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Psychiatric disorders show high co-morbidity, including co-morbid expressions of subclinical psychopathology across multiple
disease spectra. Given the limitations of classical case-control designs in elucidating this overlap, new approaches are needed to
identify biological underpinnings of spectra and their interaction. We assessed autistic-like traits (using the Autism Quotient, AQ)
and schizotypy - as models of subclinical expressions of disease phenotypes and examined their association with volumes and
regional cerebral blood flow (rCBF) of anterior, mid- and posterior hippocampus segments from structural MRI scans in 318 and
arterial spin labelling (ASL) in 346 nonclinical subjects, which overlapped with the structural imaging sample (N= 298). We
demonstrate significant interactive effects of positive schizotypy and AQ social skills as well as of positive schizotypy and AQ
imagination on hippocampal subfield volume variation. Moreover, we show that AQ attention switching modulated hippocampal
head rCBF, while positive schizotypy by AQ attention to detail interactions modulated hippocampal tail rCBF. In addition, we show
significant correlation of hippocampal volume and rCBF in both region-of-interest and voxel-wise analyses, which were robust after
removal of variance related to schizotypy and autistic traits. These findings provide empirical evidence for both the modulation of
hippocampal subfield structure and function through subclinical traits, and in particular how only the interaction of phenotype
facets leads to significant reductions or variations in these parameters. This makes a case for considering the synergistic impact of
different (subclinical) disease spectra on transdiagnostic biological parameters in psychiatry.
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INTRODUCTION
The overlap of symptoms and phenotypes between mental
disorders and the problem of co-morbidity have become
paramount for an understanding of their biological basis [1–3]
as well as precision psychiatry interventions [4]. In clinical practice,
this challenge spans the entire range of diagnostic assessments,
prognostic evaluation, and implementation of personalised
treatments, which consider individual specifics of each patient.
Similarly, neurobiological research on mental disorders faces an
increasing demand to conceptualise and understand comorbid-
ities of mental disorders.
While conventional case-control-studies have grown to include

large cohorts in mega-analyses, for example in genomics and
brain imaging [5, 6], it has become increasingly clear, that these
designs have inherent shortcomings when addressing the
problem of comorbidity. In many of the above studies,
comorbidity might often be treated as a co-variate (or neglected),
failing to take into account interacting effects between disease
spectra, which might manifest in additive or diametrically

opposed effects on a biological parameter. Examples of this
include the schizophrenia/psychosis spectrum and autisms
spectrum disorders [7], or the overlap between affective disorders
and anxiety disorders [8], where a main diagnosis is frequently
accompanied by clinical or subclinical manifestation of a second
phenotype. Addressing the problem of comorbidities is, however,
not just a matter of adjusting the variability or heterogeneity in
case-control studies. Research over recent years has made it
increasingly clear that many of the established typical comorbid-
ities are not just a result of chance, but rather reflect an inherent
genetic or brain-level predisposition spanning conventional
diagnostic categories [7]. On the genomic level, recent GWAS
(genome wide association studies) have shown overlaps of
common genetic risk variance between psychotic, affective,
anxiety, and substance related disorders [6, 9]. In parallel,
neuroimaging research has shown benefit from transdiagnostic
studies demonstrating overlaps versus more specific structural or
functional patterns of abnormalities characterising these condi-
tions [10–12].
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In order to conceptualise comorbidities (in particular those that
occur clearly well above chance level), it might be important to
consider single disease dimensions rather than diagnostic
categories. In schizophrenia, for example, different brain correlates
and mechanisms have been studied for positive vs. negative
symptom dimensions [13–17]. This is also the case for subclinical
risk phenotypes like schizotypy [18–20].
Dimensional approaches to psychopathology and underlying

neurobiology, including Research Domain Criteria (RDoC) [21, 22]
and other systems [23] have proposed transdiagnostic
approaches, which in part also address the problem of comorbid-
ity. However, their focus on transdiagnostic modelling, which has
improved our understanding of neural underpinnings across or
independent of clinical diagnostic boundaries, has not yet led to
testable models of how certain phenotype or behavioural facets
interact in generating variation in brain structure/function. In the
case of the schizophrenia/psychosis versus the autism spectrum
disorder (ASD) overlap, different models have been proposed to
explain the co-occurrence as well as interactive effects on disease
courses and treatment [7]. Previous research indicates that ASD
and schizophrenia/psychosis exhibit both opposing and partially
overlapping phenotypes, with ASD symptoms overlapping with
negative symptoms and diametrically opposed to positive
symptoms of schizophrenia/psychosis [24, 25]. This pattern has
also been demonstrated in nonclinical cohorts, where the
expression of subclinical phenotypes is studied and similar
patterns have emerged [26, 27].
Most previous studies addressing problems related to neuro-

biological overlap versus distinct signatures across multiple
mental disorders have suffered, however, from particular draw-
backs related to commonly used case-control designs. For one,
direct comparisons between particular disorders are hampered by
disease-characteristic differences in age of onset, such as studies
comparing adolescent-/adulthood-onset psychosis versus
childhood-onset ASD [9, 28–31], or psychotic disorders versus
adulthood-onset affective disorders [2]. Also, differences in disease
course as well as treatment may limit the use of many available
large-scale patient cohorts to specifically address problems related
to comorbidity.
In the present study, we chose a novel approach for modelling

co-occurrence of disease spectrum phenotypes. This approach
uses well-established subclinical phenotypes that a) are multi-
dimensional (i.e., characterise different aspects within a disease-
related symptom spectrum), and b) are assessed in a nonclinical
cohort with subclinical expression of disease-related phenotypes
already established as having a biological link to the disease part
of the spectrum. In this cohort, we then analysed both high-
resolution structural brain scans and regional cerebral blood flow
to illustrate underlying neurobiological patterns of multi-
dimensional traits linked to disease and disease risk. Analysing
subclinical expressions of disease phenotypes confers several
advantages over mentioned case-control designs, such as
eliminating the confounding effects of medication and illness
chronicity, yet it requires specific deep phenotyping using
established and validated trait (or state) markers of specific
disease spectra or continua.
Based on extensive previous work relating subclinical autistic

traits to genetic and brain structural markers linked to the clinical
autism spectrum [32–34], as well as markers of psychosis
proneness (measured with the positive scale of psychometrically
established schizotypy questionnaire), which have been related to
brain imaging markers [19, 35, 36], we test a computational
modelling hypothesis integrating the concepts of overlapping
versus diametrically opposed single symptom dimensions [7, 26]
in the case of the hippocampus. Clearly, among the multiple brain
regions associated with mental illness, the hippocampus has a key
role – particularly in the psychosis spectrum. Prior work indicated
that cerebral blood volume and cerebral blood flow are increased

in subjects at risk for psychosis [37–40]. Furthermore, Schobel and
colleagues demonstrated that increased cerebral blood volume
indicates future grey matter loss in the hippocampus [39].
Increased cerebral blood flow/volume are also found in subjects
with early psychosis [41, 42], thus rendering increased cerebral
blood flow/volume an interesting marker of emerging and early
psychosis. Most recently, a mouse model of ErbB4 mutants—a
schizophrenia susceptibility gene—suggests that dysfunctional
inhibitory interneurons drive increased cerebral blood flow and
glutamine levels in the ventral hippocampus [43].
Moreover, accumulating evidence highlights the contribution of

the hippocampus to social and cognitive deficits in ASD [44],
which could be linked to aberrant decreases in hippocampal grey
matter volume [45, 46] and/or cerebral blood flow [47, 48]. Finally,
recent advances in MR-morphometry allow the separation into
functionally distinct and previously characterised subregions
[49, 50], which allow testing our hypotheses in the context of
risk phenotypes like schizotypy, early psychosis, and schizophrenia
[39, 41, 42, 51], and ASD [47] on volumes and perfusion in different
parts of the hippocampus. Given evidence for the co-occurrence
of autistic and positive schizotypal traits and that these dimen-
sions might be anticorrelated within the same individual, we
hypothesize that autistic and positive schizoptypal traits will be
synergistically associated with hippocampal volume and CBF. This
approach offers a more comprehensive understanding of the
effect of individual combinations of disease spectrum phenotypes
on hippocampal structural and functional variations.

METHODS
Study cohort
We included a total of N= 318 (204 female/114 male; mean age = 23.95,
SD= 3.85) psychiatrically healthy subjects within the age range of 18–40
years. Participants were recruited from the local community through
advertisements and circular emails, and all were of central European
descent. Using the German version of the Structured Clinical Interview for
DSM-IV screening tool (SCID-I; [52, 53]), we ensured the absence of current
or former psychiatric disorders; further exclusion criteria were: past and
current substance abuse, history of traumatic brain injury and any
neurological pathology, psychotropic medication, as well as other
untreated medical conditions. The MWT-B [54], a German-language
word-list based estimate of IQ, was used to ascertain an IQ > 80 as well
as estimate IQ values for participants. All subjects gave written informed
consent to a study protocol (according to the latest Declaration of Helsinki;
[55]) approved by the local ethics committee of the School of Medicine,
Philipps-University Marburg.
The ASL (arterial spin labelling) analysis was based on a sample of 346

psychiatrically healthy subjects, within the age range of 18–40 years (222
female/124 male; mean age = 23.94, SD= 3.89), which overlapped with
the structural imaging sample (n= 298).

Phenotyping
Schizotypy was measured using three subscales: the Schizotypal Personality
Questionnaire – Brief version (SPQ-B; [56]), the Oxford-Liverpool Inventory of
Feelings and Experiences (O-LIFE; [57, 58]), and the recently developed
Multidimensional Schizotypy Scales (MSS; [59, 60]). This approach takes into
account that currently used schizotypy inventories might show minor
divergence, which might be based on the conceptualisation, for example the
DSM criteria of schizotypal personality disorder (in the case of SPQ), a fully
dimensional model of schizotypy (for O-LIFE), or a spectrum pathology
model validated using classical test theory, item response theory, and
differential item function approaches (MSS). Composite scores of positive,
negative and disorganised schizotypy were calculated by averaging the
standardised values of the measures’ respective subscales.
Autistic traits were assessed using the Autism Quotient Spectrum (AQ)

[61], which consists of five subscales: Social skills, communication,
attention switching, attention to detail and imagination. Based on recent
psychometric recommendations [62], and evidence that different domains
of autism are underpinned by different genetic influences [63], we used
the subscales in the analyses to provide a more nuanced information of
the specific domains that might be at play.
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In addition, we applied Beck’ Depression Inventory (BDI) to assess
concurrent (subclinical) depressive symptoms, for removal of effects in
later analysis [64, 65].

Magnetic resonance imaging (MRI) data acquisition and pre-
processing
All images were acquired with a 3 T Siemens Tim Trio MRI scanner with 12-
channel quadrature head coil, located at the BrainImaging Core Facility of
the University of Marburg, Department of Psychiatry and Psychotherapy.
For structural T1 images, a 3D MP-RAGE sequence with 176 sagittal slices
was used to obtain voxels with an isometric size of 1 mm3. Acquisition time
of this sequence was 4:26min with TR = 1900ms, TE= 2.26ms, TI= 900
ms, field-of-view= 256mm × 256mm, isotropic voxel size 1.0 mm ×
1.0mm × 1.0mm, and flip angle = 9°. A total of 364 images underwent
visual cheques for artefacts and homogeneity or anatomical abnormalities
before they were passed on to the pre-processing pipeline included in
Freesurfer version 6.0 (https://surfer.nmr.mgh.harvard.edu; [66, 67]). We
used the main reconstruction (recon-all command) pipeline for tissue
segmentation, and acquired bilateral volumes of the whole hippocampal
formation, head, body and tail (HBT) subdivisions based on the automated
probabilistic brain atlas [68] implemented in FreeSurfer 6.0.
The FreeSurfer segmentation algorithm is highly reliable, yet we aimed

to optimise its accuracy [69] by adding an additional step for quality
assurance. To this end, we compared raw and prescan-normalised (a
scanner-based image homogeneity correction) versions of T1 images for
each participant, excluding data of 46 individuals whose unnormalized-to-
normalised image differences exceeded 3% for whole hippocampal
volumes. The final sample comprised whole and HBT hippocampal
volumes from 318 participants. Total Intracranial volume (ICV) was
controlled for in all statistical analyses of a) whole and b) HBT hippocampal
volumes.
Volumes of overall and the head, body and tail subdivisions of left and

right hemisphere hippocampi were computed, as previously described [19].
Perfusion images were acquired with a pulsed arterial spin labelling

(PASL) sequence at rest, using Siemens’ Proximal Inversion with Control of
Off-Resonance Effects (PICORE Q2T) protocol. It included 16 slices with
7mm thickness and a distance factor of 25%, with TR= 3000ms,
TE= 11ms, inversion time 2 TI2= 2200ms, TI1= 700ms, and saturation
stop time=1600ms, a field of view of 230 mm2 and flip angle of 90°, 153
measurements and a resulting voxel size of 3.6 mm × 3.6mm × 6.0 mm.
The first volume is an M0 image (i.e., equilibrium brain tissue magnetisa-
tion image) that was used for CBF quantification.
During pre-processing, all 153 images underwent motion correction and

realignment, CBF quantification in native space (CBF quantification was
performed using formula [1] as described in [70]), all 76 single CBF images
including mean CBF images were co-registered with the individual
anatomical T1 scans, normalised in MNI space and smoothed with a
Gaussian kernel of 6mmx6mmx6mm.
Perfusion values of whole hippocampus and head/body/tail segments

were extracted using MarsBar and right and left whole hippocampus
masks provided by the Neuromorphometrics atlas (Neuromorphometrics
Inc.), which were additionally split into three parts according to y-planes at
coordinates y=−15 and y=−30, aiming to mirror Freesurfer’s partitions.

Statistical analysis
We performed two separate MANCOVAs, using SPSS 26. The first examined
the association of the standardised scores of positive schizotypy, the
standardised AQ’s five subscales, and their 2-way interactions with overall
volume variation of the left and right hippocampi, and their subfields
(head, body and tail). The second MANCOVA included the same set of
predictors as the first, but this time it examined their association with CBF
variation in the left and right hippocampi, and their subfields (head, body
and tail). Both MANCOVAs were performed while controlling for age, sex
and total intracranial volume (ICV). IQ, depressive symptoms (BDI),
negative, and disorganised schizotypy were not correlated with hippo-
campal volumes or CBF (ps > 0.05) and thus were not included in either of
the MANCOVA models. Visualisation of the significant interactions from the
MANCOVAs was performed with response surface analysis methodology
(RSA) [71], using RStudio Version 2023.03.0+ 386. RSA enables us to map,
in 3-D space, the response surface pattern of the 2-way interacting
symptoms/dimensions with level of hippocampus volumes/CBF, as well as
to test, based on the parameters of the interaction terms, whether the
combined effect of the interacting terms is linear or curvilinear along two
axes: the axis of balance or congruence, where the values of Predictor 1 =

Predictor 2, and the axis of bias or incongruence, where the values of
Predictor 1= - Predictor 2. The distribution of raw values for the
hippocampus volumes, CBF as well as the distribution of the standardised
values of the AQ subscale scores and of the standardised composite
positive schizotypy scores are provided in the Supplementary Material.

Correlation between volume and CBF
In reference to previous work [72], we also analysed the correlation
between structural and functional variation in the hippocampal sections, as
well as voxel-wise within the whole hippocampus, independent of
phenotype.
Sectional analyses were conducted by extracting individual volumes of

three sections of hippocampi (e.g. head-, body and tail of hippocampus)
and individual CBF values averaged over these volumes. A linear regression
was then performed with age and gender as covariates to investigate the
relationship between volume and resting CBF. We applied false discovery
rate (FDR) correction for multiple comparisons across the three hippo-
campal sections of each hemisphere. In addition, we also repeated these
correlation analyses controlling for positive schizotypy and each of the AQ
subscales.
Voxel-wise analyses were conducted using the SPM software package

(Statistical Parametric Mapping, Wellcome Centre for Human Neuroima-
ging, Institute of Neurology, London, UK) and the CAT12 toolbox (version
12.8, build r2137; Christian Gaser, Structural Brain Mapping Group, Jena
University Hospital, Jena, Germany), running under Matlab 2019a. To that
end, CBF images were co-registered to the volumetric images. For
statistical analysis, we set up a full factorial model with a voxel-wise
covariate and estimated the model using the TFCE (Threshold-Free Cluster
Enhancement) toolbox.

RESULTS
Hippocampal volumes
The results of Pillai’s Trace of the MANCOVA for hippocampal
volumes showed that only the positive schizotypy x social skills
interaction (Pillai’s Trace Value= 0.060, F(6, 298)= 3.15, p= 0.005,
ηp2= 0.060), and the positive schizotypy x imagination interaction
(Pillai’s Trace Value= 0.048, F(6, 298)= 2.51, p= 0.022, ηp2= 0.048)
were significant predictors. Beta estimates showed a significant
negative association between the positive schizotypy x social skills
interaction with both left and right whole hippocampal volumes
and all subfields (see Table 1, Fig. 1). The legend of Fig. 1 reports the
results of the RSA of these interactions. Conversely, beta estimates
showed that the positive schizotypy x imagination interaction was
positively associated with both left and right whole hippocampal
volumes and specifically with the head subfield volume (see
Table 2, Fig. 2). The legend of Fig. 2 reports the results of the RSA of
these interactions.

Hippocampal cerebral blood flow (CBF)
The results of Pillai’s Trace of the MANCOVA for CBF showed a
significant effect only for increased focus of attention (AQ
attention switching; Pillai’s Trace Value= 0.041, F(6, 326)= 2.33,
p= 0.033, ηp2= 0.041), and for the interaction of positive
schizotypy x attention to detail (Pillai’s Trace Value= 0.043, F(6,
326)= 2.46, p= 0.024, ηp2= 0.043). Beta estimates showed a
positive, but a nonsignificant, association between increased focus
of attention and right head hippocampal CBF (β(se) = 1.27(.72),
t(df=333)= 1.76, p= 0.079, Cohen’s d= 0.19). Beta estimates
showed that the positive schizotypy x attention to detail
interaction was positively and significantly associated with CBF
of both the left (β(se) = 2.74(.99), t(df=333)= 2.76, p= 0.006,
Cohen’s d= 0.31) and right (β(se) = 2.11(1.01), t(df=333)= 2.08,
p= 0.038, Cohen’s d= 0.23) hippocampal tail (see Fig. 3). The
legend of Fig. 3 reports the results of the RSA of these interactions.

Correlation between volume and rCBF
In the sectional analyses, we observed, as can be seen in Table 3,
small but significant positive correlation between volume and CBF
in the left hippocampal tail (T(df=295)= 2.268, puncorrected= 0.024)
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body
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Fig. 1 Response surface analysis (RSA) of the interactive association of positive schizotypy and AQ social skills with left and right head,
body and tail hippocampal volumes (mm3). The blue line is the balance axis, and the black dotted line is the bias axis, where the balance axis
represents equal expressions of autistic and positive schizotypy traits, and the bias axis (orthogonal to the balance axis) represents the relative
and progressive dominance of autistic and/or positive schizotypy traits. Figures show a curvilinear relationship between these traits and
hippocampal volumes, with volumes being larger along the bias axis and particularly in individuals with an AQ social skills-dominant trait
profile. This was significant for the left head (β(se) = 38.26 (10.36), 95%CI= (17.96, 58.55), p < .001), left body (β(se) = 19.57 (8.34), 95%CI=
(3.23, 35.91), p = 0.019), left tail (β(se) = 13.68 (4.69), 95%CI = (4.49, 22.87), p= 0.004), as well as for the right head (β(se) = 37.93 (12.06), 95%
CI= (14.31,61.56), p = 0.002), right body (β(se) = 17.82 (6.64), 95%CI= (4.81, 30.84), p = 0.007), and right tail (β(se) = 11.27 (5.20), 95%CI = (1.08,
21.45), p = 0.030). Volumes were also smaller in individuals with relatively balanced levels of positive schizotypy and AQ social skills, and
particularly in individuals with either low-low or high-high trait profiles, but this was significant only for the tail bilaterally (Left: β(se)=−20.37
(5.69), 95%CI = (−31.53, −9.22), p < .001; Right: β(se)=−11.97 (5.91), 95%CI = (−23.55, −0.38), p = .043). Surface colour-coding represents the
volume of the hippocampus from low (green) to high (red).

Table 1. Beta estimates of the interactive association of positive schizotypy and social skills on total and subfield hippocampal volumes.

Region B SE t(df=303) p Lower 95% CI Upper 95% CI Cohen’s d

Left Hippocampal tail −20.84 5.28 3.95 0.000 −31.24 −10.45 0.45

Left Hippocampal body −25.90 8.51 3.04 0.003 −42.65 −9.15 0.35

Left Hippocampal head −34.38 12.96 2.65 0.008 −59.87 −8.89 0.30

Left Whole hippocampus −81.13 22.24 3.65 0.000 −124.88 −37.37 0.42

Right Hippocampal tail −17.87 5.313 3.37 0.001 −28.32 −7.42 0.39

Right Hippocampal body −18.78 8.42 2.23 0.026 −35.35 −2.21 0.26

Right Hippocampal head −32.01 13.01 2.46 0.014 −57.62 −6.41 0.28

Right Whole hippocampus −68.66 22.42 3.06 0.002 −112.78 −24.54 0.35

Β parameter estimate; SE Standard Error, t value of t statistics; df Degrees of Freedom; p value of significance (significant if p < 0.05); L CI Lower bound of
confidence interval; U CI Upper bound of confidence interval; Cohen’s d Effect size.
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and the right hippocampal body (T(295)= 2.846, puncorrected=
0.005), as well as a trend for the right hippocampal head
(T(295)= 1.953, puncorrected= 0.052). In the other sections, this
association was not significant. However, only the right hippocam-
pal body survived FDR correction (pFDR = 0.028). This association
remained significant after controlling for each of the AQ subscales
and positive schizotypy (all ps < 0.05). Significant results of the
voxel-wise analysis (FWE-peak-level correction with p < 0.05) are
visualised in Fig. 4.

DISCUSSION
In this study, we address the problem of overlap and interaction of
psychiatric spectrum phenotypes using a refined dimensional
model of autistic vs. schizotypal traits in a cohort with subclinical
trait expression. This novel approach allows us to expand a
previously developed and evaluated psychometric model [7,
26, 73] towards establishing an alternative framework for the
study of co-morbidities in psychiatric disorders based on
biological data. Our findings challenge the notion that brain
volume loss is a general feature of schizophrenia spectrum
phenotypes [74], and contrary to previously held assertions
[75, 76], demonstrating that decreased volumes can occur
independent of the effect of antipsychotic drugs. This is also in
line with recent studies of hippocampal volume and perfusion in
schizotypy [19, 42], as well as clinical high-risk and developing

psychosis [39, 51]. These changes might indicate neurodevelop-
mental failure or a state marker of conversion to psychosis
proneness [77]. As such, our findings might suggest different
aetiologies or pathways leading to brain structural or functional
changes. Our approach might thus be useful in facilitating clinical
trial enrichment and stratification, as well as precision diagnostics,
expanding designs to consider subclinical phenotypes and
phenotype overlaps [78, 79].
Our findings provide at least three major novel implications for

precision psychiatry approaches: first, they demonstrate that
hippocampal volumes and regional blood flow are not only
sensitive to subclinical expression of either schizotypy and autistic
traits, but that these phenotypes interact, resulting in more
complex nonlinear effects. In the case of psychosis-ASD overlap,
such effects have been hypothesised from phenotype and
cognitive studies [31, 80, 81] and clinical studies of social
functioning [82], but hardly for biological markers [18]. Among
our main findings is the observation of a pervasive negative
interactive association of positive schizotypy and AQ social skills
with whole and subfield hippocampal volumes in both hemi-
spheres. Response surface analysis revealed that a shift from a
positive schizotypy-dominant to AQ social skills-dominant trait
profile followed a curvilinear pattern, with volumes being larger in
individuals with an AQ social skills-dominant trait profile.
Intriguingly, volumes were smaller in individuals with relatively
balanced levels of positive schizotypy and AQ social skills, and

head

Fig. 2 Response surface analysis (RSA) of the interactive association of positive schizotypy and AQ imagination with left and right head
hippocampal volumes (mm3). The blue line is the balance axis, and the black dotted line is the bias axis, where the balance axis represents
equal expressions of autistic and positive schizotypy traits, and the bias axis (orthogonal to the balance axis) represents the relative and
progressive dominance of autistic and/or positive schizotypy traits. Figures show a curvilinear relationship between these traits and
hippocampal volumes, with volumes being smaller, although nonsignificant (p > 0.05), along the bias axis and particularly in individuals with a
positive schizotypy-dominant trait profile, and larger in individuals with relatively balanced levels of positive schizotypy and AQ imagination,
and particularly in individuals with either low-low or high-high trait profiles (Left: β(se) = 34.93 (14.36), 95%CI = (6.79, 63.08), p = .015; Right:
β(se) = 52.46 (15.46), 95%CI = (22.16, 82.75), p < .001). Surface colour-coding represents the volume of the hippocampus from low (green) to
high (red).

Table 2. Beta estimates of the interactive association of positive schizotypy and imagination on total and subfield hippocampal volumes.

Region B SE t(df=303) p Lower 95% CI Upper 95% CI Cohen’s d

Left Hippocampal tail 7.41 4.31 1.72 0.087 −1.07 15.89 0.20

Left Hippocampal body 13.60 6.94 1.94 0.053 −0.25 37.88 0.22

Left Hippocampal head 38.38 10.57 3.63 0.000 17.59 59.18 0.42

Left Whole hippocampus 59.39 18.14 3.27 0.001 23.69 95.08 0.38

Right Hippocampal tail 7.31 4.33 1.69 0.092 −0.60 23.18 0.19

Right Hippocampal body 9.12 6.87 1.33 0.185 −4.39 22.64 0.15

Right Hippocampal head 28.09 10.61 2.65 0.009 7.20 48.97 0.30

Right Whole hippocampus 44.52 18.29 2.44 0.015 8.54 80.51 0.28

Β parameter estimate; SE Standard Error, t value of t statistics; df Degrees of Freedom; p value of significance (significant if p < 0.05); L CI Lower bound of
confidence interval; U CI Upper bound of confidence interval; Cohen’s d Effect size.
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particularly in individuals with either low-low or high-high trait
profiles. Hence, the combination of two (rather than one isolated)
spectrum markers more adequately predicted regional volume.
This finding is important as it demonstrates that analysing
multiple disease spectra in conjunction is a more powerful and

adequate approach to mapping psychopathology on brain
circuits. This also helps explain seemingly paradoxical findings,
such as the combination of high positive schizotypy and high AQ-
social skills resulting in preserved hippocampal volumes. These
findings may suggest compensation across mechanisms

tail

Fig. 3 Response surface analysis (RSA) of the interactive association of positive schizotypy and AQ attention to detail with left and right
tail hippocampal cerebral blood flow (CBF in ml/100mg/min). The blue lines are the balance and bias axes, where the balance axis
represents equal expressions of autistic and positive schizotypy traits, and the bias axis (orthogonal to the balance axis) represents the relative
and progressive dominance of autistic and/or positive schizotypy traits. Figures show a curvilinear relationship between these traits and
hippocampal volumes, with volumes being smaller along the bias axis and particularly in individuals with either positive schizotypy-dominant
or an AQ attention to detail-dominant trait profile, and larger in individuals with relatively balanced levels of positive schizotypy and AQ
attention to detail, and particularly in individuals with either low-low or high-high trait profiles. However, this curvilinearity was only
significant for the association of the balance axis with CBF of the left hippocampal tail (Left: β(se) = 2.44 (0.81), 95%CI= (0.85, 4.03), p = 0.003;
Right: β(se)=−3.24 (1.93), 95%CI = (−7.02, 0.55), p = .094). Surface colour-coding represents the CBF of the hippocampus from low (green) to
high (red).

Fig. 4 Correlation between volume and cerebral blood flow (independent of phenotype) in the six hippocampal sections (left). Results
show significant positive correlations between volume and CBF in the left hippocampal tail (T(df = 295)= 2.268, puncorrected= 0.024) and the
right hippocampal body (T(295)= 2.846, puncorrected= 0.005; pFDR= 0.028) and in a voxel-wise analysis (right) within a mask containing both
whole hippocampi. Colours indicate sections and voxels with significant correlations and correlation strength.

Table 3. Correlation between volume and CBF of left and right subfield hippocampal volumes, controlling for age and gender.

Region r t(df=295) Puncorrected PFDR
Left Hippocampal tail 0.13 2.27 0.024 0.072

Left Hippocampal body 0.05 0.86 0.393 0.393

Left Hippocampal head 0.09 1.54 0.149 17.59

Right Hippocampal tail 0.10 1.70 0.089 0.134

Right Hippocampal body 0.16 2.85 0.005 0.028

Right Hippocampal head 0.11 1.95 0.052 0.103
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associated with ASD and SSD. We reason that this compensatory
mechanism is plausible, given previous studies reporting that ASD
was associated with increased volume [83, 84] and SSD with
reduced volume [20, 85, 86]. Collectively, the co-occurrence of
ASD and SSD may yield effects that are protective of normative
brain structures, which mirrors previously observed effects of ASD
and SSD on brain and social functioning [17, 18]. Main effects only
models are thus likely to yield incomplete information as to the
association between brain-disease specific phenotypes. Moreover,
the specificity of the association of positive schizotypy and AQ
social skills with hippocampal volumes highlights the ever-
increasing significant role of the hippocampus for social processes
[44, 87], core features of both ASD and SSD. Volume of a brain
structure is, however, determined by multiple factors, including
not only cell number or size, but possibly also regional cerebral
blood volume and flow. In interpreting our findings, it is thus
important to acknowledge that it remains unclear how different
molecular or cellular level changes or pathways might result in an
overall volume effect. For example, in schizophrenia, volume and
neuron numbers are reduced in the hippocampus [86], but the
underlying post mortem studies cannot infer on the timing of
these changes. Hence, these processes might only commence
after disease onset or might in part be prevalent in subjects at
higher risk, such as those with high (positive) schizotypy. In
contrast, even in the absence of cellular-level (micro)structural
changes, the potential overlap in GABAergic activity in
parvalbumin-positive neurons to hippocampal dysfunction in
schizophrenia and autism [88, 89] might be relevant to a common
pathway. Although our study cannot infer on which of these
mechanisms might relate to the macroscopic variation in
hippocampal volume (and blood flow), our findings make the
case that in the study of a disease spectrum, phenotype data from
other complementary clinical spectra can yield complementary
information to better understand effects that might result in
masking or unmasking of neural-level processes.
An important aspect and point of relevance for clinical studies

is that our findings demonstrate (on the phenotype facet level)
an equifinality of outcomes when combining multiple pheno-
types. In other terms, reduction of hippocampal volume (or
subfields) might emerge as a result of multiple combinations of
risk factors or psychopathologies combined. This would add an
additional perspective on recent large-scale patient studies and
meta-analyses, which have demonstrated shared regional or
pathway pathologies across multiple psychiatric disorders
[1, 90, 91] – yet the lack of regional specificity might have been
due to lack of facet-level phenotyping as well as their
interaction. Hence, “common” effects in transdiagnostic studies
might actually be the result of “obscured/unmeasured” single
facet effects.
Second, our subfield analysis approach also indicates that these

interactions are not uniformly observed across the hippocampus,
but that different subregions of the hippocampus are differentially
sensitive to these effects, with an additional dissociation of
structural vs. functional effects. These are reflected in the two
other major findings, i.e., the positive interactive association of
positive schizotypy and AQ imagination scores on the total
hippocampus and the hippocampal head subfield volumes, as
well as the positive interaction for rCBF with positive schizotypy
and AQ attention to detail phenotypes, where effects were
prominent in the left and right hippocampal tail only. This
indicates at least two dissociations, i.e., by hippocampal region as
well as for structure (volumes) vs. function (rCBF). Indeed, recent
association studies for schizotypy have failed to identify correla-
tions with total hippocampal volume per se [92], while subfield
analyses do report effects on particular subregions related to
subclinical psychotic-like features [20]. Moreover, studies have
found increased [83, 84], decreased [93] and no association
[94, 95] of hippocampal volumes with ASD. One potential source

for this inconsistency in results is variation of unmeasured co-
occurring subclinical expressions.
Third, and finally, our findings provide first empirical evidence

for a fully dimensional approach taking into account the
interaction of disease spectra, showing how co-occurring pheno-
types might interact to affect functional and structural outcome.
This has implications for future analysis embracing precision
psychiatry. Most studies of putative biomarkers in psychiatry use
case-control studies, such as brain volume comparisons of
schizophrenia patients vs. healthy controls [96] or multiple
diagnostic groups vs. healthy controls [1]. However, such
categorical comparisons typically consider clinical “supra-thresh-
old” expressions of psychiatric phenotypes, vastly neglecting
variance within both cases and controls, and only consider
disease-related phenotypes as a whole (rather than particular
facets of the phenotype). Even with the development of recent
novel meta-analytic approaches to co-morbidity mapping [97],
they fail to consider how comorbid conditions interact to
influence outcome or the ubiquitous overlap with other disease
spectra, including the subclinical expression or psychopathology
other than the ones under study.
Our study used both structural and functional imaging markers

for the hippocampus and its subregions. Several mechanistic
models of cerebral blood flow or cerebral blood volume argue
that hyperactivity at the onset of psychosis might drive grey
matter loss in the hippocampus [72, 88]. Particularly, dysfunction
of parvalbumin positive inhibitory interneurons was linked to
increased cerebral blood volume in mouse models of psychosis. In
fact, multiple human studies detected hyperactivity in the ventral
hippocampus of subjects with early psychosis [37–41]. In addition,
reduced hippocampal grey matter volume and altered shape have
been reported from both neuroimaging and post-mortem studies
of psychosis [72, 77, 85, 86, 98], with a predominance for the left
anterior hippocampus. The timing of these group differences
suggested that hippocampal hyperactivity precedes symptom
onset and hippocampal volume decrease [88]. Also, glutamate
levels in the hippocampus correlated inversely with hippocampal
volumes in unmedicated first-episode psychosis [85]. Finally, a
recent mouse model of ErbB4 mutants demonstrated that
dysfunctional inhibitory interneurons may drive increased CBF
and glutamine levels in the ventral hippocampus, while glutamate
and GABA levels remained unchanged [43]. While timing and
extent of structural and perfusion changes in the hippocampus
may differ between subjects with psychosis and individuals with
schizotypal traits, our study suggests that this link is also relevant
in autism albeit with a different pattern. For example, reports of
increased hippocampus perfusion in autism are less consistent
[48, 99, 100]. Yet, changes in excitation and inhibition are capable
of shifting the balance between factors that define the metabolic
cost of a brain region as well as the formation of axonal
connections, and ultimately volume [48, 99]. To the extent that
rCBF/hippocampal volume variations are a reflection of excitatory
and inhibitory processes within the hippocampus, we invoke
findings from a magnetic resonance spectroscopy study to
substantiate this possibility, in which we showed that autistic
and positive schizotypal traits interactively predicted the balance
between excitatory (glutamate) and inhibitory (GABA+) neuro-
transmitter concentrations in the superior temporal cortex—a
region involved in social language and functioning [101] —and
that excitation/inhibition imbalance is associated with shared
psychosocial deficits across the ASD and SSD spectra [102].
Similarly, higher CBF was shown to correlate with lower
N-acetylaspartate (NAA) levels in frontal white matter of adults
with autism [48]. Therefore, it is plausible that association between
rCBF and hippocampal volume are modulated by the interaction
of autistic traits and schizotypy. Since our data did not permit
examining the interaction between autistic traits and positive
schizotypy with the interaction between rCBF and hippocampal
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volume, it would be important for future research to explore these
complex associations with properly powered structural equation
models (see Fig. 5 for details). Our analyses do, however, allow the
interpretation that volume and rCBF are coupled in the
hippocampus, albeit with considerable regional variation (see
Fig. 4), and that this seems to be a basic feature in healthy
subjects, independent of variations in positive schizotypy or
autistic-like phenotypes.
Recently, Parkes, Satterthwaite and Bassett (2020) have argued

for biomarker studies to consider transdiagnostic research
designs, dimensional models of psychopathology, as well as
modelling throughout development [79]. Such approaches would,
however, require not only multiple patient cohorts, but also a
more fine-grained psychopathology assessment at the facet level.
Many case-control studies fail on these requirements – not only
because they mostly consider only one patient group, but also
because they usually phenotype only for one disease spectrum
(e.g., psychotic symptoms in a schizophrenia cohort or mood in
affective disorder studies). Our approach, while applied to
subclinical phenotypes, adds multi-dimensional phenotyping to
this strategy, whereby multiple disease spectra are assessed and
facets (e.g., positive schizotypy or social skills) rather than global
psychopathological markers (e.g., psychosis severity) are consid-
ered for outcomes. While this approach could be translated to
established clinical cohorts, many of these seem to lack
phenotyping for multiple disease spectra. In addition, transdiag-
nostic phenotyping might require sensitive instruments that can
detect variations across diagnostic boundaries, such as impulsivity
or aggression [14], as well as validation across clinical spectra.
The use of this novel approach carries some limitations. First,

while the validity of both schizotypal traits and autistic-like traits
as part of respective disease continua is based on a wealth of
studies and data (e.g. [32, 35, 103]), it is not undisputed [104], and
for autism, for example, a more narrow definition of the
phenotype has recently been advocated [104]. Our approach
makes use of an extended phenotype conceptualisation of both
ASD and schizophrenia spectrum disorders (SSD). Yet, the strong
presence of substantial comorbidity in most psychiatric axis I
disorders clearly calls for spectrum models, given that subthres-
hold symptoms or traits are often present in any given established
psychiatric diagnostic category [105]. Second, our analysis so far is
limited to structural data and rCBF of the hippocampus, which was
chosen in a hypothesis-driven approach, given its relevance for
most psychiatric disorders as well as both cognitive and social
functions [87, 106, 107]. Task-based fMRI might be useful to study
particular cognitive functions related to the hippocampus (or its
subregions) and the spectrum overlap. Finally, our approach
focused on positive schizotypy, given its established diametric
relationship with certain autistic-like features as well as clinical
studies of this symptom spectrum in psychosis.

In conclusion, our findings provide first empirical evidence for
the interactive effects of two disease spectra (schizophrenia/
psychosis vs. ASD) on structure and function across multiple
hippocampal subfields. This provides a blueprint to studying
convergence of psychiatric disease spectra (rather than cate-
gories), resolving requirements suggesting that that informing
etiological and phenotypic overlaps between two diseases would
require the utilisation of a dual-diagnosis cohort compared with
two control groups, each singly diagnosed with one or other [108].
By using dimensional measures that cut across diagnostic
boundaries, our approach makes tangible the development of a
multidimensional model for understanding the relationship
between two disease spectra, and to uncover how different
disease combinations might affect an outcome within the
individual.
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