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Abstract
Motivation: Proteins, the molecular workhorses of biological systems, execute a multitude of critical functions dictated by their precise three- 
dimensional structures. In a complex and dynamic cellular environment, proteins can undergo misfolding, leading to the formation of aggregates 
that take up various forms, including amorphous and ordered aggregation in the shape of amyloid fibrils. This phenomenon is closely linked to a 
spectrum of widespread debilitating pathologies, such as Alzheimer’s disease, Parkinson’s disease, type-II diabetes, and several other proteino-
pathies, but also hampers the engineering of soluble agents, as in the case of antibody development. As such, the accurate prediction of aggre-
gation propensity within protein sequences has become pivotal due to profound implications in understanding disease mechanisms, as well as 
in improving biotechnological and therapeutic applications.
Results: We previously developed Cordax, a structure-based predictor that utilizes logistic regression to detect aggregation motifs in protein 
sequences based on their structural complementarity to the amyloid cross-beta architecture. Here, we present a dedicated web server interface 
for Cordax. This online platform combines several features including detailed scoring of sequence aggregation propensity, as well as 3D visuali-
zation with several customization options for topology models of the structural cores formed by predicted aggregation motifs. In addition, infor-
mation is provided on experimentally determined aggregation-prone regions that exhibit sequence similarity to predicted motifs, scores, and 
links to other predictor outputs, as well as simultaneous predictions of relevant sequence propensities, such as solubility, hydrophobicity, and 
secondary structure propensity.
Availability and implementation: The Cordax webserver is freely accessible at https://cordax.switchlab.org/.

1 Introduction
Proteins are the fundamental building blocks of life, playing piv-
otal roles in an array of biological processes. They are versatile 
molecules, executing functions ranging from catalyzing chemi-
cal reactions to providing structural support. However, the 
proper functioning of these biomolecules is inherently linked to 
their three-dimensional structure and stability (Dill and 
MacCallum 2012). In recent years, there has been a growing re-
alization that misfolding and aggregation of proteins, including 
the formation of amyloid structures, are critical determinants of 
both debilitating diseases and valuable biotechnological applica-
tions (Chiti and Dobson 2017, Louros et al. 2023). Protein ag-
gregation refers to the non-native, multimeric assembly of 
protein molecules, which often culminates in the formation of 
amyloid fibrils. These fibrils are characterized by their cross- 
β-sheet structure and have been implicated in a wide range of 
diseases including neurodegenerative disorders, such as 

Alzheimer’s, Parkinson’s, and Huntington’s disease, as well as 
localized or systemic amyloidosis, such as type-II diabetes or 
light-chain (AL) amyloidosis, respectively (Chiti and Dobson 
2017, Buxbaum et al. 2022). The accumulation of misfolded 
protein aggregates in various tissues is a hallmark of these disor-
ders and is associated with cellular dysfunction and organ fail-
ure. Conversely, in the field of biotechnology, protein 
aggregation and amyloid formation have emerged as both chal-
lenges and opportunities. Aggregation can reduce the yield and 
efficacy of recombinant protein production, affecting biophar-
maceutical manufacturing processes and biotherapeutic product 
quality (Hamrang et al. 2013). Conversely, amyloid-like protein 
structures have found utility in the development of functional 
materials (Chakraborty et al. 2019, Jin et al. 2022), including 
nanotechnology, drug delivery or enzymatic catalysis (Ghosh 
et al. 2023, Yuan et al. 2023), and tissue engineering (Das et al. 
2018), as well as a strategy for the targeted inactivation of hard- 

Received: 6 November 2023; Revised: 9 April 2024; Editorial Decision: 10 April 2024; Accepted: 24 April 2024 
# The Author(s) 2024. Published by Oxford University Press.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2024, 40(5), btae279 
https://doi.org/10.1093/bioinformatics/btae279 
Advance Access Publication Date: 25 April 2024 
Applications Note 

https://orcid.org/0000-0002-4030-1022
https://orcid.org/0000-0002-9189-7399
https://orcid.org/0000-0003-2020-0168
https://cordax.switchlab.org/


to-drug cellular factors related to diseases (Michiels et al. 2020, 
Janssen et al. 2023).

Consequently, it is essential to attain a comprehensive 
grasp of the factors that govern protein aggregation. The pro-
pensity of proteins to form amyloid structures is intrinsically 
encoded within their amino acid sequences (Tartaglia et al. 
2008, Navarro and Ventura 2022). These sequences contain 
local motifs, historically referred to as “aggregation-prone 
regions” (APRs), “amyloid motifs” or “amyloidogenic deter-
minants,” which have been demonstrated to actively facilitate 
the assembly of amyloid fibrils (Fernandez-Escamilla et al. 
2004, Ventura et al. 2004, Teng and Eisenberg 2009). APRs 
are ubiquitously distributed throughout the vast spectrum of 
proteins (Sawaya et al. 2007, Teng and Eisenberg 2009, 
Goldschmidt et al. 2010, Louros et al. 2020, Sawaya et al. 
2021). They are evolutionarily tied to the functional fold of 
soluble protein domains (Prabakaran et al. 2017, Langenberg 
et al. 2020), and are associated with the function of intrinsi-
cally disordered proteins (Santos et al. 2021), while also often 
acting as integral parts of transmembrane domains or 
protein-protein interaction interfaces (Castillo and Ventura 
2009). In addition, short amyloid motifs have been shown to 
drive the formation of functional amyloid scaffolds, as for in-
stance in the case of bacterial curli (Louros et al. 2016, Perov 
et al. 2019) or RHIMs, which form the necrosome complex 
or are employed by viruses attempting to hijack the same 
pathway (Mompe�an et al. 2018, Baker et al. 2020). 
Numerous studies have elucidated the capacity of APRs to 
autonomously self-assemble into aggregates with characteris-
tic amyloid-like morphologies when studied in isolation as 
peptide fragments (Sawaya et al. 2007, Guenther et al. 2018, 
Louros et al. 2020, Rawat et al. 2020). Their pivotal role in 
orchestrating the assembly of proteins is underscored by stud-
ies in which the introduction of APRs into proteins that typi-
cally do not aggregate induces their self-assembly (Ventura 
et al. 2002, Ivanova et al. 2004). Furthermore, mutational 
experiments have reinforced this link, demonstrating that al-
tering specific residues within APRs with the intent of deacti-
vating them results in the prevention of parental protein 
aggregation (Ventura et al. 2004, Teng and Eisenberg 2009, 
Guthertz et al. 2022). Recent research endeavours have also 
unveiled that APRs are capable of forming early intermediate 
species that are shared among various amyloid conforma-
tions of the same protein (L€ovestam et al. 2024), known as 
polymorphs, form homotypic interfaces that act as protofila-
ment contacts and establish common interactions that bolster 
the stability of fibril polymorphs extracted from the cerebral 
tissues of patients afflicted with various amyloid-related dis-
eases (Sawaya et al. 2021, Louros et al. 2022, van der Kant 
et al. 2022, Mullapudi et al. 2023, Louros et al. 2024).

We recently developed a logistic regression model to 
predict amyloid propensity in protein sequences with high 
sensitivity and specificity (Louros et al. 2020). As a structure- 
based approach, this tool named Cordax was shown to 
uncouple protein aggregation propensity from traditional se-
quence propensities, such as hydrophobicity and solubility, 
thus, increasing its ability to detect less common APRs in pro-
tein sequences (Hughes et al. 2018, Santos et al. 2021) and to 
outperform current state-of-art software dedicated to detect-
ing protein aggregation (Louros et al. 2020). Here, we report 
the development of a dedicated freely accessible webserver 
for Cordax that supports both the prediction and 3D visuali-
zation of predicted APRs in protein sequences.

2 Availability and implementation
The Cordax web server is accessible to users online at https:// 
cordax.switchlab.org/. This platform was designed and 
implemented using Netlify and is compatible with all devices 
and web browsers. While email registration is optional for 
users, it provides registered users the ability to maintain a 
personalized dashboard, enabling them to monitor the status 
of submitted tasks and access the outcomes of previous exe-
cutions. The new job submission page, as well as the person-
alized dashboard, are both accessible through dedicated 
buttons that are permanently displayed on the web server title 
bar (Fig. 1A, arrows). Briefly, in the operational framework 
of Cordax, an input protein sequence is dissected into hexa-
peptides via a sliding window technique. Cordax employs the 
FoldX energy force field (Schymkowitz et al. 2005) to execute 
all-atom modelling of sequences against its structural data-
base, as described previously (Louros et al. 2020), and the 
resulting free energies are converted into scores for each pep-
tide fragment, using a recursive feature elimination algorithm 
and a logistic regression model trained against experimentally 
determined amyloid motifs (Louros et al. 2020). This process 
generates an amyloidogenic profile by assigning the highest 
score obtained for each residue within the input sequence 
(Cordax Score). A structural model that best represents the 
predicted amyloid fibril core topology is also selected for win-
dows exceeding its scoring threshold (0.61). This operation is 
notably computationally intensive. However, computed ener-
gies are systematically recorded within an expanding data-
base, facilitating subsequent retrieval. This engenders an 
efficient interface that circumvents redundant computational 
tasks for recurring sequence segments in future submissions. 
More information on the above, as well as a detailed descrip-
tion of the features offered through the webserver interface is 
provided in an “About” and “Help” page available online.

3 Features of the Cordax webserver interface
3.1 Main scoring display
The tool accepts simple protein sequences as input, with a 
minimum length of six residues and a maximum of 50 resi-
dues (Fig. 1A). All-atom modelling is a computationally in-
tensive operation; hence, this length limitation has been set to 
expedite the webserver queue processing and to reduce out-
put waiting times. The structural context of protein sequen-
ces is retained, as Cordax uses local sequence information to 
profile aggregation propensity. However, considering that it 
employs a hexapeptide sliding window, scoring of residues at 
the end of queries derived from longer sequences will derive 
only from the subset of hexapeptide windows included in the 
sequence query. To adjust for this, users can run sequence 
queries with overlapping ends, or alternatively use the stand-
alone version of the tool that can be applied locally with no 
length constraints. Users are prompted to provide a title for 
each submitted job request, while completed processes can be 
accessed through the job dashboard.

Once accessed, each results page displays the query se-
quence on the top, with residues scoring higher than the 
Cordax threshold (0.61) (Louros et al. 2020) colored green 
(Fig. 1B). A graphical representation of the results shown at 
the bottom of the output page better illustrates this. 
Specifically, this interactive plot contains the amino acid 
query sequence on the x-axis, while alternative options are 
available to the user for display on the y-axis (Fig. 1C). 
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Figure 1. The Cordax web server interface. (A) Users can submit new jobs or track current and previous jobs through dedicated buttons on the 
webserver title page (indicated by arrows). Job submission requires a protein sequence as input, with an optional title. (B–F) Representative example of 
the information provided as output by the Cordax webserver. (B) The main interaction panel of the output page shows the query sequence, with 
predicted aggregation-prone regions highlighted. By selecting identified hexapeptide sequences, users can activate the 3D visualization plugin indicating 
the predicted steric zipper topology of the segment. (C) The scoring plot indicates by default the Cordax score per residue but can also be used to plot 
additional relevant sequence propensities. Users can access per-residue information through a box that appears by browsing over the query sequence 
shown on the x-axis. Access to the raw data is also provided through a download option (arrow). (D) Download options for information shown in (B and C) 
are also provided in the “Actions” submenu. (E) For predicted hexapeptides selected from the query sequence shown in (A), an interactive table is 
generated with experimentally determined aggregation-prone regions derived from WALTZ-DB (Louros et al. 2020) that are sorted based on sequence 
similarity scores. Information contained can be access using the download option at the top of the table (left-directed arrow). Using the expand option 
(down arrow), (F) a pop-up window appears for improved visualization of the table contents.
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Starting with the Cordax scoring as the default representa-
tion, by hovering over the query sequence a box appears la-
beling both individual residues, their corresponding Cordax 
aggregation scores, and the defined threshold of prediction. 
The latter is also shown with a dashed green light. The same 
interactive features are available for additional sequence 
properties that can be selected by the user and displayed on 
the interactive plot (Fig. 1C). For secondary structure propen-
sity, we used the Chou–Fasman empirical technique (Chou 
and Fasman 1974). Sequence hydrophobicity is calculated 
based on two different scales, namely the Kyte–Doolittle 
(Kyte and Doolittle 1982) and the Wimley–White scale which 
holds considerable importance as it considers the combined 
contributions of both the peptide bonds and the sidechains in 
absolute values, providing a direct and empirical foundation 
based on experimentally determined values for the transfer 
free energies of polypeptides (Wimley and White 1996). 
Finally, considering the ability of Cordax to predict with high 
accuracy aggregation-prone sequence segments of higher sol-
ubility, we have included per residue calculations of partition 
coefficients calculated using PlogP, a method that calculates 
peptide coefficients by a residue-addition method and also 
considers blocked termini, as well as partition as a function 
of the pH (ionizable and non-ionizable) (Tao et al. 1999). A 
download option is also available for obtaining and analyz-
ing the data presented in the interactive plot locally.

3.2 Modelling the structural topology of predicted 
aggregation-prone regions
The sequence presented at the top of the output page is inter-
active, whereby individual predicted residues can be engaged 
by a user. This interaction serves to illuminate the protein se-
quence segments that score above the threshold. Clicking on 
predicted residues highlights the hexapeptide window of pre-
diction starting with this residue in position 1. If this window 
scores above the threshold of prediction, this selection con-
currently activates a graphical plugin interface situated be-
neath the query sequence (Fig. 1B). Within this graphical 
interface, various modes for representing the structural topol-
ogy of selected hexapeptides that surpass the Cordax aggre-
gation propensity threshold are supported. These modes 
encompass options such as cartoon, ball and stick, ribbon, 
space-fill models, and surface representations, among others. 
Furthermore, a range of distinctive color themes are provided 
predicated on diverse properties, including chain ID, atom 
and residue types, and hydrophobicity (Fig. 1B).

3.3 Comparison to peptides with experimentally 
determined amyloid-forming properties
For each hexapeptide region selected from the displayed query 
sequence, an adjacent right panel becomes active, offering sev-
eral supplementary features. Primarily, users are provided 
with the option to download specific content at the top of this 
panel (Fig. 1D). This includes the Cordax scoring files in the . 
csv file format and the predicted structural topology in Protein 
Data Bank (wwPDB Consortium 2019) file format (.pdb files) 
for windows scoring above the threshold. Simultaneously, 
upon the selection of a hexapeptide, an interactive table is dis-
played on the right panel (Fig. 1E and F). This table, which 
can be expanded for improved visualization by moving the 
cursor over the table and selecting an expansion button option 
appearing on the left, enumerates peptide sequences that corre-
spond to entries within WALTZ-DB 2.0, currently the largest 

openly accessible repository of peptides with experimentally 
ascertained amyloidogenic properties (Louros et al. 2020). 
The sequences are organized based on their sequence similarity 
to the selected hexapeptide, calculated using the Blosum62 
matrix. This table further provides valuable data concerning 
the employed experimental techniques used to determine the 
aggregation properties of each peptide entry. This includes ex-
perimental validation obtained from diverse methodologies 
like Transmission electron microscopy (TEM), Fourier- 
Transform infrared spectroscopy (FTIR), and the binding of 
various fluorescence aggregation reporter dyes (such as 
Thioflavin-T and Proteostat binding). In addition, aggregation 
propensity prediction scores are listed, generated by other spe-
cialized high-specificity tools, such as WALTZ (Maurer-Stroh 
et al. 2010), TANGO (Fernandez-Escamilla et al. 2004), and 
PASTA 2.0 (Walsh et al. 2014) (for both parallel and anti- 
parallel orientation predictions, as described). Notably, the 
data presented in the interactive table can be downloaded lo-
cally using an option at the top of the table, and predicted to-
pologies of the sequences can be downloaded in a .pdb format 
through a dedicated column containing links. Finally, each se-
quence presented in the table is hyperlinked, enabling direct 
access to the corresponding peptide entry within WALTZ-DB 
(Fig. 1E and F). This facilitates users in acquiring supplemen-
tary and pertinent information. Such information encompasses 
details regarding the source proteins from which the peptide 
matches originate and are initially analyzed within WALTZ- 
DB, denoted by their Uniprot identifiers (The UniProt 
Consortium 2023), along with their respective positions in the 
identified protein sequence. Additionally, users can access a 
comprehensive breakdown of individual energy components 
and the topological models predicted by Cordax for the spe-
cific peptide sequence entry. Moreover, these links provide ac-
cess to additional aggregation prediction algorithms, such as 
Zipper-DB 3D-profiling method (Thompson et al. 2006) and 
Aggrescan (Conchillo-Sol�e et al. 2007). Lastly, they can access 
a visual representation of the experimental evidence confirm-
ing the aggregation propensity listed in the initial table.
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