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ABSTRACT

Background: The Guangzhou Nutrition and Health Study (GNHS) aims to assess the determinants of metabolic disease in
nutritional aspects, as well as other environmental and genetic factors, and explore possible biomarkers and mechanisms with
multi-omics integration.

Methods: The population-based sample of adults in Guangzhou, China (baseline: 40–83 years old; n = 5,118) was followed up
about every 3 years. All are tracked via on-site follow-up and health information systems. We assessed detailed information on
lifestyle factors, physical activities, dietary assessments, psychological health, cognitive function, body measurements, and
muscle function. Instrument tests included dual-energy X-ray absorptiometry scanning, carotid artery and liver ultrasonography
evaluations, vascular endothelial function evaluation, upper-abdomen and brain magnetic resonance imaging, and 14-day real-
time continuous glucose monitoring tests. We also measured multi-omics, including host genome-wide genotyping, serum
metabolome and proteome, gut microbiome (16S rRNA sequencing, metagenome, and internal transcribed spacer 2
sequencing), and fecal metabolome and proteome.

Results: The baseline surveys were conducted from 2008 to 2015. Now, we have completed 3 waves. The 3rd and 4th follow-ups
have started but have yet to end. A total of 5,118 participants aged 40–83 took part in the study. The median age at baseline was
approximately 59.0 years and the proportion of female participants was about 69.4%. Among all the participants, 3,628 (71%)
completed at least one on-site follow-up, with a median duration of 9.48 years.

Conclusion: The cohort will provide data that will be influential in establishing the role of nutrition in metabolic diseases with
multi-omics.
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INTRODUCTION

The increase in the prevalence of chronic diseases is one of the
biggest challenges for the healthcare system. Cardiovascular

diseases (CVDs) are the leading cause of death globally, taking an
estimated 17.9 million lives each year.1 Between 2000 and 2040,
the ageing of the Chinese population alone is predicted to cause a
200% increase in deaths from CVDs.
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Multi-omics data is an excellent resource for discovering novel
biomarkers of cardiometabolic disease outcomes. In addition,
omics analyses can provide valuable insights into the mechanism
of chronic diseases, which will promote the development of
effective personalized therapy that leads to clinical care tailored to
the individual patient. Finally, we planned to integrate exposure,
multi-omics biological profiles, and clinical data to obtain a
multidimensional biomarker to identify the individual risk and
possible treatment for chronic diseases.

The prospective Guangzhou Nutrition and Health Study
(GNHS) project was established to assess the determinants of
risk of common chronic diseases (mainly metabolic diseases) and
changes in their relevant indices in nutritional aspects, as well as
other environmental and genetic factors, and explore possible
mechanisms with multi-omics integration. In this cohort, the
original GNHS and another cohort study (the controls of a case-
control study of hip fractures [CCFH]) have been integrated into
the one GNHS project. The GNHS baseline study conducted in
China is the baseline study of the original GNHS (2008–2013)
and the CCFH (2009–2015). The GNHS project was designed as
joint research, in which the same research group jointly managed
the sub-cohorts with the same aim.

METHODS

Study participants
The GNHS project is a community-based prospective cohort
study. The participants in the original GNHS were recruited from
multiple communities covering the majority of Guangzhou city
via the following measures: local advertisements, health talks,
and referrals. The baseline study includes about 4,048 healthy
Chinese adults living in Guangzhou city (South China) for >5
years, aged 40–80 years, and recruited between 2008 and 2013.

The participants in the CCFH baseline (52–83 years old) were
recruited in Guangzhou City, Guangdong Province, China, from
June 2009 to August 2015. A total of 887 healthy residents
in communities in Guangdong Province and 183 patients who
had been hospitalized within a week with one of the following
diseases were included: pneumonia, benign ophthalmic, influenza,
otorhinolaryngologic tumor, cataract in one eye or acute surgical
diseases, which were not the outcomes on which GNHS focused.

The study protocol of the GNHS project was approved by the
Ethics Committee of the School of Public Health at Sun Yat-sen
University (2018048) and was performed following the principles
outlined in the Declaration of Helsinki. Written informed consent
was received from all participants prior to the start of the
investigation.

After completing the baseline examination, a total of 5,118
participants were recruited during 2008–2015 in the GNHS
project. Table 1 shows characteristics information by sub-cohorts
at baseline; 4,048 participants (4,048/5,118; 79.1%) and 1,070
participants in the CCFH (1,070/5,118; 20.9%) contributed to the
GNHS project. Overall, the median age at baseline was approxi-
mately 59.0 years; the proportion of female participants was about
69.4% (3,550/5,118); the average percentage of the secondary
high school stood at 41.6% (2,130/5,118). Compared to the CCFH
participants at baseline (2008–2015), the original GNHS partic-
ipants (2008–2013) had a similar distribution of body mass index
and alcohol drinkers, less physical activity, and more energy
intake; were more likely to be younger, men, higher educated,
married or living together with others, smokers, and tea drinkers;

and had a lower proportion of calcium supplement users, multi-
vitamin users, and household income ≥3,001 yuan/month/person
(Table 1). Baseline characteristics differed between women and
men in the GNHS project (Table 1).

Follow-up procedure
Figure 1 shows the primary data items collected approximately
every 3 years from 2008. Among the population-based samples
(GNHS Baseline study: 2008–2015, N = 5,118), 3,628 (71%)
completed at least one on-site follow-up, with a median duration
of 9.48 years. All will be tracked via health information systems.
eTable 1 shows that participants who lost at the 2nd follow-up had
more risk factors for chronic diseases (for example, older age,
lower level of education, a lower proportion of physical activity
and marriage, and a higher proportion of smokers and alcoholic
drinkers).

Data measurement
In the baseline and follow-up phases, all participants were invited
to Sun Yat-sen University by telephone every 3 years for face-to-
face interviews, specimen collections, and body examinations.
The main contents of the field works were similar at each visit. In
addition, blood, urine, fecal, and saliva samples were collected as
soon as possible. eTable 2 describes a broad overview of the data
collected so far. The collected data included the following major
sections: general information and lifestyle factors, health and
well-being, physical examinations, instrumental examinations,
laboratory tests, and multi-omics data.

General information and lifestyle
In this part, face-to-face interviews using structured questionnaires
were conducted to collect the following information: demographic
and socioeconomic characteristics, employment, social support
and participation, health-related behaviours,2 physical activities,
and dietary assessments. Dietary assessments used a 79-item Food
Frequency Questionnaire (FFQ) or 7-day image-based food diary.
Changes in eating habits and using dietary supplements were also
assessed. The FFQ questionnaire included 79 items,3 consisting of
eight categories (staples, beans and bean products, vegetables,
fruits, food of animal origin, nuts, beverages, and soups).

Health and well-being
This section is described in detail in eMaterial 1.

Physical examinations
We conducted the following physical examinations: anthropo-
metric measurements (eg, body weight and height, waist, hip,
neck, and calf circumferences), muscle function (eg, handgrip
strength, step speed, Chair Stand Testing, and balance function),
blood pressure, and 14-day bracelet motion monitoring.

Instrumental examinations
Participants received extensive instrumental examinations as part of
their participation in the GNHS project. The assessment included
Dual-energy X-ray absorptiometry (DXA) scanning,4 ultrasonog-
raphy evaluations,5 vascular endothelial function evaluation, cardio-
pulmonary exercise testing, upper-abdomen and brain magnetic
resonance imaging (MRI), and 14-day real-time continuous glucose
monitoring tests. DXA scanning is used to measure bone mineral
density (BMD)4 and bone mineral content (BMC) at the whole
body, lumbar spine segment 1–4 (spine L1–L4) and left hip, fat6 and
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lean mass7 at the whole body and sub-regions, and bone geometry
information at the left hip. Ultrasonography was used to evaluate
carotid artery intima-media thickness,5 plaque, stiffness, and the
degree of fatty liver.8 The brain MRI was used to study brain
tissue’s microstructure and investigate brain function without
requiring the subject to undertake a specific task. In addition, we
conducted upper-abdomen MRI to assess the structure and contents
of fat and iron of the liver, fat and muscle mass, and vertebral bone
marrow fat, and to help identify renal angiomyolipoma and
malignant renal tumors. A 14-day continuous glucose monitoring
was used to determine glycemic responses to various usual daily
foods (by a 7-d image-based food diary) using three-type standard
breakfast as internal calibrators and physical activities assessed
by 14-day bracelet motion monitoring.

Laboratory tests
In all examination waves, a broad spectrum of laboratory variables
was measured, which included metabolic syndrome-related
indices9; diabetes-related indices10; uric acids11; nutritional
indices, including fatty acids,12 vitamins, minerals,9 alkaloids,13

carotenoids,14 flavonoids,5 sulfur-containing amino acids, and
trimethylamine-N-oxide15; inflammatory cytokines16; indexes of
oxidative stress; adipocytes8; sexual hormones; liver and renal
function-related markers17; and routine blood test.

Multi-omics data
Genome-wide genotyping data
Participants with qualified extracted DNA have undergone a
genome-wide scan of 750,000 single nucleotide polymorphism
(SNP) markers (Illumina Asian Screening Array-750K; Illumina
Inc., San Diego, CA, USA), and then genome-wide genotype
imputation with the 1,000 Genomes Phase 3 v5 reference panel by
Minimac3.17

Gut microbiome
The research used the 16S rRNA amplicon of feces to sequence
the gut microbiota. The V3-V4 hypervariable region of the 16S
rRNA gene was amplified and sequenced on Illumina MiSeq
System (Illumina Inc.). The 16S rRNA gene is a bacterial
ribosomal gene and a part of the 30S subunit, which is used in
the identification, characterization, and classification of various

Table 1. Baseline characteristicsa (n = 5,118)

By sub-cohorts By sex

CCFH GNHS
P-value

Women Men
P-value

n (%) 1,070 (20.9) 4,048 (79.1) 3,550 (69.4) 1,562 (30.6)

Median (IQR) or n (%)

Age, years 72.0 (66.0–76.0) 58.0 (54.0–62.0) <0.001 58.6 (54.0–66.0) 61.0 (56.0–67.3) <0.001
Gender <0.001 — — —

Women 794 (74.2) 2,756 (68.1)
Men 276 (25.8) 1,286 (31.8)
Missing/unclassified 0 (0.0) 6 (0.1)

BMI, kg=m2 23.2 (21.5–24.9) 23.2 (21.2–25.3) 0.690 23.0 (21.1–25.0) 23.7 (21.8–25.5) <0.001
Education <0.001 <0.001

Junior high school or below 509 (47.6) 1,223 (30.2) 1,270 (35.8) 462 (29.6)
Secondary high school 353 (33.0) 1,777 (43.9) 1,554 (43.8) 576 (36.9)
College degree or above 207 (19.3) 991 (24.5) 696 (19.6) 505 (32.1)

Household income,
Yuan=month=person

<0.001 <0.001

⩽500 15 (1.4) 86 (2.1) 59 (1.7) 40 (2.7)
501–2,000 125 (11.7) 1,067 (26.4) 888 (25.0) 304 (19.5)
2,001–3,000 273 (25.5) 1,774 (43.8) 1,445 (40.7) 602 (38.5)
⩾3,001 400 (37.4) 1,075 (26.6) 963 (27.1) 512 (32.8)

Marital status <0.001 <0.001
Married or living together 791 (73.9) 3,622 (89.5) 2,918 (82.2) 1,495 (95.7)
Divorce/Separation/Widowed 273 (25.5) 366 (9.0) 588 (16.6) 51 (3.3)
Unmarried/Unclassified 6 (0.6) 60 (1.5) 44 (1.2) 16 (1.0)

Smokersb 135 (12.6) 674 (16.7) <0.001 33 (0.9) 776 (49.7) <0.001
Alcohol drinkersc 77 (7.2) 280 (6.9) 0.100 100 (2.8) 257 (16.5) <0.001
Tea drinkersd 540 (50.5) 2,119 (52.3) 0.023 1,576 (44.4) 1,083 (69.3) <0.001
Physical activity, MET-h=de 37.2 (28.3–47.4) 35.5 (30.4–48.8) 0.013 36.3 (30.4–48.6) 34.9 (29.7–46.7) <0.001
Energy intake, kcal=d 1,506.3

(1,288.4–1,797.2)
1,681.0

(1,404.3–2,064.0)
<0.001 1,587.8

(1,318.9–1,911.0)
1,801.8

(1,492.7–2,183.1)
<0.001

Calcium supplement users 455 (42.5) 1,261 (31.2) <0.001 1,383 (39.0) 333 (21.3) <0.001
Multivitamin supplement users 307 (28.7) 855 (21.1) <0.001 893 (25.2) 269 (17.2) <0.001

BMI, body mass index; CCFH, the controls of a case-control study of hip fractures; GNHS, Guangzhou Nutrition and Health Study; IQR, interquartile range;
MET, metabolic equivalent.
aContinuous variables were described as medians ± quartile range in non-normal distribution, assessed by Wilcoxon tests; categorical variables were described
with numbers (%), assessed through chi-square tests.
bSmokers were defined as having smoked at least 1 cigarette every day for at least 6 consecutive months.
cAlcohol drinkers were defined as taking an alcoholic drink at least once per week for at least 6 consecutive months at any time.
dTea drinkers were defined as taking at least 1 cup of tea per week in the previous 6 months.
ePhysical activity included daily household chores, walking, standing, stair-climbing, bike-riding, hard physical labor, moderate physical labor, and mild physical
labor, assessed by metabolic equivalent (MET) hours per day.
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bacteria (over 70 gut microbial genera annotated in the research)
and microbiota diversity.18 Feces were also obtained from
participants for metagenomically shotgun sequenced into a library,
each also multiplexed by the Illumina HiSeq machine using a 150-
bp paired-end read protocol. Metagenomics can be used to study
intestinal microbiome diversity and taxonomy. Moreover, func-
tional metagenomics can identify microbial pathways, antibiotic
resistance genes, and novel functional genes. More than 160
species and 440 microbial pathways were annotated in the study.12

Based on the internal transcribed spacer 2 (ITS2) sequences by
thermocycler PCR system (GeneAmp 9700; ABI Scientific Inc.,
Sterling, VA, USA), a taxonomic profile of the gut mycobiome
was determined to investigate gut fungal diversity and com-
position. There was a total of 204 gut fungal genera identified.19

Untargeted serum and fecal proteomics
Serum and fecal samples were analyzed using mass spectrometry-
based proteomics techniques: Sequential Windowed Acquisition
of all THeoretical fragment ion mass spectra20 and parallel
accumulation-serial fragmentation combined with a data-inde-
pendent acquisition. Our data library contained 326 unique
human protein groups in serum: 1,253 human protein and 83,683
microbial proteins in feces.
Targeted metabolomics profiles
Fecal and fasting serum concentrations of metabolites, covering
a biologically relevant panel of amino acids, benzenoids, bile
acids, carbohydrates, carnitines, fatty acids, indoles, nucleosides,
organic acids, organooxygen compounds, phenylpropanoic acids,
pyridines, and other metabolites, have been measured using
ultrahigh-performance liquid chromatography-tandem mass spec-
trometry (UPLC-MS/MS) system (ACQUITY UPLC-Xevo
TQ-S; Waters Corp., Milford, MA, USA). The Q300 Kit
provided by Metabo-Profile Corp. (Shanghai, China), coving up
to 310 metabolites and 12 biochemical classes, was used for

targeted metabolomics profiling. Approximately 200 metabolites
have been quantified in this population.21

RESULTS

The project has obtained more than 90 publications from the
research database. It provided data that have been influential in
establishing the role of nutrition in metabolic diseases with multi-
omics. Below we summarize some of our key findings.

Nutrition and metabolic health
In the Chinese middle-aged and elderly population, elevated
dietary intakes of fruit and vegetables,22 betaine,7 flavonoids,23

serum choline, betaine,13 uric acid,11 and erythrocyte n-3 poly-
unsaturated fatty acids (PUFAs)24 were associated with better
body composition. Erythrocyte membrane de novo lipogenesis-
fatty acids6 and urinary sodium-potassium ratio25 might contribute
to worse body composition. Using this cohort study, we found the
serum carotenoid levels14 and erythrocyte membrane n-3 PUFAs26

were inversely associated with risk of nonalcoholic fatty liver
disease, while serum retinol-binding protein 4 levels8 was
positively associated with risk of nonalcoholic fatty liver disease.
Our findings suggested that dietary and serum carotenoid levels,27

serum isoflavones,5 marine-derived erythrocyte n-3 PUFAs,10

serum and urinary Mg,9 and urinary equol28 were potentially
cardioprotective and that higher dietary red meat intake,20 serum
trimethylamine-N-oxide,15 erythrocyte gamma-linolenic acid,29

and urinary Na and Na/K30 were associated with an increased
risk of cardiometabolic diseases in middle-aged and older adults.

Possible pathways with multi-omics techniques
The study is ready to explore pathways related to the association
between nutrition and human metabolic diseases. Specimens of

Figure 1. The research project of Guangzhou Nutrition and Health Study (GNHS). DXA, Dual-energy X-ray absorptiometry; ITS,
internal transcribed spacer; MRI, magnetic resonance imaging.
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most cohort members will be collected from the baseline to the 4th

follow-up. We have begun to obtain comprehensive biological
changes using multi-omics techniques and found that gut micro-
biota was a crucial factor in inflammation,16 osteoporosis,4 diabetes
mellitus,31 and other complex human diseases.17 Furthermore, gut
microbiota was found to be a mediator of the associations of
erythrocyte n-6 PUFAs18 and dietary fruit and vegetable intake32

with incident type 2 diabetes (T2D). Our cohort also provided
new insights into the interaction of the dairy-gut microbiota21;
the association of dietary diversity with gut microbiome and
fecal metabolites3; the association of chronic insomnia with gut
microbiota and bile acids2; and the association of gut microbiota
with acylcarnitine metabolite and equol,33 and the relationships of
these associations with cardiometabolic health. Our data also
described the profile of the gut antibiotic resistome and supported
its close relationship with T2D progression.34 Our findings under-
scored the potential role of the gut microbiome in linking genetic
variation in CD36, n-3 PUFAs, and lipids, revealing new directions
for explaining gene-diet interactions for cardiometabolic health.12

We depicted the sociodemographic and dietary determinants of
human gut mycobiome in middle-aged and elderly individuals
and further revealed that the gut mycobiome might be closely
associated with the host metabolic health through regulating gut
bacterial functions and metabolites.19 In addition, higher red meat
intake might interact synergistically with proteomic biomarkers to
exaggerate T2D risk.20

DISCUSSION

In 2008, we launched the GNHS project, a cohort designed to
provide evidence for the determinants of metabolic diseases in
nutritional aspects, as well as other environmental and genetic
factors, and explore possible biomarkers and mechanisms with
multi-omics integration. The main feature of the GNHS project is
facilitating new research by providing multi-omics database
containing more than 14 years of follow-up covering a variety of
diseases.

As shown in Table 1, compared to the CCFH participants
at baseline, the original GNHS participants had less physical
activity and more energy intake; were more likely to be higher
educated and smokers; and had a lower proportion of calcium
supplement users and multivitamin users, possibly owing to a
higher proportion of women and older age in CCFH. There were
relatively few opportunities for women and older people to
receive higher education. On the other hand, women tended to
pay more attention to their health status than men. The differences
in baseline characteristics between women and men in the GNHS
were also largely explained by the fact that women were more
concerned about their own health than men.

In this community-based prospective cohort of Chinese
population, our findings suggested that n-6 PUFAs and the gut
microbiome co-changed during the development of T2D risk,
which highlighted a novel mechanism by which fatty acids or the
gut microbiome may influence the risk of T2D.18 Furthermore,
our finding that gut antibiotic-resistant bacteria were broadly
associated with fecal metabolites might reflect host-microbe
metabolic adaptation.34 Bacteria can vertically develop resistance
to multiple antibiotics by mutating central housekeeping genes
that affect their metabolism.35 A study on Escherichia coli
showed that the acquisition of antibiotic resistance is accom-
panied by metabolic networks that are specifically reconstituted to

circumvent metabolic costs.36 Taken together, these findings
provide a potential explanation for the mechanism behind the
associations observed in this cohort study.

The study has several advantages. First, the research benefits
from deep phenotyping, including multiple state-of-art omics
(genome-wide genotyping, proteomics, gut microbiome, and
metabolomics profiles), instrument examination (MRI, DXA,
ultrasound, and 14-d real-time continuous glucose monitoring),
a variety of cytokines and nutrients, and biochemical tests,
which makes our cohort one of the most profound studies on
multi-omics and diseases in the world, since most omics studies
are case-control. Second, GNHS has the advantage of having
relatively large sample sizes for multi-omics and MRI-related
cohort studies. To the best of our knowledge, it has multi-omics
and MRI data from thousands of individuals, which is rarely seen
in other population-based cohorts. Third, with more than 14 years
of face-to-face follow-ups and direct examinations, the quality
of data collected in this community based-cohort was relatively
high.

However, rare exposures and outcomes cannot be studied in
the GNHS program, since a sample size of several thousand
participants is limited for exploring the associations between
rare exposures and outcomes. Furthermore, the GNHS project
recruited participants only in Guangzhou, China and might need
to coordinate and link data from multiple cohorts in different
areas to achieve broader sample representativeness. In addition,
this study was limited by the lack of random sampling due to the
need for long-term follow-up.

Conclusion
The cohort will provide data that will be influential in establishing
the role of nutrition in metabolic diseases with multi-omics. The
findings of this study will improve our understanding of possible
mechanisms in metabolic diseases and provide useful informa-
tion for the establishment of nutrition prevention strategies for
metabolic diseases.
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