Table 3.
Pseudogenes in microorganisms
| Microorganism | Pseudogene | Parental gene | Parental gene function | Relationship with microorganisms | Reference | |
|---|---|---|---|---|---|---|
| Pseudogenes | S. Typhi | ψfepE | fepE | Regulator of O antigen chain length | Pseudogenization of fepE contributed to the evade the phagocyte respiratory burst arose by S. Typhi | Crawford et al. (2013); Hiyoshi et al. (2018) |
| S. Paratyphi A | ψrfbE | rfbE | CDP-tyvelose-2-epimerase, which catalyzes the conversion of O2 to O9 | Pseudogenization of rfbE contributed to the evade the phagocyte respiratory burst arose by S. Paratyphi A | Hiyoshi et al. (2018) | |
| S. Typhi | ψmarT | marT | Encode by SPI-3, a transcription regulator | Pseudogenization of marT contributed to the resistance to H2O2 of S. Typhi | Ortega et al. (2016) | |
| S. Typhi | ψsseJ | sseJ | SPI-2 T3SS effector, involved in SCV biosynthesis | Pseudogenization of sseJ increases the S. Typhi cytotoxicity toward epithelial cells | Trombert et al. (2010) | |
| S. Typhi | ψsopD2 | sopD2 | SPI-2 T3SS effector, involved in SCV biosynthesis | Pseudogenization of sopD2 increases the S. Typhi cytotoxicity toward epithelial cells | Trombert et al. (2011) | |
| S. Typhimurium ST313 | ψsseI | sseI | SPI-2 T3SS effector, which inhibits DC cell migration | Benefit the systemic infection | Carden et al. (2017) | |
| S. Typhi | ψsopA | sopA | Effector of SPI-1 | Benefit the systemic infection | Ma et al. (2021) | |
|
S. Gallinarum S. Pullorum |
ψflgK, ψflhB, etc | flgK, flhB, etc | Involved in the flagella formation | Related to the formation of flagella and phenotypes associated with mobility | Table 2 | |
| Y. pestis | ψyadE | yadE | An autotransporter protein involved in biofilm formation | Pseudogenization of yadE contributes to the biofilm stability in Y. pestis | Calder et al. (2020) | |
| Functional pseudogenes | Trypanosoma brucei | ψvsg | vsg | Surface glycoprotein | Antigenic variation | Faria et al. (2022) |
| Anaplasma | ψmsp2 | msp2 | Surface antigen | Antigenic variation | Graca et al. (2019); Liu et al. (2019); Rejmanek et al. (2012) | |
| Borrelia spp. | ψvmp | vmp | Surface antigen | Antigenic variation | Restrepo et al. (1994) | |
| Pneumocystis jirovecii | ψmsg | msg | Major surface glycoprotein | Antigenic variation | Schmid-Siegert et al. (2017) | |
| S. Typhi | ψshdA | shdA | Autotransporter adhesin | Product of ψshdA function as adhesin | Urrutia et al. (2014) | |
| Escherichia coli | ψyqiG | yqiG | Has a key role in hydrogen production in E. coli | The product of ψyqiG is essential for glycolysis in E. coli | Zakaria et al. (2018) | |
| Brucella melitensis | BMEA_B0173 | BMEA_B0173 |
Plays an important role in regulating the function of Brucella melitensis |
Deletion mutation of the pseudogene BMEA_B0173 in Brucella melitensis facilitates colonization in the spleen | Zhang et al. (2022) | |
| Trypanosoma brucei | - | - | - | Pseudogene-derived small interference RNAs regulate gene expression in African T. brucei | Wen et al. (2011) | |
| Others | M. leprae | - | - | - | Intracellular microorganisms have a relatively high proportion of pseudogenes | Cole et al. (2001); Liu et al. (2004) |
| Neisseria meningitidis | - | - | - | Intracellular microorganisms have a relatively high proportion of pseudogenes | Liu et al. (2004) | |
| Rickettsia | - | - | - | Intracellular microorganisms have a relatively high proportion of pseudogenes | Liu et al. (2004) | |
| Salmonella spp. | - | - | - | Some Salmonella serotypes which with a narrow host range have a relatively high proportion of pseudogenes | Table 1 | |
| Y. pestis | - | - | - | The pseudogene profile can be used for Y. pestis classification | Tong et al. (2005) |