylation and biological processes also associated with DNA replication as 

well as aerobic respiration. Collectively, these findings support the hypothesis that the gene 

hits we identified act within pathways essential to cellular viability in vitro, but the specific 

pathways impacted in vivo may vary by cell cycle phase and progenitor subtype.

DISCUSSION

We describe the effects of genetic disruption of more than 20,000 conserved regions in 

more than 2,200 putative enhancers specifically active in the developing human cortex 

using a hNSC model. Previous studies of gene-regulatory perturbation have largely 

focused on particular loci, have not targeted large numbers of enhancers implicated 

in human corticogenesis, and have employed immortalized cell lines not related to 

neurodevelopment.14–21 Our results revealed disruptions in 708 enhancers that altered hNSC 

proliferation, pointing to enhancers that may play important roles in regulating human 

cortical neurogenesis. These enhancers also constitute a resource for the interpretation of 

noncoding variation associated with human neurodevelopmental phenotypes. We note that 

disruptions in HARs and HGEs also altered hNSC proliferation, providing evidence that 

regulatory elements linked to human brain evolution play an important functional role in 

neurogenesis. We also targeted all expressed genes in our hNSC model and found that 

genes associated with neurodevelopmental and neuropsychiatric disorders disproportionately 

impacted proliferation. This suggests that biological disruption of neural progenitors may 

contribute both to early-onset neurodevelopmental disorders, such as ASD, and disorders 

that are diagnosed later in the life-span, such as SCZ.
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We note that the changes in proliferation we observed in our screen may be the result of 

several underlying mechanisms. These include changes in cellular viability or growth as well 

as aberrant induction of neuronal differentiation or other effects that alter cellular fate. We 

did not design our screen to distinguish among these potential phenotypes. This will require 

screening approaches that incorporate additional readouts, such as Perturb-Seq, which would 

reveal changes in transcriptional signatures associated with gene and enhancer disruptions in 

each cell.81

Because we included both gene and enhancer disruptions in our screen, we were able to 

compare their relative effects. We found that enhancer disruptions generally had weaker 

effects on hNSC proliferation than gene disruptions, although we did identify individual 

enhancer disruptions with strong effects comparable with gene disruptions. Although 

we observed a higher frequency of enhancer disruptions with positive effects on hNSC 

proliferation compared with gene disruptions, enhancer disruptions were strongly biased 

toward negative effects on hNSC proliferation overall. Integrating enhancer and gene 

proliferation phenotypes with enhancer-gene interactions provided further insight into how 

the biological effects of individual enhancer disruptions compared with disruption of their 

target genes. As described under Results, we observed a diversity of patterns. For some 

enhancers, disruptions had comparable effects as disruption of their target gene. For others, 

disruptions had weaker effects. In some cases, we identified enhancers that targeted multiple 

genes and that, when disrupted, had greater effects than disruption of any of their gene 

targets.

We did not observe a significant correlation between the magnitude of enhancer and target 

gene disruptions overall. However, there are multiple technical and biological mechanisms 

that could account for this finding. First, the genes we targeted are likely regulated by 

multiple enhancers, and it is well established that enhancers often have redundant regulatory 

functions.82 We may therefore expect that enhancer disruptions may show weaker effects 

compared with their target genes, in part because other enhancers we have not disrupted 

would compensate for the effects of the enhancer disruption we did introduce. The 

magnitude of these effects may still not be correlated across enhancer-gene pairs because 

of variation in the robustness and redundancy of the regulatory architecture across genes. 

Second, as we show under Results, enhancers can target multiple genes, and disrupting those 

enhancers may have larger effects on proliferation compared with single-gene disruptions. 

Third, as we discuss further below, our screen design involves introducing small deletions 

in potential TFBSs within enhancers rather than deleting entire enhancers. The effects of 

those deletions are likely to vary due to redundancy within enhancers, and the degree of 

that redundancy may vary across enhancers as well, which would also contribute to a lack 

of correlation between gene and enhancer effects. Fourth, the chromatin interaction data 

available for our analysis is sparse and likely only captures a subset of the enhancer-gene 

interactions that are present, even for enhancers we disrupted. This limits the number 

of enhancers and genes we can meaningfully compare and our ability to estimate how 

many enhancers may regulate the genes we targeted. This also applies to cases where we 

assigned one enhancer to one gene. There are likely other enhancers regulating genes we 

did not disrupt and that we cannot detect and that may compensate for the disruptions we 
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introduced. Additional insight into these questions will require denser chromatin contact 

maps and combinatorial disruption of enhancers for multiple genes.

The targeted genetic disruption approach we chose provides distinct insights into enhancer 

function compared with alternative strategies, such as CRISPRi, which would potentially 

silence entire enhancers.83 By introducing small deletions in conserved regions, we were 

able to identify enhancers that were particularly prone to disruption. We were also able to 

identify TFBS motifs enriched in proliferation-altering regions. These findings highlighted 

the importance of specific transcription factors and individual binding sites in transcriptional 

regulation within the NSC niche. Our approach also directly measured the effect size 

distribution of small mutations in enhancers, which is relevant for understanding the impact 

of genetic variation in regulatory elements in human disease and evolution. However, in 

contrast to CRISPRi, disruption of one region in an enhancer is unlikely to completely 

inactivate most of the enhancers in our target set. Instead, the single genetic disruptions we 

introduced may alter enhancer activity in more complex ways; they may decrease enhancer 

activity, increase it, or potentially alter interactions between the enhancer and its target 

genes. Enhancer disruptions may consequently have more diverse biological effects as well, 

including altering gene expression to produce an increase in cellular proliferation.

We found that genes exhibiting significant phenotypes showed biased expression in specific 

progenitor subtypes and at particular cell cycle phases in the developing human cortex. 

These genes were enriched in essential functional pathways, although the specific pathways 

and processes varied across progenitor subtypes. This suggests that disruption of these 

genes may have cell-type specific effects and that the pathways and processes that would 

be altered may be cell-type-specific. We also note that gene hits showing cell-type-specific 

biased expression included genes associated with ASD and microcephaly. Our findings may 

therefore help identify the specific cell types in the developing human brain that are affected 

in these and other neurodevelopmental disorders and thus yield insight into their etiology.

Collectively, our findings provide an empirical view of the effects of genetic variation on 

enhancer function and the relative overall impact of enhancer versus target gene disruption. 

We identified 708 enhancers with at least one disruption that altered hNSC proliferation, 

demonstrating a functional role of specific regulatory elements in human neurodevelopment. 

The set of enhancers and genes we report here will enable further studies of gene regulatory 

variation in human brain development, neurodevelopmental disorders, and human brain 

evolution.

Limitations of the study

Our study has several limitations that we wish to emphasize. As we discussed above, 

redundancy in enhancer function and the sparsity of interaction data make it difficult 

to correlate the effect of enhancer disruption with disruption of target genes, except in 

individual cases. In addition, because we are using CRISPR knockouts to introduce small 

deletions in enhancers rather than knocking out entire enhancers, many of the disruptions 

we introduced may result in partial loss of enhancer function or, potentially, increases in 

enhancer activation due to loss of binding sites for repressive transcription factors. Our 

results may therefore not be directly comparable with screens using other approaches, such 
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as CRISPRi. Because we are using hNSC proliferation as our readout, we are not able to 

determine whether proliferation phenotypes are due to cell death, reduced proliferation, or 

neuronal differentiation, all of which could result in reduced sgRNA representation. Finally, 

although we designed our screen to minimize detection of false positive hits by including 

500 positive control genes plus 500 negative controls and more than 4,000 sgRNAs targeting 

more than 2,000 background control regions, we carried out two iterations of the entire 

screen. We recognize that some of our hits may be false positives, although we think 

it possible that our screen may also suffer from an increased number of false negatives, 

particularly in detecting disruptions that increase proliferation. This may account for the bias 

toward proliferation-decreasing hits we observe in our data.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, James P. Noonan 

(james.noonan@yale.edu).

Materials availability—Materials used in this study will be provided upon request and 

available upon publication.

Data and code availability

• Sequencing data for massively parallel sgRNA-Cas9 disruption and individual 

replicate disruption are available through the Gene Expression Omnibus as of the 

date of publication. Accession numbers are listed in the key resources table. This 

paper analyzes existing, publicly available data. The accession numbers for the 

datasets are listed in the key resources table.

• All original code generated for the manuscript is available at Zenodo as of the 

date of publication. The DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this work is 

available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and vectors—Materials were obtained from the following sources: H9-derived 

human neural stem cells from Life Technologies (N7800–1000), HEK293FT cells from 

Invitrogen, LentiCRISPRv2GFP from Addgene (Plasmid #82416, provided by David 

Feldser; this plasmid provides the S. pyogenes Cas9), pCMV-VSV-G (Addgene, Plasmid 

#8454), and pCMV-dR8.2 dvpr (Addgene, Plasmid #8455). The identity of H9-derived 

human neural stem cells was confirmed by analysis of hNSC markers via RNA-sequencing 

and antibody staining for multipotency markers (SOX2, NES).24

Human neural stem cell culture reagents—H9-derived human neural stem cells were 

cultured in Knockout DMEM/F-12 (Life Technologies, N7800–100) supplemented with 

EGF and FGF (ConnStem), GlutaMax-I and StemPro neural supplement (Life Technologies) 
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as recommended by the manufacturer. In addition, cells were cultured on Matrigel–coated 

flasks seeded at ~50,000 cells per square centimeter. The doubling time of H9-derived 

human neural stem cells is approximately 48 h.28

Lentiviral sgRNA plasmid libraries—Oligonucleotides were synthesized on a 

CustomArray 90K array (CustomArray, Inc). The first round of PCR amplified sub-library 

specific sgRNA sequences (S01-S08). The second round of PCR introduced overhangs 

compatible for Gibson assembly (New England Biolabs) into LentiCRISPRv2GFP 

linearized with BsmBI. PCR reactions were monitored using SYBR green to ensure 

each reaction was terminated in the linear amplification phase. Gibson Assembly reaction 

products were purified and transformed into E. Coli DH10B (Life Technologies). To 

preserve the diversity of the library, at least 500-fold coverage in library representation 

was recovered in each transformation, and each transformed library was grown in liquid 

culture until OD 0.8–1.0 (~8 h). Individual sgRNA representation within each plasmid 

library (S01-S08) was determined by high-throughput 2×100 bp sequencing on the HiSeq 

4000 instrument (Illumina) (Figure S4).

METHOD DETAILS

Lentivirus production—Lentiviral work was performed using BSL-2 Plus safety 

procedures, including production of lentiviral sgRNA-Cas9 libraries, culturing of transduced 

cells, and extraction of genomic DNA. Lentivirus was produced by co-transfecting the 

sgRNA-Cas9-GFP library vector with pCMV-VSV-G and pCMV-dR8.2 dpvr packaging 

plasmids into HEK293FT cells using Extreme Gene 9 transfection reagent (Millipore-

Sigma) in serum-free media supplemented with GlutaMax-I (ThermoFisher) and 25uM 

chloroquine (Millipore-Sigma). After 8 h, media was replaced with high bovine 

serum albumin (Millipore-Sigma) (1.1g/100mL) in GlutaMax-supplemented OptiMem 

(ThermoFisher) with 10uM sodium butyrate (Millipore-Sigma). The virus-containing 

supernatant was collected 48 h after replacement. Viral supernatant was passed through 

a 0.45μM low-binding filter and immediately concentrated using Amicon Ultra-15 100kD 

filters. Concentrated virus was aliquoted, flash-frozen over dry ice and stored at −80C.

sgRNA library design: Defining genomic background controls—A set of 

background controls were defined by initially shuffling the location of randomly selected 

subset of targeted enhancers (n = 500). Next, the PhastCons elements underlying the original 

enhancers were shuffled within the shuffled enhancers; these pseudo-PhastCons elements 

residing in shuffled enhancers were termed ‘genomic background controls.’ Individual 

sgRNAs targeting the genomic background controls were scored and filtered in the same 

manner as the enhancers described above. In addition, these regions were filtered for 

possible regulatory function based on evidence of epigenetic activity across stem cell and 

brain tissue-types. Specifically, Dnase-hypersensitive sites (DHSs) identified in H9-derived 

neural progenitor cells were extended by 1,000 bp; genomic background control regions 

overlapping the extended DHSs by 1 bp were excluded from downstream analyses.84 In 

addition, a compendium of epigenetic atlases (Epilogos, https://epilogos.altius.org) was 

utilized to filter remaining genomic background controls for evidence of gene regulatory 

function based on chromatin state across a variety of human tissue- and cell-types. 
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Chromatin states across ‘All 127 Roadmap Epigenomes’, ‘Brain’, and ‘ESC derived’ 

were used to filter genomic background controls based on cumulative evidence across 

the shuffled enhancers. The following criteria was applied to filter shuffled enhancers: 

evidence across all chromatin states (not including ‘Quiescent’ states) was set to ‘All 127 

Roadmap Epigenomes’ < 5.0, ‘Brain’ < 0.5, and ‘ESC derived’ < 0.5. Genomic background 

regions within shuffled enhancers passing the filtering criteria for DHSs and chromatin state 

(described above) were included in downstream analyses.

sgRNA library design: Defining proliferation-decreasing genes—Proliferation-

decreasing controls were identified from Wang et al. (2015).22 As sgRNAs exhibiting 

essential gene scores across a panel of cancer cell lines including KBM7, K562, Jiyoye, 

and Raji. Genes identified as proliferation-decreasing control targets exhibit a CRISPR-score 

(‘CS’) < −2.0 and ‘adjusted p value’ < 0.05 across all 4 cell lines performed by Wang et 

al. (2015). Individual sgRNAs (up to 10 sgRNAs per gene) targeting genes that meet these 

criteria were used as a control for proliferation-decreasing genes in this study.

sgRNA library design: Scoring and filtering sgRNAs—For enhancer regions, 

sgRNAs were designed and scored across PhastCons elements (46-species Placental 

Mammal Conserved Elements obtained from human genome version GRCh37/hg19 at the 

UCSC Genome Browser).37 For protein-coding regions, sgRNA designs were included from 

Wang et al. (2015).22 For enhancer, gene, and background control (see below) sgRNAs, 

the scoring metric was incorporated from Gilbert et al. 2014.83 Bowtie version 1.1.2 

was used to score mismatches across the genome (version GRCh37/hg19); a score of 

e29m1 was used as a cutoff for potential sgRNAs.85 The scoring scheme is summarized 

as follows: the sgRNA sequence is extended to a 23-mer including the PAM motif 

NGG. Genome-wide mapping with Bowtie was used to score each sgRNA based on the 

matrix [9,9,9,9,9,9,9,9,19,19,19,19,19,28,28,28,28,28,28,28,0,19,40] where the PAM motif 

is represented at the end of the matrix. Then, using the filtering criteria -e29m1 allows 

sgRNAs with mismatches unlikely to result in cleavage, then excludes sgRNAs if more than 

1 genome mapping event is reported. All sgRNAs were then filtered based on GC-content 

20–80% and excluding poly-T sequences greater than 4 in length.

sgRNA library design: Defining non-targeting control sgRNAs—Non-targeting 

controls (n = 500) were generated from random sgRNA sequences that were processed 

by the same scoring procedure as enhancer regions described above, including filtering 

based on GC-content 20–80% and poly-T sequences greater than 4 in length. As with 

enhancer-targeting sgRNAs, Bowtie was used to filter sgRNAs based on the scoring 

matrix [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,0,19,40] where the 

PAM motif is represented at the end of the matrix. The following mapping criteria were 

used: -e39m1, –max, and –un; sgRNAs that yield no mapping with up to 3 mismatches 

permitted across the reference genome (GRCh37/hg19) were reported as unmapped; this 

subset of sgRNAs was included as non-targeting controls.

sgRNA library design: sgRNAs targeting enhancers and genomic background 
controls—To select sgRNAs, an R script processed filtered sgRNAs with the following 
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procedure: each targeted PhastCons element was extended by 15 bp and the extended 

PhastCons element was partitioned into 30bp windows. Then, sgRNAs were randomly 

drawn with uniform probability from the filtered sgRNA set for each window such that up 

to 2 unique sgRNAs were selected per window, and at least 2 sgRNAs were selected per 

PhastCons element. Gencode (v19) was utilized to exclude conserved regions overlapping 

gene promoters (+/− 1 kb from TSS) and exons for all coding transcripts with evidence of 

level 1 or 2 support (validated or manual annotation).99

sgRNA library design: sgRNAs targeting protein-coding regions—For protein-

coding regions, genes were selected for targeting based on expression levels measured 

by RNA-sequencing in two biological replicates of H9-derived human neural stem cells 

(FPKM >1 across two replicates); this yielded 10,674 expressed genes.24 All protein-coding 

sgRNAs from Wang et al. (2015) were processed through the scoring and filtering procedure 

described above.22 Next, two filtered protein-coding sgRNAs were randomly selected for 

each gene.

sgRNA library design: Specificity controls—To assess the proportion of on-target 

activity resulting from sgRNAs with mismatches in the targeting sequence, we generated 

a set of specificity controls. Gene targeting sgRNAs for CCND2 SOX2, and SRSF1 were 

included as a reference for on-target activity. The 20 nt PAM-adjacent targeting sequence 

was divided into 3 regions based on the tolerance of Cas9 to mismatches (Region 1 is the 

PAM-adjacent region (1–7 nt), Region 2 (8–12 nt), and Region 3 (13–20 nt) is distal to 

the PAM-adjacent region.83 To determine the sensitivity of on-target activity to mismatches 

(MM), single nucleotide mismatches were introduced into the target sequence within each 

region or spanning multiple regions and the number of mismatches ranged from 1 MM to 

4MM.

sgRNA library design: Assigning sub-libraries for genetic screening—All 

sgRNAs were divided across 8 sub-libraries (‘subpools’) for large-scale transduction into 

hNSCs (6 enhancer-targeting subpools and 2 gene-targeting subpools). For each enhancer 

targeted by the screen, the enhancer was randomly assigned to one of the six subpools 

and all sgRNAs targeting that enhancer were assigned to the same subpool. For each 

gene targeted by the screen, the gene was assigned to one of the two subpools and all 

sgRNAs targeting that gene were assigned to the same subpool. In addition, each subpool 

included identical sets of non-targeting control sgRNAs (described above) and proliferation-

decreasing sgRNAs identified in previous sgRNA-Cas9 genetic screens.22

Large-scale human neural stem cell transduction—Target cells in 25 cm tissue 

culture flasks at 250,000 cells per sq cm were transduced in low volume media containing 

8ug/mL polybrene (Millipore-Sigma); 24 h after infection virus was removed and cells were 

passaged to a density of 50,000 cells per sq cm. To establish lentiviral titer, serial dilutions 

of concentrated virus were added to 25 cm tissue culture flasks and incubated for 24 h. 

Cells were then passaged to a density of 50,000 cells per sq cm and infection rate was 

determined 48 h later using GFP expression measured by flow cytometry (BD Accuri C6). 

For high-throughput screening, each sub-library was transduced by plating 50 million cells 
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across eight 25 cm flasks and adding the appropriate volume of lentivirus to each flask. 

Initial multiplicity-of-infection was ~0.3–0.4 to achieve >1000-fold library coverage and 

infection was monitored after 24 h by flow cytometry for GFP expression over the course 

of the experiment (at 4, 8, and 12 cell divisions). Cells were harvested at each passage and 

stored as a cell pellet at −20C for genomic DNA extraction.

sgRNA library readout by high-throughput sequencing—Each sgRNA subpool 

library readout was performed using two steps of PCR as described in Chen et al. (2015).100 

Second round PCR products were purified using column-based cleanup (New England 

Biolabs). Second round PCR products containing Illumina adapters at each timepoint 

belonging to a single subpool (e.g., S01) and biological replicate were combined and 

submitted for sequencing on the same channel(s) of a single sequencing run. Diluted 

libraries were spiked in with whole-exome libraries and sequenced using 2×100 bp reads 

on the HiSeq 4000 system (Illumina).

Mutation spectrum of individual conserved region sgRNAs—Individual sgRNA-

Cas9-GFP plasmids were cloned, propagated in Stable Competent E. Coli. strains 

(NEB), and isolated using Endo-Free Maxi Prep Isolation Kits (Thermo-Fisher). Transient 

transfection of 4 million hNSC per construct was achieved using the Mouse Neural 

Stem Cell Nucleofection Kit (Amaxa). At 96 h post-transfection, GFP-positive cells 

were separated on an S3e Cell Sorter (BioRad) followed by DNA extraction. Amplicons 

from individual sgRNA-mediated were analyzed by high-throughput sequencing on an 

Illumina MiSeq instrument followed by insertion, deletion, and substitution analysis using 

CRISPResso2 (Figures S12 and S13).86

Validation assay of CRISPR-mediated proliferation phenotypes and 
comparison with published screens—sgRNAs for individual validation were cloned 

by annealing complementary oligonucleotide pairs (Integrated DNA technologies) and 

ligating into BsmBI-digested pLentiCRISPRv2. The pLentiCRISPRv2-GFP vector is the 

same one used in the CRISPR library screening, encoding the expression of a sgRNA, 

Cas9 and GFP. For enhancer and protein-coding targets, two sgRNAs were selected from 

the pooled CRISPR library. The resulting sgRNA expression vectors were individually 

packaged into lentivirus by transfection into HEK293T cells (Yale Cell Preparation and 

Analysis Core). Internally controlled competition assays to evaluate sgRNA proliferation 

phenotypes were performed as follows. First, human neural stem cells (hNSC) were seeded 

in 24-well plates on Corning Growth-Factor Reduced Matrigel at a density of 30k cells/cm2 

and transduced at a low multiplicity-of-infection (MOI <0.5, 15–30% GFP-positive). Cells 

were resuspended in hNSC culture media and an initial proportion of GFP-positive cells 

was measured using a Cytoflex LR flow cytometer. Additional timepoints of GFP-positive 

cell proportions was collected at 4, 8 and 10 culture passages. All sgRNA sequences used, 

as well as the backbone sequence, are included in Table S14. Enhancers with negative 

effects were chosen based on the strength of the observed phenotype and whether they had 

a putative gene target based on chromatin interactions detected in the PsychEncode Hi-C 

dataset described above.70 Proliferation increasing enhancer targets were selected based 

on the strength of the phenotype across timepoints and whether they were located near 
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a gene of potential biological interest (TNIK, which is implicated in WNT signaling and 

DLGAP1, which has been implicated in risk for obsessive-compulsive disorder).54,55 The 

smaller number of enhancer disruptions with positive effects on proliferation coupled with 

the sparsity of the PsychEncode Hi-C dataset required us to use a nearest-gene approach for 

these candidates.

To identify overlapping genes detected in this study and in Tian et al. 2019, we intersected 

our gene hits with hits reported at each time point and cell type in Table S1 of that paper, 

selecting genes with p values < 0.05.36 The values reported in the main text are genes that 

show consistent negative effects on proliferation and viability in both studies.

Western Blot analysis of CRISPR-mediated knockdown—To quantify the extent 

of protein knockdown after targeting with the LentiCrisprv2GFP vector, we obtained guide 

sequences targeting UBQLN2. hNSCs were transduced with lentivirus prepared as described 

above at MOI 0.30 with either non-targeting vector or UBQLN2-targeting vector and 

sorted for GFP presence after 12 days. Cells were flash frozen and protein was extracted 

using RIPA lysis buffer and 5 min of sonication. Protein was run on a 10% gel and 

wet-transferred to PVDF. Western blots were probed with the following primary antibody 

dilutions: UBQLN2 primary antibody, 1:1,000 (Cell Signaling #85509S), Actin 1:1,000 

(Abcam ab216070). Blots were imaged using ECL (Biorad Calirty Max Western ECL 

Substrate, #175063) on X-ray film (LabForce HyBlot CL 114J51). Protein knockdown was 

quantified using ImageJ.98

Real-time quantitative PCR analysis of CRISPR-mediated knockdown—
LentiCRISPRv2GFP vectors were designed with guides targeting GRN and TFRC using 

sequences previously described.36 hNSCs were transduced with lentivirus prepared as 

described above in parallel, along with non-targeting controls, at MOI 0.30 and sorted for 

GFP positivity after 12 days. mRNA was extracted using Qiagen RNeasy kit (ID 74304) 

and converted into cDNA using Invitrogen SuperScript III First Strand Synthesis SuperMix 

(#18080400). Transcript levels were quantified using Roche LightCycler 480 PCR Thermal 

Cycler and SYBR Green I reagents (Roche Diagnostics 04707516001) using primers for 

GRN, TFRC, and GAPDH housekeeping control as previously described.36

Human neural stem cell neuronal differentiation—To assess the competency of the 

Gibco hNSCs to form neurons, we compared two methods for differentiation. For both, 

cells were plated at a density of 2.5 × 104 cells/cm2 on Gibco CELLstart CTS (# A10142–

01). We utilized the manufacturer’s recommended protocol, in which the bFGF and EGF 

growth factors are removed from the growth media to induce neural differentiation. In 

addition, we performed a second differentiation protocol using Gibco neurobasal media (# 

21103) supplemented with Gibco serum-free B27 (#17504).28,29 Cell cultures were visually 

assessed and lysed at 21 days, when RNA was collected and purified using the Qiagen 

RNeasy Plus mini kit (# 74034). Marker genes were assessed by qPCR using a Roche 

LightCycler.
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QUANTIFICATION AND STATISTICAL ANALYSIS

K-means clustering for identification of cortical-enriched enhancers—H3K27ac 

data from human cortex was compared with publicly available H3K27ac datasets as 

follows: A single composite multi-sample enhancer annotation from developing cortex, 

limb, embryonic stem cells, and select adult tissues profiled by the Roadmap Epigenomics 

Project was generated by merging replicate peaks across all samples using a 1bp overlap.101 

The level of H3K27ac signal in each region for each sample was quantified by averaging 

read counts per kilobase per million mapped reads (RPKM) in each region from each 

replicate. Each region was represented by a vector of a length equal to the total number 

of tissues considered, with each point representing the RPKM value of marking in that 

region for a single tissue. Each vector was normalized by subtracting the mean of all 

tissue quantifications from each individual tissue quantification, divided by the standard 

deviation of values for that vector. The matrix of these normalized tissue quantification 

values was then subjected to k-means clustering using R to identify sets of sites exhibiting 

the strongest marking in each tissue compared to all other samples in the comparison. We 

used GREAT version 3.0.0 (http://great.stanford.edu/) to identify biological functions and 

processes showing significant enrichment for each set of enhancers.87

Identification of proliferation phenotypes—To quantify the biological effects of 

disruption on cell proliferation, we utilized a model-based analysis of genome-wide 

CRISPR-Cas9 knockout (MAGeCK) which models read counts using the negative binomial 

distribution.41 First, each sgRNA is assigned to a target representing either a gene or 

conserved region. Each target can contain one or more sgRNAs that can be jointly 

modeled in the MAGeCK analytical pipeline. Sequencing reads were initially filtered using 

CutAdapt version 1.16 and options (-j 20, -l 20, -g GACGAAACACCG, –trimmed only).95 

Trimmed reads were used as input into MAGeCK version 0.5.8 which was performed for 

replicates individually and jointly. The following options were used: –norm-method control, 

–control-sgrna NTC_sgRNA_ID.txt. MAGeCK analysis was conducted for each sub-library 

independently, and the same panel of non-targeting controls was included in each sub-library 

and used to normalize read counts. The results of each sub-library were combined using 

custom R scripts. For the replication plots (Figures 1B and 1C), MAGeCK was performed 

independently for each replicate. For all subsequent analysis and values reported in tables, 

the results are from jointly modeling the biological effects across two replicates. MAGeCK 

provided an estimate of the biological effect following genetic disruption on cellular 

proliferation termed the β score. For each conserved region, the β score is associated with 

a permutation-based p value determined by permuting sgRNAs targeting each conserved 

region and evaluating the probability of observing the biological effect within the set of 

genomic background control sgRNAs.

Cell proliferation phenotypes were identified using linear-discriminant analysis (LDA) on 

a training set then applying the learned classifier to the full dataset. Similar approaches 

have been used to characterize phenotypes following high-throughput editing experiments.42 

LDA produces a classification that maximizes the separability of the input groups. The 

training set was defined as follows: the ‘decreasing’ population includes 500 genes 

decreasing proliferation across a panel of cancer cell lines (Wang et al. 2015), the ‘neutral’ 
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population is all regions within the genomic background, and the ‘increasing’ population is 

comprised of the top 1% of proliferation increasing regions identified at each time point (4, 

8, and 12 cell divisions) (Figure S9).22 All sgRNAs for the training set were included in the 

hNSC proliferation screening experiments.

A composite score was then obtained by multiplying the MAGeCK β score by the 

permutation-based p value for phenotype classification using LDA. LDA was performed 

jointly across timepoints, and each disrupted region (gene and conserved regions within 

enhancers) was classified based on a composite of the regression-based effect size and p 

value. LDA was performed using the R package MASS (v7.3–54) and initialized using a 

uniform probability distribution for class membership. The resulting proliferation phenotype 

classifications (labeled as ‘negative, ‘neutral’, or ‘positive’ in Tables S2 and S3) were 

filtered for reproducible effect sign across biological replicates and consistent phenotype 

classification across 4, 8, and 12 cell divisions (e.g., proliferation-decreasing at 4, 8 and 

12 cell divisions). Disruptions that did not meet this filter (e.g., that showed inconsistent 

effects across time points), were labeled as “dynamic” in Tables S2 and S3. An empirical 

false-discovery rate (FDR) was estimated as the proportion of genomic background control 

regions that were called as proliferation-increasing or proliferation-decreasing relative to 

regions defined as proliferation-increasing or proliferation-decreasing in the training set.

MAGeCK β scores and proliferation phenotype classifications at 4, 8, and 12 cell divisions 

are available for visualization in the UCSC Genome Browser (GRCh37/hg19): http://

noonan.ycga.yale.edu/noonan_public/Geller_Enhancer_Screen/hub.txt.

Principal component analysis and Pearson correlation analysis—To extract 

latent factors and perform correlation analyses, we constructed a single composite 

annotation of all β scores for each ‘subpool’ across multiple timepoints. These Beta scores 

were assembled into a single data matrix using custom R scripts. Each row in this matrix 

represented a single conserved region or gene disruption, and each column represented the 

Beta score at 4, 8, or 12 cell divisions. Principal component analysis was performed on this 

matrix using R (Figure 2A; Figure 3A). Pearson correlation analysis was also carried out 

using R (Figure S7).

Gene Ontology and pathway analysis—We performed Gene Ontology enrichment 

analyses for protein-coding genes displaying proliferation-decreasing phenotypes using 

the Database for Annotation, Visualization, and Integrated Discovery (DAVID v6.8).90,91 

Default settings for functional annotation were utilized. For pathway analysis, we used the 

ReactomePA package (v1.14.0) for R using default settings.

Transcription factor binding site enrichment analysis—We collected 572 

transcription factor binding site (TFBS) predictions from the JASPAR 2018 database 

(https://jaspar2018.genereg.net/) that overlap with at least one conserved region included in 

this study.65 We used motifs from the 2018 JASPAR CORE Vertebrate collection that were 

already mapped to human genome version GRCh37/hg19 at the UCSC Genome Browser 

(score threshold of 400 or greater and p less than or equal to 10−4). To identify TFBS 

that are enriched within conserved regions that have biological effects on proliferation, 
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we conducted hypergeometric tests using custom R scripts. The hypergeometric test 

was conducted for each TFBS independently. Each test was constructed to compare the 

abundance of TFBS in the category of interest (‘severe’, ‘strong’, ‘all’, or ‘positive’) 

and compared to ‘neutral’ phenotype conserved regions. The hypergeometric p value for 

assessing the enrichment of each TFBS for all sites were then corrected for multiple-testing 

using the Benjamini-Hochberg procedure.102

Enhancer proliferation phenotype permutation analysis—We used permutation 

analysis to identify enhancers containing a significant excess of proliferation phenotypes. 

The procedure was implemented using custom R scripts. For each permutation, proliferation 

phenotypes were randomly shuffled across all conserved regions. We performed 100,000 

permutations of the full dataset. The significance of proliferation phenotypes within 

an enhancer was assessed based on the fraction of permutations where the number of 

proliferation phenotypes was greater than or equal to the number of proliferation phenotypes 

observed within the enhancer. The resulting permutation-based p values were then corrected 

for multiple-testing using the Benjamini-Hochberg procedure.102

Identification of enhancer-gene interactions—Hi-C data from human neural 

precursor cells were generated by the PsychEncode Consortium.70 High-confidence loop 

calls and 50-kb topologically associating domains (TADs) were made available by the 

authors through the Synapse repository. The Juicer tool suite was utilized to identify contact 

domains using the default settings and the ‘arrowhead’ algorithm.96 Custom R scripts 

implemented the following procedure to generate enhancer-gene interactions. Enhancers 

were defined as regions containing at least one proliferation phenotype. Gencode (v19) 

was utilized to define gene regions including the promoter (+10 kb), transcription start 

site, and gene body.99 Genes harboring a proliferation phenotype were used to identify 

enhancer-gene interactions. For loop calls, anchor points were used to identify enhancer-

gene interactions. For contact domains, enhancers were associated with each gene harboring 

a phenotype within the contact domain. High-confidence interactions were reported as 

enhancer-gene interactions derived from loop calls and contact domains. In addition, 

topologically associated domains (TADs) were used to identify enhancer-gene interactions. 

For TADs, enhancers with at least one phenotype within the TAD were associated with all 

genes harboring proliferation phenotypes within the TAD.

Cell type-specific expression of gene hits in fetal human cortex—Single cell 

RNA sequencing (scRNA-seq) datasets collected from embryonic and fetal human cortex 

were obtained from Bhaduri et al. 2021 and Eze et al. 2021.74,75 We collected processed 

counts matrices associated with samples ranging from Carnegie stage 14 (CS14) to 

gestational week 25 (GW25) across all represented regions of the cortex. These datasets 

were loaded into the Seurat R package (v4.3.0) and each dataset was filtered to retain only 

cells with a) a minimum of 750 represented features and b) features that were expressed 

in at least 50 cells.92 Datasets with fewer than 100 cells after filtering were considered 

low quality and discarded. Additionally, cells with read or feature counts greater than two 

standard deviations from the mean and cells with greater than 10% mitochondrial read 

percentage were considered doublets, empty, or dying cells and were filtered out.

Geller et al. Page 23

Cell Rep. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Resulting high-quality cells in each dataset were then merged into a single Seurat object. 

This merged counts matrix was normalized (NormalizeData), subset to the top 2000 

highly variable features (FindVariableFeatures), and then scaled (ScaleData). Datasets were 

then integrated with FastMNN (RunFastMNN in SeuratWrappers v0.3.0 (https://github.com/

satijalab/seurat-wrappers), params: k = 30, d = 50) to remove batch-related technical 

variation.93 We then calculated the 30 nearest neighbors (FindNearestNeighbors, params: 

k = 30, reduction = ‘mnn’) for each cell using the 50 integration features calculated 

from FastMNN and this was used to cluster similar cells with the Louvain neighborhood 

aggregation algorithm in Seurat (FindClusters, resolution = 0.85). Clusters were assigned a 

cell type classification by comparing known markers of cortical cell types with per-cluster 

marker genes calculated in Seurat (FindAllMarkers, params: min.pct = 0.25, only.pos = 

TRUE). Marker gene expression and cluster assignments were visualized with a UMAP 

embedding calculated in Seurat (RunUMAP, params: reduction = ‘mnn’, k = 30).

Cortical progenitor populations were then isolated, re-normalized, and re-scaled as above. 

These included three progenitor types: intermediate progenitor cells (IPC) expressing 

EOMES, outer radial glia (ORG) expressing HOPX and PTPRZ1, and radial glia (RG) 

which lacked expression of these marker genes.76,77 Additionally, the cell cycle phase of 

each progenitor cluster was assigned using the expression of TOP2A and MKI67 marking 

G2/M cells.78 The average expression of each gene that showed a proliferation phenotype 

after enhancer disruption was extracted using Seurat (AverageExpression), resulting in 

a cell-type-by-gene matrix of average scaled gene expression values. We clustered the 

average scaled expression values for each gene using the k-means algorithm in the stats R 

package (kmeans, params: centers = 10). The average expression values for each cluster 

were visualized separately using ComplexHeatmaps and labeled with their respective cell 

type-specific expression profiles.94 Clusters with relevant expression patterns were isolated 

and visualized with ComplexHeatmaps alongside cell type annotations of cell cycle phase 

and average expression across all genes in the cluster and gene annotations of proliferation 

phenotypes at T4, T8, and T12. Expression profiles of candidate genes for each cluster were 

visualized on the UMAP embedding using density plots (plot_density from Nebulosa v1.2.0 

R package).97

Gene ontology (GO) analyses were performed using the GUI-based R tool ShinyGO.80 The 

background gene set was constructed by intersecting all gene targets in our proliferation 

assay with the set of genes detected in the developing human cortical progenitor scRNA-seq 

atlas. The foreground query gene sets were composed of genes in all clusters with a shared 

progenitor-type bias: IPC-biased genes (clusters 1, 9), ORG-biased genes (clusters 2, 7, 

8), G2/M-biased genes (clusters 4, 6), and RG (G1/S)-biased genes (cluster 10). Enriched 

KEGG pathways and enriched biological process GO terms were reported for each gene set 

respectively.79

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CRISPR screens identify enhancers and genes required for hNSC 

proliferation

• Genes implicated in hNSC proliferation are linked to neurodevelopmental 

disorders

• Enhancer disruptions can have effects comparable to gene disruptions

• Disruptions in human accelerated regions alter hNSC proliferation
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Figure 1. Identifying genes and enhancers that alter human neural stem cell (hNSC) 
proliferation following genetic disruption
(A) Top: summary of conserved regions within enhancers, genes, and background control 

regions targeted in the sgRNA-Cas9 genetic screen. Putative TFBSs within enhancers 

were identified based on the 46-species Placental Mammal PhastCons element annotation 

(GRCh37/hg19; STAR Methods). Each PhastCons element was divided into approximately 

30-bp conserved regions and targeted for genetic disruption by sgRNAs. Genes were 

targeted based on evidence of expression in hNSCs. Genomic background controls are 

non-coding regions with no detectable evidence of regulatory activity based on epigenetic 
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signatures (STAR Methods). Bottom: schematic transduction of sgRNA-Cas9 lentiviral 

libraries into hNSCs at a low MOI (~0.3) to ensure that cells were infected by a single 

virion, and, on average, 1,000 cells were infected per sgRNA. Changes in the abundance 

of each sgRNA over time and classification of proliferation phenotypes was carried out as 

described in the main text.

(B and C) Scatterplots illustrating beta scores (β) for two biological replicates resulting from 

genetic disruption of genes (B) and conserved regions within enhancers (C), measured at 

12 cell divisions following transduction. Each point shows the effect of individual sgRNAs 

assigned to a protein-coding gene or conserved region within an enhancer relative to non-

targeting controls for each biological replicate, as indicated in the legend shown in (B). 

Gene and enhancer disruptions affecting proliferation in regions with known biological roles 

in NSCs are identified by name (orange). Examples of genes were selected based on NSC 

maintenance or association with neurodevelopmental disorders. Enhancer examples were 

selected based on evidence of a regulatory interaction with genes with roles in chromatin 

modification and association with neurodevelopmental disorders or their identification as an 

HAR or HGE. Spearman correlations between replicates for gene (B) and conserved-region 

disruptions (C) are shown at the bottom left.

(D) Distribution of proliferation phenotypes resulting from disruption of genomic 

background control regions (light gray), enhancers (red) and genes (dark gray) at 4, 8, and 

12 cell divisions. Boxplots illustrate the lower (25th percentile), middle (50th percentile), 

and upper (75th percentile) of beta scores for each category. Each point shows the jointly 

modeled effect across biological replicates for all sgRNAs assigned to a protein-coding gene 

or conserved region within an enhancer relative to non-targeting controls. Error bars indicate 

an estimated 95% confidence interval. *p < 2.2 × 10–16, Mann-Whitney U test.
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Figure 2. Characterization of gene proliferation phenotypes
(A) Left: principal-component analysis (PCA) of all gene disruptions, with a 2D density 

overlay illustrating the distribution of proliferation-decreasing (blue), neutral (gray), and 

proliferation-increasing (green) phenotypes and individual gene disruptions (orange) with 

biological roles in the maintenance of NSCs or human neurodevelopment; see text for 

details. Right: temporal dynamics captured by PCA shown at 4, 8, and 12 cell divisions.
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(B) Top: histogram of proliferation scores obtained from PCA for gene disruptions (black) 

and genomic background controls (gray). Bottom: partitioning of all gene disruptions that 

decrease proliferation into severe (top 25%) and strong (top 50%) categories.

(C) Fold enrichment of GO biological processes and risk gene sets within the partitions 

shown in (B). n.s., not significant. Hypergeometric BH-corrected p values are as follows: *p 

< 0.05, **p < 0.005, ***p < 0.0005.

(D) FGF signaling pathway (Reactome: R-HSA-1226099); see text for details. Genes 

disrupted within this pathway are shown in black, and a significant subset (BH-corrected 

p = 2.8 × 10−2) results in proliferation phenotypes (red).
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Figure 3. Characterization of enhancer proliferation phenotypes
(A) Left: PCA of all gene disruptions with a 2D density overlay illustrating the distribution 

of proliferation-decreasing (blue), neutral (gray), and proliferation-increasing (green) 

phenotypes and individual conserved region disruptions (orange) with biological roles in 

the maintenance of NSCs or human neurodevelopment; see text for details. Right: temporal 

dynamics captured by PCA shown at 4, 8, and 12 cell divisions.

(B) Top: histogram of proliferation scores obtained from PCA for enhancer disruptions 

(black) and genomic background controls (gray). Bottom: partitioning of all enhancer 

disruptions that decrease proliferation into severe (top 25%) and strong (top 50%) 

categories.

(C) Top: genomic alignments for human, chimpanzee, and mouse for a conserved region 

within an HAR enhancer (HACNS96). Human-specific substitutions (red) indicate genetic 

changes occurring within the conserved regions targeted for genetic disruption in the screen. 

Bottom: examples of deletion alleles introduced by Cas9 in this locus, determined by 

long-read amplicon resequencing and alignment to the reference genome (GRCh37/hg19).

(D) Predicted TFBSs were obtained from the JASPAR 2018 TFBS prediction database and 

are significantly enriched in proliferation-altering enhancer disruptions within the partitions 
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shown in (B). Hypergeometric BH-corrected p values are as follows: *p < 0.05, **p < 0.005, 

***p < 0.0005.
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Figure 4. Frequency of proliferation-altering disruptions in enhancers, HARs, and HGEs
(A) The number of disrupted conserved regions leading to a proliferation phenotype within 

each enhancer (left, shown in gray) or in each HAR or HGE (right, shown in red).

(B) The proportion of proliferation-altering disruptions compared with all targeted sites in 

all enhancers (gray) and HARs or HGEs (red). The dashed line indicates the mean density of 

proliferation phenotypes within all enhancers in the screen.

(C) The total number of conserved regions disrupted within each enhancer (x axis) 

compared with the cumulative proliferation phenotype burden within each enhancer (y axis). 

Mutation-sensitive enhancers identified by permutation analysis (see D and main text for 

details) are labeled based on the most proximal gene. HARs and HGEs are labeled in red. 

The results of the permutation analysis, including the number of disrupted sites with a 

phenotype compared with the total number of targeted sites and the enrichment p values, are 

provided in Table S11.
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(D) A mutation-sensitive enhancer near SPRY2, a regulator of the FGF signaling pathway. 

Top: genomic coordinates indicate position on the reference genome (GRCh37/hg19). 

Three enhancers (i, ii, and iii), shown by the extent of H3K27ac marking (light blue 

bars) in hNSCs, were disrupted in this locus. Enhancer iii includes a significant excess 

of proliferation-altering enhancer disruptions. Bottom: H3K27ac signal profile (light blue), 

mammalian PhastCons elements (orange bars), and corresponding conserved regions that 

have either neutral effects (gray bars) or proliferation-decreasing phenotypes (dark blue 

bars) when disrupted in the screen are shown for enhancer iii. The signal track at the bottom 

displays normalized beta scores (gray) at 12 cell divisions averaged across a sliding window.

Geller et al. Page 39

Cell Rep. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Identifying target genes of enhancers contributing to hNSC proliferation using 
chromatin contact maps
(A) Chromatin contact maps of human neural precursor cells were used to identify 

interactions between enhancers and genes that, when disrupted, result in a proliferation 

phenotype. For each enhancer-gene pair, the absolute value of the gene proliferation score (x 

axis) and the absolute value of the strongest proliferation score within the enhancer (y axis) 

is shown. Highlighted genes have known roles in NSC biology or are associated with risk for 

developmental disorders. Interactions between HARs or HGEs and target genes are labeled 

in red.

(B) An example of an enhancer (boxed) regulating a single target gene associated with 

microcephaly. Top: the genomic coordinates (in GRCh37/hg19) of the enhancer are shown 

relative to the two detected target genes. Chromatin contacts are shown as black arcs. 

Bottom: the effects of enhancer and target gene disruptions on hNSC proliferation at 4, 8, 

and 12 cell divisions.
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(C) An example of an enhancer (boxed) regulating multiple target genes with roles in hNSC 

proliferation (labeled as in B).

(D) An example of a human gain enhancer (HGE; boxed) interacting with the nearby gene 

NSL1 (labeled as in B).
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Figure 6. Progenitor-type-specific expression of gene hits in the developing human cortex
(A) Left: UMAP representation of the developing human cortex single-cell gene expression 

atlas used for our analysis. Five cortical progenitor types are annotated: outer radial glia 

(ORG) cells in G1/S phase, intermediate progenitor cells (IPCs) in G1/S or G2/M phase, 

and radial glia (RG) in G1/S or G2/M phase. Right: heatmaps showing the average scaled 

expression for genes with proliferation phenotypes that exhibit progenitor-type-specific 

expression patterns. Three clusters are presented: one with genes showing ORG-biased 

expression (129 genes, cluster 2 in Table S13), one with genes showing G2/M-biased 

expression (145 genes, cluster 6 in Table S13), and one with genes showing IPC-biased 

expression (68 genes, cluster 1 in Table S13). The proliferation phenotype for each gene at 

4, 8, and 12 cell divisions is shown above each heatmap. The inferred cell cycle phase for 

each progenitor cell type is shown on the right, as is the average expression of all genes in 

each cluster. See the legend at the bottom right for details.

(B) Left: UMAP representation of cortical progenitors in the developing human cortex gene 

expression atlas with other cell types removed. Progenitor cell types and inferred cell cycle 

phases are labeled and colored as in (A). Right: UMAP representations displaying the scaled 

density of expression for individual genes in each cluster shown in (A).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-UBQLN2 1:1000 Cell Signaling Cat. #85509S; RRID:AB_2800056

Anti-Actin 1:1000 Abcam Cat. #ab216070

Bacterial and virus strains

E. Coli DH10B Life Technologies Cat. #18290015

NEB Stable Competent E. Coli. Strain New England Biolabs Cat. #C3040H

Chemicals, peptides, and recombinant proteins

Extreme Gene 9 transfection reagent Millipore-Sigma Cat. #6365787001

GlutaMax-I ThermoFisher Cat. #A1286001

Chloroquine Millipore-Sigma Cat. #C6628

Bovine serum albumin Millipore-Sigma Cat. #A8022

Sodium butyrate Millipore-Sigma Cat. #303410

GlutaMax-supplemented OptiMem ThermoFisher Cat. #51–985-034

Recombinant human epidermal growth factor ConnStem Cat. #E1000

Recombinant human fibroblast growth factor ConnStem Cat. #F1001

StemPro neural supplement Life Technologies Cat. #A1050801

Corning Matrigel GFR membrane matrix Fisher Scientific Cat. #CB-40230C

Polybrene Millipore-Sigma Cat. #TR-1003-G

Critical commercial assays

Gibson assembly Master Mix New England Biolabs Cat. #E2611L

BioRad Calirty Max Western ECL Substrate, BioRad Cat. #175063

LabForce HyBlot CL Thomas Scientific Cat. # 114J51

Qiagen RNeasy Kit Qiagen Cat. #74304

Invitrogen SuperScript III First Strand 
Synthesis SuperMix

ThermoFisher Cat. #18080400

Endo-Free Maxi Prep Isolation Kits Qiagen Cat. #12362

Mouse Neural Stem Cell Nucleofection Kit Lonza Cat. # VPG-1004

SYBR Green I reagents Roche Diagnostics Cat. #04707516001

Gibco CELLstart CTS Thermo Fisher Cat. #A10142–01

Gibco neurobasal media Thermo Fisher Cat. #21103

Gibco serum-free B27 Thermo Fisher Cat. #17504

Deposited data

Sequencing data for massively parallel sgRNA-Cas9 
disruption and individual replicate disruption

This paper GSE138823

Sequencing data for RNA-seq and H3K27ac 
enrichment collected from H9-dervived human neural 
stem cells

Cotney et al.24 GSE57369
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REAGENT or RESOURCE SOURCE IDENTIFIER

H3K27ac enrichment data in human embryonic limb Cotney et al.40 GSE42413 phs001226.v1.p1

H3K27ac enrichment data in human embryonic cortex Reilly et al.2 GSE63649 phs001226.v1.p1

H3K27ac data in human H1 ESCs and adult tissues 
profiled by the Roadmap Epigenomics Project

Kundaje et al.84 GSE16368

PsychEncode Hi-C Data from human fetal brain Rajarajan et al.70 syn22343893

Single-cell human fetal brain RNA-sequencing data Bhaduri et al.74 Eze et al.75 NeMO identifier: nemo:dat-0rsydy7

JASPAR 2018 database Khan et al.65 https://jaspar2018.genereg.net/

Epilogos https://epilogos.altius.org N/A

Experimental models: Cell lines

H9-derived human neural stem cells Life Technologies Cat. #N7800–1000

HEK293FT Invitrogen Cat. #R70007

HEK293T Yale Cell Preparation and 
Analysis Core

N/A

Oligonucleotides

Oligonucleotides used to clone sub-libraries and in 
validation and RT-qPCR assays are listed in Table 
S14.

This paper N/A

Recombinant DNA

LentiCRISPRv2GFP Addgene Cat. #82416

pCMV-VSV-G Addgene Cat. #8454

pCMV-dR8.2 dvpr Addgene Cat. #8455

Software and algorithms

Bowtie v. 1.1.2 Langmead et al.85 https://sourceforge.net/projects/bowtie-bio/files/
bowtie/1.1.2/

CRISPResso2 Clement et al.86 http://crispresso2.pinellolab.org/
submissiongreat.stanford.edu

GREAT version 3.0.0 McLean et al.87

MAGeCK version 0.5.8 Li et al.88 https://sourceforge.net/projects/mageck/
files/0.5/

MASS (v7.3–54) Venables and Ripley89 https://www.stats.ox.ac.uk/pub/MASS4/

DAVID v6.8 Huang et al.90

Huang et al.91
https://david.ncifcrf.gov/

ReactomePA package (v1.14.0) Fabregat et al.61 https://bioconductor.org/packages/release/bioc/
html/ReactomePA.html

Seurat R package (v4.3.0) Hao et al.92 https://satijalab.org/seurat/

Batchelor R package (v1.8.1) Haghverdi et al.93 https://www.bioconductor.org/packages/release/
bioc/html/batchelor.html

ComplexHeatmap R package (v2.11.2) Gu94 https://bioconductor.org/packages/release/bioc/
html/ComplexHeatmap.html

Cutadapt version 1.16 Martin95 https://cutadapt.readthedocs.io/en/v1.16/
index.html

Juicer Durand et al.96 https://github.com/aidenlab/juicer/
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REAGENT or RESOURCE SOURCE IDENTIFIER

ShinyGO Ge et al.80 http://bioinformatics.sdstate.edu/go/

Nebulosa v1.2.0 Alquicira-Hernandez and Powell97 https://www.bioconductor.org/packages/release/
bioc/html/Nebulosa.html

ImageJ Schneider et al.98 https://imagej.net/

Original code for analyses performed in this study This paper https://doi.org/10.5281/zenodo.10258136

Other

Amicon Ultra-15 100kD filters Millipore-Sigma Cat. # UFC901008

CustomArray 90K oligonucleotide synthesis array CustomArray N/A

Proliferation-decreasing controls, described in the 
Methods

Wang et al.22 N/A

Accuri C6 Flow Cytometer BD Biosciences N/A

S3e Cell Sorter BioRad N/A

Cytoflex LR Flow Cytometer Beckman Coulter N/A

Roche LightCycler 480 PCR Thermal Cycler Roche Diagnostics N/A

HiSeq 4000 Illumina N/A

MiSeq Illumina N/A
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