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Abstract

It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector 

lymphocytes, have evolved to integrate information relayed by the innate sensory immune system 

about the state of the local tissue environment and to pass on this context to downstream effector 

innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like 

lymphoid lineage cells during development can control the quality and magnitude of an immune 

response to a tissue-altering pathogen and facilitate the formation of memory engrams within 

the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-

specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αβ TCR-expressing T 

cell subsets—such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst 

we briefly consider the commonalities in the origins and functions of these diverse lymphoid 

subsets to provide context, the primary topic of this review is to discuss how the semi-invariant 

natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. 

What emerges from this discourse is the question: Has a “limbic immune system” emerged 

(screaming quietly in plain sight!) out of what has been dubbed “in-betweeners”?
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I. INTRODUCTION

The immune system is one constituent of the 10 physiologic systems of the body. It consists 

of two arms: the innate and adaptive immune systems. These two immune systems work in 

concert to sense alteration/s in the internal milieu—Claude Bernard’s milieu de l’intérieur 
or Walter Cannon’s homeostasis (see origins in1–3)—to process and integrate the perceived 
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information, and actuate a response tailored to the altered state/s. Usually, the quick-to-act 

innate immune response is sufficient to return the host’s altered internal milieu back to 

normalcy; when it fails, however, the adaptive immune system is fully engaged. Even 

when the innate immune response is sufficient to ward off inflammatory intruders, an 

adaptive immune response is initiated so that memory engrams of the first encounter can 

be established in anticipation of future engagements. One end-product of the innate immune 

response is the display of fragments—breakdown products of chemical constituents derived 

from agents that incite alterations in the host’s internal milieu—on the surface of certain 

innate immune cells called dendritic cells (DCs). T lymphocytes recognize such fragmentary 

end-products—largely peptides, but also lipids, vitamin metabolites, and xenobiotics—to 

initiate an adaptive immune response. Whilst this initial recognition imparts specificity to 

the reaction, T lymphocytes require additional signals to elaborate a context-dependent 

response. This context is established by the nature of soluble mediators—cytokines and 

chemokines—secreted by the activated innate immune cells and the innate-like effector 

lymphocytes (ILELs).

The innate immune response occurs locally at barrier sites, such as the oral–respiratory, 

gastrointestinal, and urogenital mucosae, and the skin—the common ports of entry of 

noxious substances and microorganisms. The primary adaptive T cell response occurs in the 

local lymph nodes draining the various tissues of the host. The topologic barrier so imposed 

is solved by the migration of activated resident DCs from the barrier site to the local 

draining lymph node wherein processed antigens are presented to naïve, antigen-specific T 

cells. This DC-T cell interaction initiates an adaptive immune response, connecting innate 

immunity to the adaptive immune responses.

ILELs have evolved in vertebrates to bridge the innate and adaptive immune responses 

(Fig. 1). ILELs are a group of unconventional lymphoid lineage cells that either do 

not express antigen-specific receptors (innate lymphoid cells, ILCs) or express a defined 

repertoire of antigen-specific receptors generated through somatic recombination (innate-

like T and B lymphocytes). Unlike conventional T and B cells, unconventional T & B 

lymphocytes exhibit innate-like recognition and functional characteristics (Fig. 2).4–7 Innate-

like lymphocytes include both T [γδT and αβT cells such as natural killer T cells (NKT), 

mucosal-associated invariant T (MAIT) lymphocytes, and CD8αα-expressing intestinal 

intraepithelial lymphocytes] and B cells (B-1 and marginal zone B cells). Importantly, ILCs 

and innate-like T cells, like conventional T cells mediate type 1, type 2, and type 3 immunity 

(Fig. 2). As such, this group of immune cells can initiate, amplify, and fine-tune both the 

innate and adaptive immune responses.5,7,8 Engagement of multiple immune modules result 

in a context-dependent inflammatory response to maintain a stable milieu intérieur.9

NKT cells constitute one group of thymus-derived ILELs. NKT cell functions are controlled 

by CD1d restricted self and non-self lipid agonists.10 The majority of NKT cells (type 

I, invariant NKT cells—the protagonist of this review) express an invariant TCR α-chain 

generated by TRAV11*02 (mouse Vα14i) or TRAV10 (human Vα24i) to TRAJ18 (Jα18) 

rearrangement. The invariant α-chain largely pairs with mouse TRBV13–2*01 (Vβ8.2), 

TRBV29*02 (Vβ7), TRBV1 (Vβ2), or human TRBV25–1 (Vβ11) β-chain to form a 

functional semi-invariant TCR. At least in mice, a smaller NKT cell population—the 
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type II NKT cells (reviewed elsewhere)—expresses a more diverse TCR repertoire and 

recognizes CD1d-restricted lipid antigens.11–16 Activated NKT cells rapidly secrete a variety 

of cytokines and chemokines, and upregulate costimulatory molecules. Similarly, MAIT 

cells and γδT cells also express a restricted TCR repertoire (Fig. 2).5,7 The ability of ILELs 

to respond quickly to specific agonists allows them to alert and steer downstream effector 

functions of myeloid and lymphoid cells. Hence, ILELs can control immunity to microbes 

and cancers, as well as autoimmune and inflammatory diseases.5,7,8,17–19

II. NKT CELL ACTIVATION AND FUNCTIONS—PARALLELS IN OTHER 

INNATE-LIKE EFFECTOR LYMPHOCYTES

“Nil ideo quoniam natumst in corpore ut uti possemus, sed quod natumst id 
procreat usum” (translated: “For nothing is born in the body in order that we may 

use it, but rather, having been born, it begets a use”20,21).

CD1d molecules, which bind to and present a variety of lipid ligands (Table 1 and references 

therein), control NKT cell functions.22 Pioneering studies from several research groups 

have shed light on how infectious agents or derived compounds activate NKT cells. Early 

studies demonstrated that DCs—by either directly presenting a microbial lipid/s or indirectly 

by inducing a self-lipid/s upon pathogen recognition—play an important role in NKT 

cell activation.22–25 Bacteria and certain fungi that biosynthesize glycosphinsphingolipids 

(GSLs) or glycoglycerolipids (GGLs), which when presented at the surface of DCs by 

CD1d, activate NKT cells.26–34 But, just as interestingly, microbes—both bacteria and 

viruses—that do not make NKT cell agonist/s themselves also activate NKT cells. This 

requires the expression of a pathogen-associated molecular pattern (PAMP) by the microbe 

and a PRR (pattern recognition receptor) by DCs.22,24,25 How both categories of microbes 

activate NKT cells is described below.

Our current understanding of NKT cell functions was gleaned from numerous in vitro 
and in vivo studies using the GSL, α-galactosylceramide (αGalCer, KRN7000), and its 

analogues (Table 1, and references therein). αGalCer/KRN7000—a potent NKT cell agonist 

with anti-cancer properties—is a natural compound isolated from the marine sponge, Agelas 
mauritianus, likely derived from its symbionts (Table 1, and references therein). NKT cell 

biology so gleaned came to question because marine sponges and associated symbionts are 

neither vertebrate parasites nor pathogens. Notwithstanding that, few Sphingomonas species, 

Bacteroides fragilis, Aspergillus fumigatus, and mammalian cells also generate αGalCers 

and/or related compounds (Table 1, and references therein). The prevalence of αGalCer and 

related compounds in nature lends credence to NKT cell biology learned from studies with 

αGalCer/KRN7000.

A significant advance in MAIT cell biology was the discovery that the restricting MHC-

related 1 (MR1) assembled with small molecules such as the folic acid (vitamin B9) 

metabolite 6-formylpterin (6-FP), a photodegradation product of B9. Although eluted from 

MR1, 6-FP is not a MAIT cell agonist.35 Further experiments revealed that bacterial species 

containing the yet to be identified rib gene for enzymatic production of the riboflavin 

biosynthetic intermediate 5-amino-6-d-ribitylaminouracil (5-A-RU),36 generated a MAIT 
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cell agonist/s, whereas those bacterial species lacking this rib gene did not.35 It was then 

found that the vitamin B metabolite 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-

OP-RU) activated MAIT cells when presented by MR1 molecules.35 Much of what we know 

about MAIT cells owes to this seminal discovery (reviewed in refs. 5,7,37,38).

Some mouse and human γδT cells are CD1d-restricted. They recognize the GPL cardiolipin, 

or the GSLs αGalCer or sulfatide.39–42 Some mouse γδT cell clones recognize either 

nonclassical MHC class Ib molecules—such as the ligand-free T10 and T2243–48—or 

MHC class II molecules without peptide specificity.49,50 The specialized mouse dendritic 

epidermal T cells express Vγ9–Vδ2 TCR, home to the skin, and recognize Skint-1 

expressed by keratinocytes.46,48,51,52 Most human γδT cells express the Vγ9–Vδ2 TCR and 

are specific for self or bacterial alkylamines, amino-bis-phosphonates, and phosphoantigens, 

which are presented by butyrophilins in a highly unconventional manner independent of a 

conventional antigen-binding groove as seen in MHC and related molecules.46,48,51 Other 

human γδT cells recognize stress-induced MIC, ULBP4, or endothelial protein C receptor.53 

The recognition principles of some but not all agonistic γδTCRs have been elucidated.7

A. Multiple Mechanisms Activate NKT Cells: Parallels with Other Innate Effector Cells

1. Agonist-Dominated NKT Cell Activation—αGalCer, when presented by CD1d 

molecules, activates NKT cells in a TCR-dependent manner. Likewise, B. fragilis–derived 

αGalCer also directly activates NKT cells (Table 1, and references therein). Such an 

activation mechanism is considered agonist-dominated activation (Fig. 3, left panel).

2. Agonist-Dominated MAIT Cell Activation—MAIT cells share with NKT cells 

an agonist-dominated activation mechanism. As discussed above, MAIT cells recognize a 

limited number of agonistic small molecules. The best studied is the vitamin B metabolite 

5-OP-RU.7,37,54 This agonist is biosynthesized by several Gram-positive and Gram-negative 

bacterial species that carry genes coding for enzymes that calalyze reactions in the riboflavin 

A biosynthetic pathway (reviewed in ref. 37).

3. Agonist- and Cytokine-Dominated NKT Cell Activation—Certain bacterial 

species generate weak NKT cell agonists; for example, Aspergilus fumigatus and 

Sphingomonas spp. biosynthesize asparamide B and α-galacturonosylceramide (αGalACer; 

Table 1; see references therein), respectively, which are αGalCer-related GSLs. Certain 

bacteria synthesise GGLs—e.g., α-galactosyldiacylglycerol by Borrelia burgdorferi and 

α-glucosyldiacylglycerol by Streptococcus pneumoniae—and cholesteryl-α-glycoside such 

cholesteryl-6-O-acyl α-glucoside by Helicobacter pylori (Table 1; see references therein). In 

the case of these weak agonists, NKT cell activation requires a second signal. Inflammatory 

cytokine/s elicited by DCs activated through their PRRs24,25,55 serve as a second signal. 

This form of NKT cell activation is considered agonist- and cytokine-dominated activation 

(Fig. 3, middle panel).

In many instances, the activation of antigen-presenting cells (APCs) by bacteria, fungi, 

and viruses induces self lipid biosynthesis and the generation of NKT cell self lipid 

agonists. Such self-agonists include glycerophospholipids (GPLs), mammalian αGalCer, 

and the GSL, iGb3 (isoglobotrihexosylceramide).31,56–59 NKT cells respond to CD1d 
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molecules presenting self-lipids on host APCs in the presence of an inflammatory second 

signal.8,60 Notably, the inability of βGlcCer synthase-deficient cells to activate autoreactive 

NKT cell hybridomas61 and βGlcCer synthase-deficient thymocytes to support NKT cell 

development62 pointed to a cellular βGlcCer or a derived GSL as an endogenous mouse 

NKT cell agonist.61,62

As self-lipids are weak agonists, NKT cell activation requires a second signal such as IL-12 

elicited upon activation via PRRs such as dectin-126,55 or toll-like receptor (TLR)-4.24,25 

Type I interferon (IFN-I) produced by CpG-TLR9-activated DCs is also known to serve as a 

second signal for NKT cell activation by sialylated cellular glycolipids presented by CD1d 

molecules.63 Hence, this mode of activation is a variation of the agonist- and cytokine-

dominated activation (Fig. 3, middle panel). Almost all virus infections and certain bacterial 

infections induce an IFN-I response.64–75 Hence, NKT cell activation by a self-agonist in 

conjunction with IFN-I notifies the host of a microbial infection even when an invading 

pathogen does not biosynthesize an NKT cell agonist.

4. Agonist- and Cytokine-Dominated MAIT Cell Activation—As virus and 

bacterial infections elicit innate cytokine responses, one study examined whether type I 

IFNs influence MAIT cell activation even when an agonist is presented. Akin to NKT cell 

activation, agonist-mediated human blood and liver MAIT cell activation was bolstered by 

the presence of type I IFNs.76,77

5. Cytokine-Dominated NKT Cell Activation—Under certain conditions, NKT cells 

are activated by the combined actions of IL-12 and IL-18, independent of a CD1d-restricted 

agonist.78–80 This mode of NKT cell activation, referred to as cytokine-dominated NKT cell 

activation (Fig. 3, right panel), is critical for immunity to cytomegalovirus80 and likely other 

viruses.

6. Cytokine-Dominated MAIT Cell Activation

MAIT cells were originally thought not to respond to viral infections.35,37 Subsequent 

studies demonstrated that viruses—influenza A, hepatitis, and dengue viruses—activated 

MAIT cells in a mechanism akin to cytokine-dominated activation of NKT cells, i.e., 

independent of the MAIT cell TCR. MAIT cell activation resulted in a MAIT1 cell-like 

activity characterized by IFN-γ release and granzyme B upregulation. MAIT cell activation 

by viruses depended on IL-18, which synergized with IL-12, IL-15 and type I IFNs.81,82 

This form of activation protected mice from lethal influenza virus challenge.83

7. ILCs are Activated Solely by the Cytokine-Dominated Mechanism

ILCs lack antigen-specific B or T cell receptors. Their functions are induced in a cytokine-

dominated mechanism. The inductive cytokines—which are quite similar to those that 

promote the differentiation of conventional CD4+ T cells (Fig. 2)—are produced by the local 

stromal cells and/or APCs, at the site of innate immune response to an injurious stimulus 

(reviewed in refs. 6,84).
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Thus, ILELs have evolved common and distinct mechanisms to sense perturbations in milieu 
intérieur induced by microbial infections or derived products.

B. Self NKT Cell Agonist/s—One or Many and How are they Made?

Mouse and human NKT cells respond to several self-lipids, including the GSLs as well 

as the GPLs phosphatidylethanolamine, lysophosphatidylcholine, phosphatidylinositol, and 

plasmalogen (Table 1, and references therein). How cells biosynthesize GPLs is known, but 

how mouse and human APCs synthesize αGalCer or iGb3 is not. Current evidence suggests 

that humans lack the gene encoding iGb3 synthase (the α−3-galactosyltransferase-2), which 

adds the reducing galactosyl residue onto lactosylceramide to generate iGb3.85 Whilst mice 

carry the iGb3 synthase gene, it is expressed only in the dorsal root ganglion. Hence, 

iGb3 synthase deficiency does not have an impact on NKT cell development or function.86 

These findings are further confounded by conflicting results from different groups as to the 

presence of iGb3 in mouse cells.85,87,88 An alternative route of iGb3 biosynthesis involving 

human A and mouse cis-AB enzyme has been suggested (schematized in Fig. 4A; see ref. 
89) but remains unconfirmed.

Another unsolved question pertains to the presence of αGalCer in mammalian cells even 

though αGalCer-like reactivity has been reported.56 Whilst β-glucosylceramide synthase 

(GCS)-deficient thymocytes—which are unable to biosynthesize βGclCer and higher order 

GSLs—do not promote NKT cell development,57 β-galactosylceramide synthase (CGT1)-

deficient thymocytes do.61 These results suggested that a βGlcCer-derived GSL is a 

selecting ligand and implicated iGb3 as a potential ligand.57

β-glucosylceramide synthase-deficient cells do not activate NKT cell hybridomas.56,57,61 

Hence, βGlcCer itself or a βGlcCer-derived GSL may be a self NKT cell agonist, which 

is supported by other evidence.90,91 One study found that αGalCer or an αGalCer-like 

compound could be a self NKT cell agonist, but a biosynthetic path to its generation 

is not established.56 One possible route to the biosynthesis of αGalCer and αGlcCer 

might respectively be CGT1 and CGS themselves. These enzymes may have an α-linkage 

retention property whereby the glycosytransferases use α-linked uridyldiphosphate-charged 

sugar donors to form β-linked monohexosylceramides by catalyzing α to β mutarotation 

prior to the condensation reaction. Nonetheless, the potential presence of αGlcCer/αGalCer 

in the absence of α-hexosylceramide synthase genes within mouse and human genomes 

poses a quandary.56,91 As a resolution, it is now recognized that the hexosylceramide 

synthases can retain the α-linkage of the charged sugar donor to generate α-linked 

monohexosylceramides (schematized in Fig. 4B). This notion is supported by biochemical 

evidence.92–95 Hence, in all likelihood, mammalian GCS and CGT have α-anomer retaining 

activity.

Cellular lipid content is stringently regulated. Hence, we hypothesized that the ER stress–

induced unfolded protein response, which induces de novo lipid biosynthesis,96–99 may 

activate NKT cells.100,101 Recent findings have lent support to this hypothesis.102 Therefore, 

bacterial and viral infections, either by DC activation through TLR ligation or by ER stress 

induced by over-expression of virus-derived membrane glycoproteins, have the potential to 

alter cellular lipid content, both in variety and in concentration. Such changes in cellular 

Joyce et al. Page 6

Crit Rev Immunol. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



self-lipid content can alter the quality and quantity of the ligands presented by CD1d.103 

Because the NKT cell TCR exhibits co-operative ligand binding,104 it may recognize 

subtle qualitative and quantitative changes reflected in CD1d-associated lipid content. We 

hypothesize that sensitive antigen recognition at very early stages of infection, which may be 

initiated by very few infectious particles, is key to NKT cell function in vivo.

Thus, a model emerges in which CD1d detects alterations in cellular lipid content by virtue 

of its inherent affinity for such ligands. The presentation of self or non-self α-anomeric 

glycolipids on CD1d by DCs activates NKT cells. In vivo activation of NKT cells induces 

the prompt secretion of pro- and anti-inflammatory cytokines and chemokines, with the 

potential to jump start the immune system (Fig. 5). In doing so, the immune system is 

alerted by the entry of only a few intruders as occurs in natural infections.

C. Steering Innate and Adaptive Immune Responses by Activated NKT Cells

NKT cells form immune synapse upon recognition of CD1d-bound lipid agonists displayed 

on APCs or planar membranes. The dynamics of the NKT cell TCR/ligand interactions 

determine the functional outcome.105 Positive co-operative interaction of NKT TCR with 

CD1d-lipid agonistic complexes enables NKT cells to sense and respond to subtle changes 

in cellular lipids.106 Upon activation, NKT cells rapidly polarize IFN-γ and lytic granules to 

the immune synapse to transmit an effector response.105,107,108 The transmission of effector 

molecules controls downstream innate and adaptive immune responses as described below.

Like the cells of the innate immune system (e.g., neutrophils, Mϕ, DCs, and NK cells), 

NKT cells respond within the first few hours upon agonist recognition in vivo and secrete 

inflammatory cytokines and chemokines (Fig. 5, left half). To accomplish this feat, NKT 

cells have epigenetically modified the Il4 and Ifng genes so as to constitutively express 

both transcripts.109–113 The nature of the activating NKT cell agonist determines the specific 

cytokine response (see Table 1). For example, the synthetic agonist αGalCer, within 30–

90 minutes, elicits a wide variety of cytokines (Fig. 5, left half), while αGalCer variants 

containing different lipid chain length or unsaturation typically induce an IL-4 cytokine 

response.114,115 In contrast, αGalCer variants modified at distinct linkages induce an IFN-γ 
response (Table 1 and references therein). Thus, lipid agonists can be harnessed to direct 

immune responses that induce the desired therapeutic cytokine responses. This feature of 

αGalCer variants is further accentuated by the ability of activated NKT cells to transactivate 

cells of the innate and adaptive immune systems as narrated below (see Fig. 5).

DCs, especially CD8α+ DCs, which are major producers of IL-12,116 are critical for 

glycolipid agonist presentation, and subsequent NKT cell activation.117–123 In turn, activated 

NKT cells further stimulate and induce rapid maturity of the interacting DCs. The result 

is an upregulation of costimulatory molecules CD40, CD80, CD86, and several receptors 

necessary for antigen processing and presentation, such as DEC205 and MHC class II 

molecules, as well as an inflammatory cytokine (TNF-α and IL-12) response.23,124–127 

Activated NKT cells also produce IFN-γ, which coupled with CD154 (CD40 ligand on 

NKT cells) and CD40 (on DCs) mediate reciprocal NKT-DC interactions.128,129 This NKT-

DC dialogue directs various downstream immune responses, viz.: (1) IL-12 and IL-18 

derived from NKT–DC interaction induce IFN-γ production by NK cells126; (2) NKT–DC 
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crosstalk can induce IL-4, IL-6, IL-13, and IL-21 secretion, which cumulatively enhance 

B cell responses to protein antigens130–137; (3) NKT cell–DC interaction also sanctions 

DCs for antigen cross-presentation to CD8+ T cells,138–140 as well as the activation and 

differentiation of CD4 and CD8 T cells.124,139–141 Thus, the initial and sustained NKT 

cell–DC interactions amplify and steer downstream innate and adaptive immune responses.

Identification of the transactivation function of NKT cells through cytokine production 

and contact-dependent mechanisms (Fig. 5)8,142 led to the idea that these cells act 

as “cellular adjuvants.”8,143 NKT cell-DC crosstalk was recently shown to instruct 

inflammasome-independent IL-1β release during bacterial infection, especially by those 

pathogens that have devised ways to hide from the inflammasome pathway. Infected cells 

alter cellular lipid content, and NKT cells recognize such alterations when presented by 

CD1d. NKT cells, so activated, rapidly translocate the pre-existing intracellular pool of 

FasL to their cell surface, and transactivate Fas on APCs to induce the Fas-associated 

effector enzyme Caspase-8. Activated Caspase-8 cleave pro-IL-1β converting it to bioactive 

IL-1β, releasing it from infected APCs in a canonical Caspase-1 and non-canonical 

Caspase-11 inflammasome-independent manner.144 Caspase-8 also cleaves pore forming 

protein gasdermin D (GSDMD), resulting in GSDMD pore formation, K+ efflux and finally 

activation of the NLRP3-Caspase-1 inflammasome to further amplify IL-1β secretion.143 

This two-cell back-up model for IL-1β release stymes pathogens leaving them no place to 

hide.145 Together, these findings provide a physiological context to NKT cell-APC crosstalk, 

bridging the topological barrier between the site of infection, sensory innate response, and 

T cell activation. Further, activated NKT cells provide context to downstream innate and 

adaptive effector responses.

D. Division of Labor by Innate-Like Effector Lymphocyte Subsets

Innate-like effector lymphocyte activation results in rapid secretion of pro-inflammatory 

and regulatory cytokines and chemokines. Congruent with their ability to transactivate a 

range of innate and adaptive immune cells (see Fig. 5), ILELs control downstream immune 

responses. NKT cells are heterogeneous, consisting of at least three subsets—NKT1, NKT2, 

and NKT17146—as well as at least two induced subsets, NKT10 and NKTfh.133,134,136,147–

150 Analagous subsets are also well characterized in ILCs and MAIT cells (although a 

MAIT2 cell subset remains as yet unidentified), and are emerging in γδT cells as well.5,7,151 

Akin to conventional CD4+ T cell subsets, ILEL subsets are defined by subset-specific 

transcription factors and archetypal cytokine responses that, respectively, mediate type 1, 

type 2, and type 3 immunity (see Figs. 2 and 5). Each subset is represented in different 

proportions in different mouse strains, and varies within each strain at barrier tissues (Fig. 

6).146–148,151–154

TYPE 1 innate-like effector lymphocytes include NK cells, ILC1, γδT1 cells, NKT1 cells, 

and MAIT1 cells (Figs. 2 and 6). NKT1 cells activation results in a Th1-like cytokine 

response. Most NKT cells are of the NKT1 subset in C57BL/6 mouse thymus, spleen, 

and liver. NKT1 cell differentiation is dependent on T-bet (Tbx21) and IL-15, and to 

a limited extent, GATA3.146,152,153,155–157 Unlike in DP thymocytes, NKT cell lineage-

specific depletion of HDAC3 selectively impairs NKT1 cell development as a result of 
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diminished autophagy158–160—a cytoplasmic recycling process essential to both T and NKT 

cell development—as well as reduced expression of nutrient receptors GLUT1, CD71, and 

CD98.161 NKT1 cells mediate the anti-tumor effect of αGalCer,162 potentially through 

secreted IFN-γ and TNF-α.

TYPE 2 innate like effector lymphocytes include ILC2, γδT2 cells, and NKT2 cells (Figs. 2 

and 6). MAIT2 cells have not been identified.5,151,163 γδT2 cells are enriched in Tec kinase 

deficient mice.164 NKT2 cells express the CD4 co-receptor, are enriched in mouse lungs and 

intestine, and their activation results in a type 2 cytokine and chemokine response (Fig. 6). 

This type 2 response may underlie airway hyperresponsiveness,152,153,165–168 a prominent 

feature of asthma, as a result of macrophage, eosinophil, neutrophil, and lymphocyte 

recruitment into the lungs and consequent tissue damage.165 Coincidently, NKT2 cells are 

overrepresented in BALB/c mice that are sensitive to airway hyperresponsiveness.153

TYPE 3 innate like effector lymphocytes include ILC3, γδT17 cells, NKT17 cells, and 

MAIT17 cells (Figs. 2 and 6). NKT17 cells are prominent in the peripheral lymph nodes, 

skin, and lungs, but scant in the liver and spleen (Fig. 6).169–171 NKT17 cells need 

IL-7 but not IL-15 for survival,152,172 and their development requires mTORC2 signaling 

and the transcription factors Runx1 and NKAP.173–177 Indeed, Runx1 depletion in NKT 

cells results in decreased IL-7Rα, BATF, and c-Maf expression, and increased Lef and 

Bcl11b expression.175 The role of NKAP in NKT17 cell development is not understood; 

it appears not to require mTOR, IL-7, or TGF-β signaling.173 NKT17 cells constitutively 

express RORγt,169 promote airway neutrophilia upon challenge with synthetic glycolipids 

or LPS, and rapidly secrete IL-17A in response to some bacterial infections.28,169,178 

They may mediate ozone-induced airway hypersensitivity,179 experimental autoimmune 

encephalomyelitis,178 and acute hepatitis in mice.180

MOUSE NKT10 cells, the PLZF-independent subset,147 are found in low frequency in 

naive mice and in human peripheral blood. Upon re-activation, NKT10 cells that formerly 

responded to αGalCer in vivo secrete IL-10,148 which is thought to sustain immune-

privileged sites. This NKT cell subset may also regulate TREG cell activities in adipose 

tissues.147

MOUSE NKT follicular helper (NKTFH) cells can provide cognate (when B cells present 

lipid antigens) or non-cognate (when B cells present protein antigens) help to B cells 

and regulate antibody responses.133,134,136,149,150 In vivo αGalCer induces a subset 

of NKT cells to take on a T follicular helper T (TFH) cell-like phenotype, forming 

NKTFH cells.150,181,182 NKTFH cells express CXCR5, PD1, BTLA, ICOS, and Bcl6. 

Their development depends on the same factors that induce TFH development.181 NKTFH 

cells–produced IL-21 rapidly drives germinal center formation, yielding appreciable levels 

of antigen-specific IgG antibodies.135,181,182 Nonetheless, NKTFH cell–induced antibody 

responses are ephemeral and inferior to TFH cell-driven antibody responses.135,181,182 

NKTFH cells may control antibody responses against Borrelia hermsii, Streptococcus 
pneumoniae, and Plasmodium falciparum—all of which are human pathogens.135,181,182 

NKTFH and TFH cells can synergize to promote robust antigen-specific antibody responses, 

thus highlighting the utility of αGalCer as a vaccine adjuvant.150
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HUMAN NKT cell responses are as diverse in humans as in mice,183 yet subsets similar to 

those in mice were only recently described. Previous reports have demonstrated that human 

CD4+ and double-negative (DN) NKT cell subsets are functionally different. Activated 

human CD4+ NKT cells, in a pathologic role, accumulate in the lungs of chronic asthmatic 

patients; these NKT cells produce IL-4 and IL-13.184 Hence, human CD4+ NKT cells mirror 

the mouse NKT2 cell subset. Moreover, activated DN NKT cells produce IFN-γ and TNF-α 
and, thereby, mirror mouse NKT1 cells. Also, in the presence of inflammatory signals, both 

CD4+ and DN human NKT cell subsets induce perforin production. DN NKT cells also 

upregulate NKG2D expression, which combined with perforin may mediate cytotoxicity 

against infected cells and cancer cells.185,186 These human NKT cell functions parallel those 

of mouse NKT1 cells. Moreover, the presence of an NKT17-like subset is indicated by 

the finding that activated human NKT cells also secrete IL-17.183 Consistent with these 

findings, human liver perfusates contain both NKT, MAIT, and γδT cell subsets. Whilst 

NKT17, MAIT17, and γδT1 cells dominate the liver, proportionately low frequencies 

of NKT1, MAIT1, and γδT17 also are present.187 These subsets produce characteristic 

cytokines as do the mouse counterparts: the type 3 subsets produce IL-17, and the type I 

subsets, IFN-γ.187

Overall, ILELs divide labor among three distinct subsets. Specifically, global and single 

cell transcriptome analyses demonstrated that thymic NKT1, NKT2, and NKT17 cells 

represented definite subsets.187–190 While not formalized, human NKT cells potentially 

mirror mouse NKT cell subsets,187 hence requiring further enquiry. Differentiation of NKT 

cell subsets is influenced by tissue environment. Hence, NKT17 differentiation requires 

mammalian target of rapamycin (mTOR) complex-2177 and is inhibited by Tet enzymes 

that modify DNA 5-methylcytosine by controlling the expression of the Tbet and ThPOK 

transcription factors.191 A separate study using mice with monoclonal NKT cell populations 

showed that tissue homing pattern, but not NKT TCR avidity, dictated NKT cell subset 

differentiation.171 By contrast, other studies have found a significant role for TCR avidity in 

subset development.192–194

III. HOW NKT CELLS GOT THE WAY THEY ARE

A. Evolutionary Origins

“…the struggle against diseases, and especially infectious diseases, has been a 
very important evolutionary agent and that some of its results have been unlike 
those of the struggle for life…” (195 within collected papers in genetics by J.B.S. 

Haldane196). Nonetheless, “There is a natural and irrepressible tendency in the 
human mind to penetrate the mystery of the beginning of things…. But it is plainly 
denied to finite understandings to ascend to the very beginning, and to comprehend 
the nature of the operation of the First Cause of anything…. The ablest endeavours 
here to penetrate the beginning of things do but carry us, when most successful, 
a few steps nearer that beginning, and then leave us on the verge of a boundless 
ocean of the unknown truth, dividing the secondary or subordinate phenomena in 
the chain of causation from the great First Cause.”197
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Sir Owen, a vocal critic of Darwin’s evolutionary theory by natural selection,198 may have 

been a bit too short-sighted with the above critique of the Origin. The exciting new biology 

of the 21st century knows no bounds. The essay below provides a glimpse on how one could 

“penetrate the mystery of the beginning of things” eons past!

Recent advances in whole genome sequencing (WGS) have ushered in comparative 

vertebrate genomics unveiling molecular signatures of selection upon genes that control 

various biologic functions, including immune responses. Pathobionts can apply inordinate 

selection pressure and significantly impact the evolution of immune response genes and 

cells. As early-life symbionts can impact health, microbial ecology may also control the 

evolution of immune response genes and cells.

The NKT cell and MAIT cell TCR engage their ligands with conserved germline-encoded 

residues in the complementarity-determining regions.199 Hence, phylogenetic analyses of 

the genes and gene segments that code for these molecules can inform their origins 

and whether selective pressures may have maintained them over evolutionary scales of 

time. Such analyses indicate that the MR1 and Cd1d genes, as well as the TRAV1 and 

TRAJ33, and TRAV10 and TRAJ18 gene segments that code for MAIT cell and NKT cell 

TCRs, respectively, evolved in a common ancestor/s of the therian mammals, before the 

metatherian (viviparous marsupial mammals) and eutherian (viviparous placental mammals) 

split but after the monotreme (oviparous mammals) therian split some 170 million years 

ago. Further, MR1, and TRAV1 and TRAJ33 genes may have co-evolved with each other. 

Curiously, however, not all eutherian (placental) mammals carry MR1 and Cd1d genes, as 

well as the TRAV1 and TRAJ33, and TRAV10 and TRAJ18 gene segments. Whilst the MR1 
gene has evolved slowly, in comparison, Cd1 genes have evolved faster and diversified since 

their appearance in eutherian mammals. These findings are suggestive of selection pressure, 

presumably by riboflavin-producing microbial pathogens, in the maintenance of MR1, and 

TRAV1 and TRAJ33 genes.200

The above study did not find evidence for NKT cells or MAIT cells in other vertebrate 

animals.200 Nonetheless, there are reports of innate-like T cells in Xenopus laevis that look 

and function like NKT and MAIT cells.201,202 Notably, the search for MR1, and TRAV1 and 

TRAJ33 genes led to the discovery of co-evolving MR1-like, and TRAV1- and TRAJ33-like 

genes, TRAV41 and TRAJ38 genes in rabbits.200 Rabbits along with other lagomorphs, 

carnivores, and armadillos lack the MR1 gene. Thus, there are other potential ways to 

generate MAIT cells, lending credence to the idea that the Xenopus innate-like T cells may 

be another such example. This conjecture awaits formal evidence.

Cd1 and MR1 genes are relatively young when compared to the classical antigen-presenting 

MHC genes, Cd1 being older than MR1, the latter evolving around the same time as 

Cd1d. Cd1 was an amniote innovation, evolved in Mesozoic reptiles and sustained in the 

extant reptiles, such as the anapsid green anole lizard Anolis carolinensis and synapsid 

Siamese crocodile Crocodylus siamensis and Chinese alligator Alligator sinensis.203 Cd1 
genes diversified in mammals, wherein evolved Cd1d.200 The reptilian Cd1 gene lacks 

orthology to avian or mammalian Cd1 genes,203 indicating that Cd1 genes may have risen 

several times in amniote evolution. Alternatively, Cd1 genes may have rapidly evolved and 
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considerably diverged from the reptilian form within extinct synapsid and mammal-like 

reptiles prior to equilibration within eutherian species. The absence of Cd1 in oviparous 

monotremes such as platypuses, and the presence of a CD1d-like gene in a few metatherians 

such as the opossum, supports the alternative view to Cd1 evolution.

A phylogenetic analysis of TRAV10 (encoding the human Vα24 gene segment) or TRAV11 

(encoding the mouse Vα14 gene segment) and TRAJ18 (encoding the Jα18 gene segment) 

indicated that gene elements related to TRAV10/11 and TRAJ18 are found solely in 

placental mammals.200 This discovery indicates that NKT cells are a eutherian contraption. 

As the host gut microbiota influences NKT cell terminal functional differentiation,27,33 and 

NKT cells can control gut microbial ecology,204 we predict that placental development, 

sudden perinatal exposure to maternal and environmental microbiota, and lactation may have 

contributed to the evolution of CD1d-restricted NKT cells. The same might be the case 

for MAIT cells200 and other ILELs, as they all recognize and/or respond to microbes, both 

symbiotic and pathogenic.

γδT cells are found in jawed (gnathan) vertebrates including cartilaginous (Chondrichthyes: 

rays, sharks, and skates) and bony (Osteichthyes: salmon, tuna, and zebra fish) fishes.51 γδT 

cells in these species use V(D)J recombined TCRs. Similarly, γδT-like cells are found in 

jawless (agnathan, e.g., lampreys and hagfish) vertebrates that use leucine-rich-repeat–based 

variable lymphocyte receptors, which also randomly rearrange in a Rag1/Rag2-independent 

mechanism to generate antigen-specific receptors.205,206 At the present time, it is not known 

whether these γδT cells are innate-like γδT or γδNKT cells.

Another means to penetrate the evolutionary beginnings of ILELs is the use of a comparative 

transcriptomics approach as previously described. This approach was applied to uncover the 

origins of NK cells—the natural cytotoxic ILCs (Fig. 2)—and T helper-like ILCs. Lineage 

specific inducers (soluble mediators), surface markers, and transcription factors trace back 

some 500 Mya, suggesting the origins of NK cells and ILC2s may have been conceived at 

the dawn of vertebrate evolution. ILC1 and ILC3 appeared more recently, but a clear point 

in time for their origins needs further study.207 Single cell transcriptomics190 shall illuminate 

their origins and firm those established. Further, such approaches could unveil any lymphoid 

lineage/s that may have preceded the likes of NKT and MAIT cells. Similarly, single cell 

transcriptomics can reveal the origins of γδT and γδT-like ILELs and whether the Xenopus 
NKT-like and MAIT-like cells are bona fide ILELs even though they use distinct restriction 

elements and TCRs.

B. Developmental Origins: Genomic Control of NKT Cell Ontogeny

“The child is the father of a man.” From “My Heart Leaps Up When I See a 

Rainbow in the Sky,” a poem by William Wordsworth

NKT cell, MAIT cell, and γδT cell development occurs in the thymus. As with all 

developmental processes, ILEL ontogeny depends on modular genome regulatory network/s 

composed of key apex transcription factors and downstream effectors. Thus, to become a 

T lineage ILEL versus an ILC rests upon the actions of a few apex transcription factors: 

NOTCH-TCF1-E2A and the E2A regulator Id2 (inhibitor of DNA-binding 2). NOTCH1 
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effectors TCF1 (encoded by Tcf7) and E2A (encoded by Tcf3) control Tcf12 (encoding 

HEB); HEB in turn regulates the expression and rearrangement of TCR gene loci, including 

TRA11*02 to TRAJ18 gene rearrangement. The expression of Id2 down regulates Tcf3 and, 

thereby, NOTCH1-TCF1 T cell apex transcription factors, begetting the ILC lineage.208,209

Commitment to the γδT innate-like cell lineage occurs prior to γδT innate-like lineage 

commitment. A key nuclear event that begets the ILEL-lineage and associated innate-like 

functions involves the activation of the zinc finger BTB domain-containing-16 (Zbtb16) 

gene that codes for promyelocytic leukemia zinc finger (PLZF). PLZF-mediated genomic 

control differentiates the unique NKT, MAIT, and γδT cell functions from those of other 

T lymphocytes. This section covers what we know of NKT cell development, much of 

which is similar to MAIT cell development, and perhaps γδT cell ontogeny as well.5 

Developmental plans of other ILELs are reviewed elsewhere.5,6,51,209–211

Genetically modified mice whose thymocytes fail to develop beyond the (DN)2/DN3 stage 

also lack NKT cells (Fig. 7).54,212–216 Further, NKT cells fail to develop in mice with 

mutations in Myb (coding for c-Myb), Rorc (coding for RORγt), and Tcf12.217–220 As 

TRAV11*02 and TRAJ18 rearrangement occurs at a late DP stage,217,219 and NKT cells 

develop in Jα18-deficient mice that received highly purified tetramer-negative, DP-high 

thymocytes,221 commitment to the NKT cell lineage occurs at the DP stage.222 TRAV11*02 
and TRAJ18 rearrangement, however, can occur within late DN thymocytes and the 

resulting precursors can differentiate into NKT1 cells.223

Commitment to the innate-like T cells occurs shortly after positive selection by thymic self 

agonists, and proceeds through defined stages and culminate in branched differentiation to 

three major subsets shown in Fig. 7. The ligation of the invariant NKT cell TCRα (iTCRa) 

by its cognate agonist on DP thymocytes induces Nr4a1 expression encoding Nur77, which 

lasts for about two days.224 Shutting down Nr4a1 expression is critical because Nur77 

can induce cell death to anergy in developing NKT cells (discussed below; ref. 194). The 

mechanism of Nr4a1 shutdown, albeit unknown, perhaps results from dissociation from the 

agonist or by signal/s relayed by the SLAM-SAP-Fyn module, which is known to temper 

iTCRa signal intensity.193,224 Coincident with Nur77 depletion is the upregulation of Zbtb16 
expression, encoding PLZF.224 It is not known whether positive selection results in two 

stage 0 (st0) subsets—one with low and the other with high Nur77, the latter destined 

to deletion by apoptosis. St0 cells with low Nur77 may then proceed to st1 as PLZF 

levels increase. Alternatively, SLAM-SAP-Fyn activation in st0 cells may bolster PLZF 

expression and repress Nr4a1 locus to prevent deletion and to permit onward development. 

Whichever be the mechanism, st1 cells committed to the lineage undergo proliferative 

burst and expand and upregulate CD44,187,190,224 becoming permissive to differentiation. 

NKT1 cells differentiate under the influence of IL-15 (and potentially type I IFN190) trans-

presented by medullary stromal cells interacting with NKT cell precursors.155–157,225,226 

Those that do not receive IL-15 and/or type I IFN signal/s or are not permissive to these 

signals beget st2 cells, which are precursors to NKT17 and NKT2 cell subsets. Whilst IL-7 

receptor signaling programs NKT17 cell differentiation, signals that promote NKT2 cell 

differentiation is unknown. Alternatively, NKT2 cell subset could be default path that needs 

no specific signal/s. This NKT cell ontogenetic and differentiation pathway, extracted from 
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recent reports,187,190,227 resembles the Waddington epigenetic landscape228,229 of binary 

cell fate decisions made by an immediate precursor until end-stage differentiation occurs. 

Furthermore, recent reports suggest that MAIT cell and γδT cell development and subset 

differentiation follow the same general principle as those described above.187,190

Mechanism/s of effector subset differentiation is incompletely understood. Evidence support 

a iTCR-agonist affinity-based model coupled with cytokine signaling,190,192,193 tissue 

homing site-specific,171 and sole cytokine-based differentiation.224 The induction of CD69 

at the late stage of NKT cell differentiation190,224 has suggested a iTCR-agonist affinity-

based differentiation model. Despite CD69 induction, which results from TCR activation, 

no induction of Nur77 —a proxy for TCR activation—was observed. IFN-I signaling can 

induce CD69, and IFN-I-regulated genes are induced in NKT1 cells.190,230 These findings 

support a cytokine-based differentiation model. It is possible that a low affinity iTCR 

ligand, which may not induce Nur77,231 sufficiently tickles the NKT cell TCR to make 

NKT cell precursors responsive to cytokine signaling. These competing models need further 

resolution.

Unlike conventional CD4+ and CD8+ T cells, which depend on thymic epithelial cells 

for positive and negative selection, NK1.1+ T cells rely on DP thymocytes for positive 

selection.232 NKT cell TCRs expressed by precursors interact with self lipid-bound CD1d 

on DP thymocytes233–237 and by homotypic signaling lymphocytic activation molecule 

(SLAM)-SLAM receptors on both cell types.238–240 These molecular interactions result in 

the activation of protein kinase Cθ-NF-κB and NFAT-Egr2 signaling modules, culminating 

in the induction of specific transcriptional programs crucial for NKT cell maturation (Fig. 

7).238,239,241–246 PLZF-mediated transcriptional programs bestow upon NKT cells its unique 

functions through a differentiation process that results in NKT1, NKT2, and NKT17 cell 

subsets and the acquisition of cytokine secretion function.190,242,247,248 Whilst the NKT 

cell subsets are defined by the same subset-specific transcription factors expressed by the 

corresponding T helper cell subsets, NKT cells differ from T helper cells in the ability to 

quickly secrete cytokine/s in response to activation (Fig. 2).147,148,152–154,188

Gene regulatory networks (GRNs) control lineage-specific gene expression and unveil the 

developmental and evolutionary origins of cell lineages.249 PLZF is a lineage-specific 

master transcription factor, functioning as a critical node in the GRN that controls innate-

like effector differentiation in developing NKT cells.247,248,250 Zbtb16 induction is in part 

regulated by acetylated Egr2251 induced downstream of NKT cell TCR signaling.244 A 

recent study revealed that the histone acetylase GCN (general control non-derepressible) 

5 acetylates a critical lysine residue in Egr2, and DP thymocyte-specific depletion of 

GCN5 abrogated the progression of NKT cell development from st0 to st1 in a cell 

intrinsic manner. This st0 to st1 developmental block was secondary to the transcriptional 

downregulation of Zbtb16 and other essential NKT cell development genes such as Runx1, 

Tbx21, and Il2rb.251 GCN5 itself is an acetylated protein. Whether its function during NKT 

cell development depends on acetylation is currently unknown. In some models, the function 

of GCN5 depends on its deacetylation.252 Should GCN5 function in NKT cells depend 

on deacetylation, whether and which sirtuins (silent mating type information regulation 2 

homologs 1–7; ref 252) play this role in NKT cells remains to be established.
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While the mouse NKT cell iTCRa can pair with virtually all available TCR β-chains, the 

peripheral NKT cell repertoire consists of iTCRa paired with a restricted set of β-chains, 

viz., Vβ8, Vβ7, and Vβ2.253–256 It is generally thought that the semi-invariant NKT cell 

TCR repertoire is built solely by positive selection.257 This assumption is at odds with high 

affinity interactions between the NKT cell TCR and its cognate self-agonist, which results 

in self-reactive T cells. Hence, indirect evidence has implied a role for negative selection 

in sculpting the semi-invariant NKT cell TCR repertoire.258–262 Evidence in favor of both 

models has been discussed elsewhere.142

Nr4a1-encoded Nur77,263 a member of the orphan nuclear receptor transcription 

factor family,264,265 is expressed in both precursor and peripheral agonist-activated 

NKT cells.192,243,263 Nur77 expression is induced downstream of NKT cell TCR 

activation.192,243,263 Nur77 aids in negative selection of conventional T cells by converting 

the pro-survival factor Bcl-2 to a pro-apoptotic agent.264,266–269 Thus, a recent study found 

that Nur77 overexpression via a thymocyte-specific Nra4 transgene arrested NKT cell 

development at an early precursor stage shortly after positive selection, and induced negative 

selection and self-tolerance in thymic NKT cells, making these cells hyporesponsive to 

agonistic stimulation in the periphery.194 Moreover, homotypic SLAM-SLAM interactions 

between iNKT cell precursors and DP thymocytes are critical for the selection and 

differentiation of this lineage.232,238,241,270–276 Hence, this interaction is fine-tuned at the 

level of SLAM family member expression on the two cell types.277 NKT cells that develop 

in mice deficient in all six SLAM family receptors recapitulated the Nur77 overexpression 

phenotype.193 These findings together lend to a model in which strong and persistent 

NKT cell TCR signaling after positive selection induces high Nur77 expression. Because 

Nu77 induces apoptosis, precursors can become dead end cells as seen in NKT cells 

that overexpress Nur77 (Fig. 7; alternate paths at st0). Instead, the induction of SLAM 

family receptor signaling overrides Nur77-induced apoptosis and facilitates onward iNKT 

cell development. Consistent with this model, increased SLAM (SLAMF1) and Ly108 

(SLAMF6) expression in st0 NKT cells could not temper Nu77 effects, perhaps because 

Nur77 overexpression was driven by the Lck proximal promotor and not the native Nr4a1 
promotor. The next step would be to elucidate how the SLAM-SAP-Fyn signaling module 

controls Nr4a1 expression and function. Thus, both positive and negative selection events 

sculpt NKT cell TCR repertoire.

IV. END NOTES: A “LIMBIC IMMUNE SYSTEM” EMERGING IN PLAIN 

SIGHT

PLZF directs the distinct behaviors of a group of ILELs including γδT cells, NKT cells, 

MAIT cells, and ILCs.278–280 Also, PLZF is required for NK cell function, but not NK 

cell development.281 On the other hand, symbionts (gut and potentially other barriers such 

as skin and lungs) determine the development (MAIT cells, and potentially γδT cells) and 

functional differentiation (NKT cells, MAIT cells, and ILCs) of ILELs. We propose that 

these immune cells, all of lymphoid origin, be classified as the “limbic immune system” 

as they function at the edge (limbus in Latin) of the innate and adaptive immune systems. 

Remarkably, γδT, NK, and NKT cells localize to the interfollicular region of the lymph 
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nodes, in between cells of that make up the innate and adaptive immune systems.282 Whilst 

not controlled by PLZF or the microbiota, by virtue of their physiologic functions, other 

tissue-restricted innate-like lymphocytes, such as CD8αα innate-type lymphocytes283 as 

well as B1 cells and NK cells,284 can be included in the limbic immune system. In its 

simplest form, the limbic immune system is anglicized Latin for the “in-betweeners”285 and, 

hence, synonymous with it.

In this proposal for a triune immune system we make no claims or assumption that the 

limbic immune system is an evolutionary transition between the innate and adaptive immune 

systems. But, instead, the limbic immune system is a conglomeration of independently 

acting modules, arising at different times in evolution, in many instances, repurposing 

loosely common genome regulatory circuits to accomplish a common task: to integrate 

information relayed by the innate sensory immune system about the local tissue environment 

and to provide context to downstream effector innate and adaptive immune responses. The 

multiple modules add robustness and evolvability to this limbic system to keep abreast of 

the ever-changing environment and the quick-evolving microbial cosmos, especially of those 

members of an otherwise symbiont community that turn pathobiont without much notice!
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FIG. 1: 
The kinetics of an immune response. The first peak signified by “innate” indicates the 

response of tissue macrophages and immature dendritic cells, which mature over the first 

few days following microbial (or antigenic) challenge to ferry antigen to local draining 

lymph nodes. Both also secrete innate cytokines and chemokines to recruit neutrophils. 

These sensory innate responses are integrated by innate-like effector lymphocytes, whose 

activities peak after the innate immune response, and relay context to the adaptive immune 

system T and B cells, impacting the antigenic burden.

Joyce et al. Page 35

Crit Rev Immunol. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2: 
Features of innate-like effector lymphocytes mirror those of conventional T lymphocytes. 

Three types of effector immune responses are recognized: type 1, type 2, and type 3. 

They are characterized by the absence (ILCs) or presence of antigen-specific receptors 

on lymphoid lineage cells. Whilst conventional T cells express a diverse TCR (noted in 

the current IMGT nomenclature) repertoire, those of the innate-like effector lymphocytes 

express semi-invariant (NKT and MAIT cells) to invariant (γδT cells) TCRs. Type 1 

effectors include both innate (NK) and adaptive cytotoxic (CD8+ T) cells and non-cytotoxic 

T helper (Th) 1 cells, as well as innate-like effector lymphocytes such as ILC1, NKT1, 

MAIT1, and γδT1 cells. They require IL-12 for induction, which is bolstered by IFN-γ. 

T-bet and related eomesodermin transcription factors control the differentiation of type 1 

effector cells, which are essential for immunity against intracellular pathogens. Type 2 

effector cells include Th2, ILC2, NKT2, and γδT cells. These cells are activated by IL-4 

and require GATA3 for their effector differentiation. Type 2 effector cells secrete IL-4, IL-5, 
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and IL-13, which are required for parasite expulsion. Their over activity results in allergic 

response and hypersensitivities. Type 3 effector cells include Th17, ILC3, NKT17, MAIT17, 

and γδT17 cells. These effector cells are induced by IL-6, TGF- β, IL-1 β, IL-23, and IL-7 

(NKT17). RORγt is the lineage specific transcription factor. Type 3 effector cells secrete 

IL-17 and IL-22, which are important for immunity to extracellular bacteria and fungi.
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FIG. 3: 
Three distinct strategies activate mouse NKT cells. Potent NKT cell agonists—such as 

αGalCer—directly activate NKT cells without the need for a second signal, in a TCR-

signaling dominated fashion (left panel). Alternatively, microbes containing TLR ligands 

such as LPS activate NKT cells by inducing IL-12 production by DCs, which amplifies 

weak responses elicited upon recognition of CD1d bound with self-glycolipids by the NKT 

cell TCR. Several endogenous lipid agonists have been identified and characterized (see 

Table 1). Some microbes such as Sphingomonas capsulata, which are α-Proteobacteria, 

synthesize α-anomeric glycolipids for their cell walls. These glycolipids, when presented by 

CD1d, weakly activate NKT cells directly. In the presence of a second signal—generally a 

pro-inflammatory cytokine such as IL-12—such weak agonists strongly activate NKT cells 

(middle panel). Intriguingly, NKT cells can be activated solely by cytokines—mainly IL-12 

plus IL-18—in a TCR-independent manner (right panel). Similar strategies activate MAIT 

cells as well. ILCs, owing to the lack of antigen-specific receptors, use cytokine-dependent 

mechanisms for initiation of an immune response. This diagram rendering the different 

strategies to NKT cell activation is an adaptation of past reviews10,101 and is based on works 

cited in the text.
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FIG. 4: 
Alternate enzymatic strategies for the generation of cellular isoglobotriaosylceramide (A), 

and α GalCer (B). See text for details.
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FIG. 5: 
Tissue distribution of innate-like effector lymphocytes. See text for details.
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FIG. 6: 
The effector functions of mouse NKT cells. The interactions between the invariant natural 

killer (NKT) cell receptor and its cognate antigen, as well as interactions between co-

stimulatory molecules CD28 and CD40 and their cognate ligands CD80/86 (B7.1/7.2) 

and CD40L, respectively, activate NKT cells. Activated NKT cells participate in crosstalk 

with members of the innate and the adaptive immune systems by deploying cytokine and 

chemokine messengers. Upon activation in vivo, NKT cells rapidly secrete a variety of 

cytokines and chemokines, which influence the polarization of CD4+ T cells toward T helper 

(Th)1 or Th2 cells as well as the differentiation of precursor CD8+ T cells to effector 

lymphocytes, and B cells to antibody-secreting plasma cells. Some of these mediators 

facilitate the recruitment, activation, and differentiation of macrophages and DCs, which 

results in the production of IL-12 and possibly other factors. IL-12, in turn, stimulates NK 

cells to secrete IFN-γ. Thus, activated NKT cells have the potential to enhance as well as 

temper the immune response. This schematic rendition of NKT cell effector functions is an 

adaptation of past reviews8,10,101,296 and is based on works cited in the text.
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FIG. 7: 
Schematic rendition of developmental stages and signaling events essential to NKT cell 

ontogeny: (A) Precursor ST0, immature ST1 & ST2, and mature ST3 represent distinct 

NKT cell developmental stages (ST) and NKT1, 2 and 17 are functional subsets. NKT 

cell ontogeny begins with the rearrangement of the TRAV11*02 to TRAJ18 TCR α-chain 

gene segments and proceeds after its interaction with the positively selecting CD1d-self 

lipid complex. Stage-specific NKT cell markers —e.g., CD24, CD44 and NK1.1—and 

subset-specific differentiation signals and transcription factors are indicated. Interleukin 

(IL)-7 and IL-15 are cytokines that mediate intercellular communication. (B) Thymocyte 

development to DP stage are essential for conventional CD4+ and CD8+ T as well as NKT 

cell development. Commitment to the NKT cell lineage occurs with the semi-invariant TCR 

expression at the DP stage under the influence of HEB (an E2A family transcription factor)- 

and RORγt. Positive selection at stage 0 induces the expression of PLZF, distinguishing 

NKT cells from other T lineages—e.g., CD4+ and CD8+ T cells. Onward development 

requires signals relayed via the lymphocyte activation molecule family member (SLAMF)-

SLAM-associated protein (SAP)-Fyn (a Src kinase) module, which tempers agonistic signals 

relayed through the NKT cell TCR. NKT cell TCR signals are processed by protein kinase 

C (PKC)-θ and relayed to CBM (CARMA1-Bcl10-MALT1) complex for integration by 

the transcription factor nuclear factor-κB (NF-κB). Signals integrated by the SLAM-SAP-

Fyn and the NKT cell TCR-PKC-θ-CBM-NF-κB modules culminate in Gata3 and Tbx21, 
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encoding T-bet. The two transcription factors are essential for Il4 and Ifng transcription and 

lineage specific cytokine production. Calcineurin-NFAT-Egr2 and PKCθ-NF-κB signaling 

axes play essential roles in lineage proliferation (e.g., Myc), maintenance (e.g., Bcl-xL), 

and effector differentiation (e.g., Csf2), and maturation. Whilst the mechanism/s of subset 

differentiation are still debated, signals from IL-7 direct NKT17 cell differentiation and 

those from IL-15 and/or IFN-I (type I IFN) direct NKT1 cell differentiation. Transcription 

factors such as Egr-2, Ets-1, GATA3, Id2, Id3, MEF, Nur77, RORγt, and T-bet act at distinct 

stages shown to direct proper, functional NKT cell development. See text for details and 

references therein.
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