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Abstract
Motivation: Predictive biological signatures provide utility as biomarkers for disease diagnosis and prognosis, as well as prediction of responses 
to vaccination or therapy. These signatures are identified from high-throughput profiling assays through a combination of dimensionality reduc-
tion and machine learning techniques. The genes, proteins, metabolites, and other biological analytes that compose signatures also generate 
hypotheses on the underlying mechanisms driving biological responses, thus improving biological understanding. Dimensionality reduction is a 
critical step in signature discovery to address the large number of analytes in omics datasets, especially for multi-omics profiling studies with 
tens of thousands of measurements. Latent factor models, which can account for the structural heterogeneity across diverse assays, effec-
tively integrate multi-omics data and reduce dimensionality to a small number of factors that capture correlations and associations among meas-
urements. These factors provide biologically interpretable features for predictive modeling. However, multi-omics integration and predictive 
modeling are generally performed independently in sequential steps, leading to suboptimal factor construction. Combining these steps can yield 
better multi-omics signatures that are more predictive while still being biologically meaningful.
Results: We developed a supervised variational Bayesian factor model that extracts multi-omics signatures from high-throughput profiling data-
sets that can span multiple data types. Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR) adaptively determines factor 
rank, emphasis on factor structure, data relevance and feature sparsity. The method improves the reconstruction of underlying factors in syn-
thetic examples and prediction accuracy of coronavirus disease 2019 severity and breast cancer tumor subtypes.
Availability and implementation: SPEAR is a publicly available R-package hosted at https://bitbucket.org/kleinstein/SPEAR.

1 Introduction
Biological signatures, composed of subsets of predictive ana-
lytes, serve as valuable biomarkers for disease diagnosis and 
prognosis (Ramilo et al. 2007, Yu et al. 2019, Bodkin et al. 
2022, Chawla et al. 2022), as well as the prediction of 
responses to vaccinations and therapies (Fourati et al. 2022, 
Hagan et al. 2022). In addition to being predictive, signatures 
offer interpretable insight into the underlying mechanisms 
that drive disease, further adding to their value to the scien-
tific community. By leveraging associations between different 
types of analytes, multi-omics signatures offer the possibility 
of improved performance and greater insights.

The identification of predictive biological signatures con-
tinues to be a prominent area of focus in biomedical research. 
For example, Fourati et al. (2022) and Hagan et al. (2022)
identified pre- and post-vaccination gene signatures predic-
tive of antibody responses across 13 different vaccines by ran-
dom forest classification and logistic regression, respectively. 

Walker et al. (2023) identified potential protein biomarkers 
of dementia via Cox proportional hazards regression model-
ing. Signatures can also provide mechanistic insight into un-
derlying biological processes that affect the response of 
interest. Nakaya et al. (2011) found a gene signature predic-
tive of seasonal TIV vaccination response that included 
TLR5, known to sense bacterial flagellin. High association 
between TLR5 and TIV vaccination prompted the study and 
hypothesis that other ligands for TLR5, such as microbiota, 
are involved in influencing adaptive immunity to vaccination. 
These studies, like most studies, identify signatures that are 
derived from a single biological assay.

Recent advancements in high-throughput technologies 
have enabled the simultaneous collection of data from multi-
ple assays (or ‘omics’) from the same sample (Bhattacharya 
et al. 2014). These multi-omics datasets have the potential to 
yield multi-omics signatures that integrate biological signals 
across different modalities to predict a response of interest. 
While the dimensionality of multi-omics datasets is high, 
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often only a small number of key underlying factors are used 
to capture the major data variation from the different assays. 
For example, activation of the interferon signaling pathway 
can drive hundreds of genes (Bolen et al. 2014), proteins 
(Lazear et al. 2019), and metabolites (Banoth and Cassel 
2018) to vary together across samples. One option to identify 
these major sources of variation is through the employment 
of latent factor models (Cantini et al. 2021), which construct 
low-dimensional factors from groups of biological analytes 
via dimensionality reduction. Unsupervised dimensionality 
reduction techniques for discovering factors are widely used 
in practice, including both non-probabilistic approaches such 
as principal component analysis, single and multi-block ca-
nonical correlation analysis (Tenenhaus and Tenenhaus 
2011, Tenenhaus et al. 2014) as well as probabilistic 
approaches based on Bayesian factor models including Multi- 
omic Factor Analysis (MOFA) (Argelaguet et al. 2020) and 
iClusterBayes (Mo et al. 2018).

Conventionally, when identifying predictive signatures, the 
process of data integration and predictive modeling are per-
formed separately, with multi-omics factors being constructed 
before subsequent association with a response of interest. 
Combining these steps can lead to better multi-omics signa-
tures that are more predictive while still being biologically in-
terpretable (Li et al. 2012, Singh et al. 2019). To accomplish 
this, we present Signature-based multiPle-omics intEgration via 
lAtent factoRs (SPEAR). The SPEAR model employs a proba-
bilistic Bayesian framework to jointly model multi-omics data 
with response(s) of interest, emphasizing the construction of 
predictive multi-omics factors. SPEAR estimates analyte signifi-
cance per factor, extracting the top contributing analytes as a 
signature. In addition, the SPEAR model is amenable to vari-
ous types of responses in both regression and classification 
tasks, permitting both continuous responses such as antibody 
titer and gene expression values, as well as categorical 
responses like disease subtypes. We demonstrate SPEAR’s 
advantages under simulated settings and validate SPEAR’s im-
proved performance on real public multi-omics datasets for 
breast cancer and SARS-CoV-2 (COVID-19) through multi- 
class area under the receiver operating characteristic (AUROC) 
testing and balanced misclassification errors.

2 Materials and methods
SPEAR identifies multi-omics signatures through the con-
struction of predictive factors via dimensionality reduction. 
SPEAR jointly models both high-dimensional multi-omics 
assays (X) and a low-dimensional response of interest (Y) 
and approximates posteriors of the factor loadings (β) and 
factor scores (U) using the variational Bayes inference (Fig. 1 
and Supplementary Methods B2).

Let X be an N×p high-dimensional matrix representing the 
concatenation of multiple multi-omics assays for N samples 
and p features. We assume that X is driven by underlying low 
dimensional factors via linear modeling, coupled with un-
structured Gaussian noise (E): 

Xj ¼ UBjþEj; for all j ¼ 1; . . . ; p: (1) 

The goal of latent factor model analysis is to decompose X 
into latent factors (U) and factor loadings (Bj for all 
j ¼ 1; . . . ; p). This has been previously accomplished by 
finding the Bayesian posteriors of U and B in the probability 

model (Argelaguet et al. 2020) but has not yet been extended 
to work with a response of interest. Let Y be a length N vec-
tor representing a univariate Gaussian response of interest 
(see Supplementary Methods C for extensions to ordinal, 
multinomial, binomial, and multiple responses). Like X, let Y 
also be constructed by factors via linear modeling: 

Y ¼ U�Bþ ε; (2) 

where �B is a vector of response coefficients used to construct 
Y. Factors that are most influential for the prediction of Y are 
indicated by larger magnitudes in corresponding �B:

SPEAR prioritizes the estimation of predictive factors by 
jointly modeling X and Y and considering a weighted likeli-
hood model where the weight parameter (w) indicates the 
emphasis on exploring existing factor structure in X :

Pw X;YjUð Þ ¼ Pw Xð jUÞ× P Yð jUÞ; (3) 

where Pw Xð jUÞ is the weighted likelihood of X given U and 
P Yð jUÞ is the likelihood of Y given U. When w is large 
(w ≥ 1), SPEAR will emphasize the construction of factors 
that explain the structure of the multi-omics assays ðXÞ. 
Intermediary weights (1>w>0) correspond to a gradual 
shift in emphasis of predicting the response ðYÞ over explain-
ing assay variance. When w is smallest (w � 0), SPEAR will 
forgo any attempt to reconstruct factors from the data and 
focus entirely on optimizing the prediction of the response. 
SPEAR automatically selects the weight w via cross- 
validation to balance both a high-prediction accuracy and ex-
plainable factors (when these are supported by the data) 
(Section 2 and Supplementary Methods A2).

3 Results
3.1 SPEAR improves prediction of synthetic 
responses from simulated multi-omics data
We first evaluated the ability of SPEAR to predict a Gaussian 
response on simulated data. In the simulation, five predeter-
mined factor signals (U) were used to construct four multi- 
omics assays (X), each with 500 analytes (for a total of 2,000 
simulated features), for 500 training and 2,000 test samples. 
The first two simulated factors were assigned to be the multi- 
omics signatures and were used to construct a Gaussian re-
sponse vector (Y) for both the training and test groups, 
whereas the remaining three simulated factors were only used 
to construct X. This procedure was repeated across a gradient 
of signal-to-noise ratios (low signal, moderate signal, and 
high signal), with 10 independent iterations for each ratio 
(Supplementary Methods D).

We trained SPEAR across a gradient of values for weight w 
to demonstrate the effect of w on SPEAR’s performance. As a 
comparison, we also employed a two-step MOFA-based 
model that performs Lasso regression (Tibshirani 1996) using 
factors derived from MOFA (denoted as MOFA in the fol-
lowing) as well as a vanilla Lasso regression model using 
concatenated features in lieu of factors (denoted as Lasso). 
Model comparison was measured by calculating the mean 
squared error (MSE) of the test data as well as Pearson corre-
lation testing of the constructed factors against both Y 
(Fig. 2B) and U (Fig. 2C).

In scenarios with moderate signal-to-noise, SPEAR with 
w ¼ 1 significantly outperformed MOFA (Fig. 2A). 
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Correlation analyses of the factor scores for one iteration 
(denoted by the red line in Fig. 2A) confirmed that SPEAR 
with w ¼ 1 correctly identified all five simulated factors, 
whereas MOFA only identified two of the uncorrelated fac-
tors (Factor 3 and Factor 5) likely due to the lack of supervi-
sion (Fig. 2C), which was confirmed across all 10 iterations 
(Supplementary Fig. S2). As expected, SPEAR with w ¼ 0 
condensed all predictive signals into a single factor, as evi-
denced by its correlation with the first two simulated factors. 
Overall, SPEAR with higher weights achieved the best predic-
tive performance due to better reconstruction of the multiple 
underlying simulated factors.

Finally, we repeated the above protocol to test the ability 
of SPEAR for predicting various non-Gaussian responses 
(Supplementary Methods A1). Simulated factor construction 
followed the same protocol above, with only the first two of 
five factors containing nonlinear signals that were predictive 
of the response (Supplementary Figs S3A and B and 4A and 
B). When the response type was modeled properly (e.g. 
Gaussian, multinomial, ordinal), SPEAR achieved the best 
performance via balanced misclassification errors 
(Supplementary Figs 3C and D and 4C and D).

3.2 SPEAR improves prediction of breast cancer 
tumor subtypes and COVID-19 severity
To test whether SPEAR could achieve competitive perfor-
mance in real data, we applied SPEAR to two publicly avail-
able multi-omics datasets: a breast cancer dataset of tumor 
samples by Singh et al. (Singh et al. 2019) with the goal of 

tumor subtype prediction, and a SARS-CoV-2 patient dataset 
of blood samples by Su et al. (2020) with the goal of predict-
ing disease severity. We refer to these datasets as TCGA-BC 
(The Cancer Genome Atlas (Cancer Genome Atlas Network 
2012)—Breast Cancer) and COVID-19, respectively. The 
TCGA-BC dataset is composed of 989 biopsy samples each 
associated with RNA-Seq, miRNA, and methylation probe 
data from primary solid breast cancer tumors that have been 
annotated according to the PAM50 subtype signature into 
one of four subtypes: Luminal A (LumA), Luminal B (LumB), 
HER2-enriched (HER2) and Basal-like (Basal) (Parker et al. 
2009). The COVID-19 dataset contains plasma protein and 
metabolite compositions for 254 SARS-CoV-2 positive pa-
tient samples and 124 matched healthy subject samples. Each 
subject is associated with a severity score based on the World 
Health Organization (WHO) ordinal severity score (Rubio- 
Rivas et al. 2022), binned into four ordinal classes (healthy, 
mild, moderate, and severe).

We applied SPEAR, Lasso, MOFA, and DIABLO to predict 
the response from each multi-omics dataset. Datasets were 
preprocessed and split into training and testing cohorts (see 
Section 2). Classification performance was evaluated via the 
balanced misclassification error rate and the AUROC curves. 
AUROC significance was calculated via a bootstrapping pro-
cedure and compared via DeLong’s test (DeLong et al. 1988).

The advantage of SPEAR was clear when looking at the 
multi-class AUROC, measuring a classifier’s ability to dis-
criminate each class individually across a gradient of thresh-
old values. SPEAR showed higher AUROC in discriminating 

Figure 1. SPEAR workflow overview: (A) SPEAR takes multi-omics data (X) taken from the same N samples, as well as a response of interest (Y). SPEAR 
supports Gaussian, ordinal, and multinomial types of responses. From these inputs, the algorithm first automatically estimates the minimum number of 
factors to use in the SPEAR model. X and Y are then jointly modeled in a variational Bayesian framework to adaptively construct factor loadings (B) and 
scores (U) that explain variance of X and are predictive of Y (reflected in �B). (B) SPEAR factors are used to predict Y and provide probabilities of class 
assignment for ordinal and multinomial responses. (C) Downstream biological interpretation of factors is facilitated via automatic feature selection, 
expression profile analysis, enrichment analysis, and analyte correlation
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between all classes and was significantly better for multiple 
classes: SPEAR was significantly better at predicting both the 
LumB subtypes from the TCGA-BC dataset (Fig. 3B and C), 
and moderate SARS-CoV-2 severity from the COVID-19 
dataset (Fig. 3 F and G) compared to all other models via 
AUROC comparison testing (LumB—MOFA: P.adj¼ 7.8e- 
09, Lasso: P.adj¼2.1e-07, DIABLO: P.adj¼1.9e-02; 
Moderate—MOFA: P.adj¼ 1.4e-02, Lasso: P.adj¼ 1.9e-04, 
DIABLO: P.adj¼1.5e-05). Upon investigation, the improved 
predictive performance of SPEAR on these classes was not 
due to a single factor but was rather achieved through com-
bining information from multiple multi-omics factors 
(Supplementary Figs 5 and 6). The balanced misclassification 
errors of SPEAR (0.15, 0.21) were comparable to those of 
Lasso (0.15, 0.21), MOFA (0.16, 0.21), and DIABLO (0.16, 
0.23) for the TCGA-BC dataset and COVID-19 dataset re-
spectively (Fig. 3A, D, E, H). Overall, our results demonstrate 
that SPEAR outperforms current state-of-the-art methods for 
predicting a response using multi-omics data.

It was notable that the balanced misclassification error of 
SPEAR was comparable with other methods even though 
SPEAR does not optimize purely for predictive performance. 
Rather, SPEAR favors multi-omics assay influence in the con-
struction of predictive factors by choosing the largest w 
whose mean cross-validated error falls within one standard 
deviation of the overall minimum cross-validated error. If we 
instead choose the w that minimizes the cross-validated error 
(denoted as SPEAR min), the balanced misclassification error 
is better than all other models on both the TCGA-BC and 
COVID-19 datasets (0.13, 0.19) (Supplementary Fig. S7A 
and D). Similarly, this approach achieves the best AUROC 
values for all classes (Supplementary Fig. S7C and F). The 

SPEAR min model showed only a slight improvement in clas-
sification accuracy but chose considerably lower w values 
(w¼ 0.5 for TCGA-BC and w¼ 0.01 for COVID-19) than 
the default SPEAR model (denoted as SPEAR sd when needed 
for clarity) (w¼2.0 for both datasets) (Supplementary Fig. 
S8). Although we recommend and used the default SPEAR 
model to enhance the downstream interpretation, SPEAR 
min can be used in cases where prediction is the key objective 
regardless of multi-omics assay influence in factor 
construction.

3.3 SPEAR identifies steroid response pathways 
associated with TCGA PAM50 subtypes
Several factors returned by SPEAR were associated with dif-
ferent biological pathways that distinguish the PAM50 sub-
types. Factors 1–3 clearly distinguished one or more 
subtypes, which motivated us to investigate what biological 
pathways each factor was associated with (Fig. 4 and 
Supplementary Fig. S4). Factor 1 was strongly associated 
with the Basal subtype and moderately associated with the 
HER2e subtype (Fig. 4A and B), while the negative factor 
loadings were enriched for Estrogen Response (ER) (Early 
and Late) pathways of the Molecular Signatures Database 
(MSigDB) Hallmark collection (Liberzon et al. 2015;  
Fig. 4Cand D).

The anti-correlation between the ER pathways and the 
Basal subtype, the highest scoring Factor 1 subtype, reflects 
that it is most strongly associated with a triple-negative 
profile for Estrogen, Progesterone, and the HER2e receptor 
(Prat et al. 2013). Whereas HER2e-classified samples were 
predominantly hormone receptor (HR) negative, a propor-
tion is also HR positive (Bastien et al. 2012, Prat et al. 2015). 

Figure 2. Gaussian simulation results. (A) Boxplots of mean-squared errors of the models on the testing data. MSE results for each simulated iteration 
are connected. Results are shown for varying signal-to-noise ratios, including low, moderate, and high signals. (B) Scatterplots of various factor scores 
(y-axis) against the true Gaussian response (x-axis) of the moderate signal test data. Color is applied to factor scores found to be correlated with true 
factors 1 (red) and 2 (blue) with true factors 3–5 designated as grey. (C) Correlation matrix showing the Spearman correlation between each derived factor 
of the true factors for both the training and testing data of the moderate signal simulated dataset. Significant correlations are denoted with �P ≤ 0.001
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Figure 3. TCGA-BC Tumor Subtype and COVID-19 Severity Prediction Results. (A, E) Test sample class predictions of the SPEAR model, colored by true 
class. (B, F) Multi-class AUROC statistics for each model for the LumB and Moderate classes. Error bars show the 95% confidence interval found via 
2,000 stratified bootstrapping replicates. Significance testing is denoted as �P ≤ 0.05), ��P ≤ 0.005, and ���P ≤ 0.0005. (C) AUROC plot for all models 
predicting LumB subtype. (G) AUROC plot for all models predicting the moderate severity class. (D, H) Balanced misclassification errors of SPEAR, 
MOFA, DIABLO, and Lasso on test samples from the (D) TCGA (Breast Cancer) dataset and (H) COVID-19 dataset

Figure 4. Downstream TCGA-BC Analysis. (A) Grouped violin plot of Factors 1–3 scores (y-axis) and tumor subtype (x-axis), with group means marked 
with a line. (B) 3D scatter plot, embedding samples by Factors 1, 2, and 3 scores. Samples are colored by tumor subtype. (C) Dotplot of GSEA results on 
mRNA features for Factors 1–3. Points are shaded by −log(P.adjusted) with color representing enrichment direction. (D) GSEA plot for Estrogen 
Response (Early) Hallmark pathway for SPEAR Factor 1. mRNA genes are ranked by their assigned projection coefficient from SPEAR Factor 1. (E) 
Heatmap showing normalized expressions for the top 24 mRNA genes involved in the Estrogen Response (Early) Hallmark pathway. mRNA genes were 
selected with a factor loading (projection coefficient) magnitude ≥0.02. Samples were ranked by Factor 1 score (x-axis) and genes were ranked by 
projection coefficient (y-axis). Also shown are corresponding true tumor subtypes (True) and SPEAR-predicted tumor subtypes (Pred)
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LumA and LumB are hormone receptor positive (HR) and re-
tain expression of ER, and the Progesterone receptor (PR) in 
the case of LumA, and in some proportion of LumB (Prat 
et al. 2015). Indeed, genes XBP1, AGR2, and CA12 which 
yielded high posterior selection probabilities as well as the 
strongest negative projection coefficients in Factor 1 (Fig. 4E, 
Supplementary Table S1) for the Estrogen Response (Late) 
pathway were all associated with a breast cancer Steroid 
Responsiveness (SR) module that indicates functional steroid 
response (Fredlund et al. 2012). Genes XBP1 and MYB were 
in the top 20% of the ER Early and Late pathway genes with 
respect to the SPEAR projection coefficient magnitude. MYB 
is a direct target of Estrogen signaling and is overexpressed in 
most ERþ cancers (Gonda et al. 2008), and both genes were 
also identified as part of a luminal expression signature 
(Cancer Genome Atlas Network 2012).

The positive association of Factor 1 with the MYC Targets 
V1 Hallmark pathway is consistent with the association of 
MYC signaling and Basal subtypes identified in earlier TCGA 
and other analyses (Xu et al. 2010). Additionally, four of the 
miRNAs associated with Factor 1, hsa-mir-18a, hsa-mir-10a, 
hsa-mir135b, hsa-mir-577, were identified in a miRNA analysis 
of TCGA data to have diagnostic significance for triple-negative 
breast cancer (Fan and Liu 2019). Hsa-mir-18a has been shown 
in independent datasets to downregulate ERα (Klinge 2012) and 
is associated with worse overall survival (Luengo-Gil et al. 
2019). Hypomethylation of MIA, a PAM50 gene, which has the 
second highest in magnitude SPEAR projection coefficient for 
Factor 1, has been associated with the Basal subtype in TCGA 
and independent data (Bardowell et al. 2013).

Factor 1 distinguished Basal-like and HER2e subtypes from 
LumA/LumB, while Factors 2 and 3 distinguished LumA from 
the other subtypes. Pathways enriched in Factor 2 were associ-
ated with genes that are more highly expressed in LumA, 
whereas pathways in Factor 3 were associated with genes that 
are downregulated in LumA (Fig. 4A and B). The strongest 
signal in Factor 2 was in the Epithelial Mesenchymal 
Transition (EMT) Hallmark pathway, and in Factor 3 the 
G2M Checkpoint Hallmark pathway (Fig. 4C). It has been 
previously observed that LumB tumors are enriched in prolif-
eration and cell-cycle associated genes in comparison to 
LumA (Prat et al. 2015), whereas the positive association of 
LumA with an EMT phenotype is somewhat surprising, as 
LumA tumors are generally considered to be associated with a 
stronger epithelial phenotype in comparison to the Basal-like 
subtype (Felipe Lima et al. 2016). The role of EMT has been 
primarily studied in non-luminal tumors28, and therefore the 
presence of this pathway distinguishing the subtypes warrants 
further investigation with respect to the underlying biology. 
Interestingly, the miRNAs with the top magnitude projection 
coefficients in Factor 2 and which have a positive association 
with the factor, hsa-mir199a/b, have been associated with 
EMT (Drago-Garc�ıa et al. 2017; Wang et al. 2019). Overall, 
the molecular signatures identified via SPEAR factorization of 
the TCGA-BC data provided both well-documented and novel 
associations with PAM50 breast cancer subtypes.

3.4 SPEAR identifies multi-omics factors and 
pathways associated with COVID-19 severity
On the COVID-19 dataset, SPEAR identified several factors 
that were significantly associated with the WHO ordinal se-
verity score (Fig. 5 and Supplementary Fig. S5). Investigation 
of the association of each factor with the COVID-19 severity 

revealed that the Factor 2 score showed a positive ordinal as-
sociation (Fig. 5A). SPEAR also identified several factors that 
were heavily associated with identifying COVID-19 severi-
ties, including Factor 1 score for mild severity and Factor 8 
for moderate severity (Fig. 5B and Supplementary Fig. S4). 
Embedding the samples by Factors 2 and 8 scores revealed a 
trajectory for SARS-CoV-2 severities (Fig. 5D). Calculation 
of the variance explained for these three factors revealed that 
Factor 2 had the largest influence from both assays (16% 
proteomics, 11% metabolomics) compared to Factor 1 (20% 
proteomics, 1% metabolomics) and Factor 8 (1% proteo-
mics, 2% metabolomics) (Supplementary Fig. S5). We opted 
to further investigate Factor 2 due to its larger multi- 
omics influences.

Proteomic enrichment analysis of Factor 2 identified sev-
eral significant pathways from the MSigDB Hallmark path-
way database (Supplementary Table S2). One pathway 
enriched in Factor 2 was the Janus kinase Signal Transducer 
and Activator of Transcription (JAK-STAT) signaling path-
way (Seif et al. 2017) (Fig. 5C). Pathway member Interleukin 
6 (IL-6) was also found to be a key contributor to the Factor 
2 score, with the second highest projection coefficient 
(Fig. 5E and Supplementary Table S3). IL-6 is a proinflamma-
tory cytokine proposed as an inflammatory biomarker for 
COVID-19 severity (Azevedo et al. 2021) and is an activator 
of the JAK-STAT signaling pathway. The JAK-STAT signal-
ing pathway is involved in immune regulation, lymphocyte 
growth and differentiation, and promotes oxidative stress, 
serving as an attractive therapeutic target for COVID-19 
treatment (Luo et al. 2020).

The Factor 2 metabolic signature, extracted via automatic 
feature selection of the top contributing metabolites to the 
Factor 2 score, identified members of the amino acid, cofac-
tors and vitamins, lipid, and nucleotide super-pathways 
(Fig. 5F). Kynurenine, a key contributor to the Factor 2 score, 
is a known marker of severe/fatal COVID-19 trajectory 
(Danlos et al. 2021, Mangge et al. 2021). The tryptophan/ 
kynurenine (Trp/Kyn) pathway is activated by inflammatory 
cytokines (Almulla et al. 2022), which is consistent with its 
positive correlation with the cytokines of Factor 2 such as IL- 
6 (Fig. 5F).

Several plasmalogens, including phosphatidylcholines 
(PCs) and phosphatidylethanolamines (PEs) were also found 
to be inversely associated with the ordinal severity trend of 
Factor 2 (Fig. 5F). Plasmalogens are plasma-borne antioxi-
dant phospholipids that provide endothelial protection dur-
ing oxidative stress (Messias et al. 2018), which could 
account for the inverse association with the JAK-STAT sig-
naling pathway proteins. Our multi-omics results further sup-
port the utility of plasmalogens as prognostic indicators of 
COVID-19 severity (Pike et al. 2022).

4 Discussion
SPEAR extracts interpretable multi-omics signatures from 
predictive factors via supervised dimensionality reduction 
and can model multiple types of responses, including 
Gaussian, multinomial, and ordinal. We have compared 
SPEAR to state-of-art linear dimension reduction methods as 
well as direct predictive models via Lasso regression in both 
simulated and real datasets. Unlike similar probabilistic fac-
tor models such as MOFA and iClusterBayes, the supervised 
SPEAR framework integrates the response of interest into the 
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dimensionality reduction via the weight parameter w, result-
ing in factors containing signals from both the multi-omics 
assays and the response when supported by the data. While 
the optimal value of w can vary, the SPEAR algorithm pro-
vides an automatic choice of w that achieves good empirical 
prediction performance via cross-validation. In addition, 
SPEAR estimates analyte significance probabilities per factor, 
eliminating the need to perform feature selection via the load-
ing coefficients entirely.

Defining the number of factors to be constructed can be 
critical when applying factor model-based methods. We have 
observed that underestimating the rank of a SPEAR model 
can lead to poor performance at higher values of w. To this 
end, SPEAR begins with an adaptive factor rank estimation 
that minimizes a debiased reconstruction error of X to esti-
mate a sufficient number of factors required to accurately 
represent a multi-omics dataset (Supplementary Methods 
A2). While this approximation cannot guarantee true-rank 
estimation, it does return a satisfactory rank for dimensional-
ity reduction via SPEAR from our experience. This approach 

is not restrictive to SPEAR and can be incorporated into 
other dimensionality reduction pipelines where the optimal 
number of factors to use is unknown.

While generalizable to many types of multi-omics, SPEAR 
does assume a linear dependence of the latent factors on the 
features. As such, the application of SPEAR to nonlinear ana-
lyte dependence may produce undesirable results. This could 
be mediated by appropriately preprocessing nonnormal 
multi-omics assays through transformations. A more data- 
adaptive solution would be to model the non-linear relation-
ship between the features and factors via the generalized ad-
ditive model (Hastie and Tibshirani 1995).

In conclusion, the SPEAR model decomposes 
high-dimensional multi-omics datasets into interpretable 
low-dimensional factors with high predictive power without 
the need for parameter tuning. SPEAR returns both sparse 
(regression) and full (projection) coefficients as well as 
feature-wise posterior probabilities used to assign analyte 
significance. SPEAR is currently hosted as a publicly available 
R-package at https://bitbucket.org/kleinstein/SPEAR

Figure 5. Downstream COVID-19 dataset analysis. (A) Grouped violin plot of factor 2 scores (y-axis) and simplified WHO score (x-axis), with group means 
marked with a line. (B) Grouped violin plot of factor 8 scores (y-axis) and simplified WHO score (x-axis), with group means marked with a line. (C) GSEA 
plot for IL6 JAK STAT3 Signaling Hallmark pathway for SPEAR Factor 2. Proteins are ranked by their assigned projection coefficient from SPEAR factor 2. 
(D) Embedding of samples by factor 8 (x-axis) and factor 2 (y-axis) scores. Samples are colored by WHO Ordinal Score, normalized IL6 expression, and 
normalized kynurenine expression. (E) Heatmap showing normalized expressions for proteins involved in the IL6 JAK STAT3 Signaling Hallmark pathway. 
Samples were ranked by Factor 2 score (x-axis) and proteins were ranked by projection coefficient (y-axis). Also shown are corresponding true patient 
severity scores (True) and SPEAR (sd) predicted severity scores (Pred). (F) Alluvial plot showing correlation between the IL6 JAK STAT3 proteins and the 
top metabolite features contributing to SPEAR Factor 2. Metabolites are grouped by positive/negative correlation and super-pathway. Also shown are 
normalized plasmalogen expressions of samples ranked by Factor 2 score (x-axis)
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