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Abstract
Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? 
Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels 
are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined 
by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The 
frontal cortex tends to lead if it has more local attractors, longer lasting and stronger ones, in order of increasing importance. 
Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their 
own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences 
of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal (vs. posterior) 
lesion offers an account of mind-wandering and event construction deficits observed in prefrontal patients.

Keywords  Associative memory · Cortical networks · Latching dynamics · Sequential retrieval · Mind-wandering · 
Spontaneous cognition

Constructive associative memories

Recent explorations of the mechanisms underlying creative 
forms of human cognition (Mekern et al. 2019; Benedek 
et al. 2023), ranging from musical improvisation (Beaty 
2015) through visual creativity (Aziz-Zadeh et al. 2013) up 
to poetry (Stockwell 2019), or mere mind wandering (Ciara-
melli and Treves 2019), have again questioned the validity of 
reducing the cortex to a machine operating a complex trans-
formation of the input it currently receives. On one hand, 
sophisticated and massive artificial intelligence systems 
like ChatGPT or midJourney, with their impressive perfor-
mance, have adhered to the standard operational paradigm 

of producing a response to a query. On the other, a simple 
observation of cortical circuitry, with its extensive recur-
rence and quantitatively limited external inputs, have long 
ago led to the proposal that the cortex is (largely) a machine 
talking to itself (Braitenberg and Schüz 1991). Likewise, 
when confronted with an artistic or literary creation we 
sometimes ask: what was the query? Was there a query?

If it is the cortex itself that takes the initiative, so to 
speak, is it the entire cortex?

Understanding the mechanisms of cortico-cortical dia-
logue that generate spontaneous behaviour cannot eschew 
their statistical character, that of a system with very many 
imprecisely interacting elements. Valentino Braitenberg sug-
gested a framework for such a statistical analysis, which to 
a first approximation considers the cortex as a homogene-
ous structure, not differentiated among its areas (nor, other 
than quantitatively, among mammalian species) (Braitenberg 
1978): the only distinction is between long-range connec-
tions and local ones—those which reach in the immediate 
surround of the projecting neuron and do not travel through 
the white matter. Importantly, by asking whether there is any 
computational principle other than just associative memory 
operating at both long-range and local synapses (Braitenberg 
and Schüz 1991), Braitenberg pushes the age-old debate of 
whether cortical activity is more like a classic orchestra led 
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by a conductor or more like a jazz jam session, beyond the 
limits of abstract information-processing models. In tradi-
tional box-and-arrows models of that kind, a box, whether 
it represents a specific part of the brain or not, can operate 
any arbitrary transformation of its input, which makes it 
difficult to relate it to physiological measures, and tends to 
leave the debate ill-defined. If at the core one is dealing 
solely with associative memory, instead, the issue can be 
approached with well-defined formal models, generating 
statistical insights that can be later augmented with cogni-
tive qualifications.

Given the canonical cortical circuit (Douglas et  al. 
1989) as a basic wiring plan for the generic cortical pla-
quette, or patch, getting at the gist of how it contributes to 
the exchanges mediated by long-range cortico-cortical con-
nectivity among different patches requires considering the 
fundamental aspects that vary, at least quantitatively, among 
the areas. A number of reviews (Finlay and Uchiyama 2015; 
Hilgetag et al. 2022) have pointed out that several prominent 
features align their gradients of variation, across mammals 
and in particular in the human brain, along a natural corti-
cal axis, roughly from the back to the front of the cortex. 
Actual observations and measurements may be incomplete 
or even at variance with such a sweeping generalization, 
but here we take it as a convenient starting point. Anatomi-
cal measures point at more spines on the basal dendrites of 
pyramidal cells, indicating more local synaptic contacts in 
temporal and especially frontal, compared to occipital cortex 
(Elston et al. 2001). This may support a capacity for more 
and/or stronger local attractor states. More linear and prompt 
responses to afferent inputs in posterior cortices, e.g. visual 
ones (Miller et al. 1996; Rotshtein et al. 2005), also suggest 
reduced local feedback relative to more anterior areas.

The rapidity of the population response to an incoming 
input has been related to the notion of an intrinsic timescale 
that might characterize each cortical area, and that may pro-
duce highly non-trivial effects, for example when inhibiting 
a particular area with TMS (Cocchi et al. 2016). The time-
scales measured with similar methods have been shown to 
differ considerably, even within individual areas (Cavanagh 
et al. 2020), and to define distinct cortical hierarchies, when 
extracted in different behavioural states, e.g. in response to 
visual white noise stimuli (Chaudhuri et al. 2015) or during 
free foraging (Manea et al. 2023). Thus, it remains unclear 
whether the ambition to define a unique hierarchy of time-
scales can really be pursued (Gao et al. 2020), and whether 
they can be related to patterns of cortical lamination (Barbas 
and Rempel-Clower 1997) and to biophysical parameters, 
including the Ih current and others underlying firing rates 
and firing frequency adaptation (Chang et al. 2005). Still, 
in broad terms multiple timescale hierarchies do roughly 
align with the natural axis, from faster in the back to slower 
in the front of the brain, and ignoring a factor of, say, four 

(Gao et al. 2020) would appear to grossly overlook a basic 
principle of cortical organization.

Here, we ask what are the implications of major differ-
ences in cortical parameters for how basic associative mem-
ory mechanisms may express cortically initiated activity. We 
focus on a simple differentiation between a posterior and a 
frontal half of the cortex, and neglect finer distinctions, e.g., 
rostrocaudal hierarchies within prefrontal cortex (Koechlin 
et al. 2003; Badre 2008) or the undoubtedly major differ-
ences within posterior cortices.

A simply differentiated Potts model

The mathematically defined model we use is based on the 
abstraction of a network of 

√
N  patches of cortex (where 

N  are all its pyramidal cells), interacting through long-
range, associatively modified synapses, an abstraction close 
to that informing connectome research (Roe 2019). Each 
patch would be a densely interconnected network of 

√
N  

pyramidal cells interacting through local synapses, also 
associatively modifiable according to some form of Heb-
bian plasticity. Such a local cortical network may operate 
as an autoassociative memory once it has acquired through 
learning a number S of attractor states. In the simplified 
Potts formulation adopted here, the local network realized 
in each patch is replaced by a Potts unit with S states, and 
the analysis can focus on the network of long-range effective 
interactions between Potts units, which are no more medi-
ated by simple synaptic connections, rather the connections 
are mathematically expressed as tensors (Naim et al. 2018).

We refer to previous studies (Ryom et al. 2021) and to 
Appendix A for a description of the standard model and of 
its key parameters. Suffice here to note that while the num-
ber S of local attractor states measures the range of options 
available for the dynamics of a patch of cortex, the feedback 
coefficient w quantifies how deep those options are, i.e., how 
strongly the patch is driven to choose one of them, and the 
adaptation time constant �2 parametrizes the time it takes for 
it to be eventually eased out of its current attractor.

A network of Potts units can express spontaneous behav-
iour when it latches, i.e., it hops from a quasi-stationary pat-
tern of activity to the next, in the absence of external input—
of a query (Treves 2005). Latching dynamics are a form of 
iterated associative memory retrieval; each extended activity 
pattern acts briefly as a global cortical attractor and, when 
destabilized by the rising thresholds which model firing 
rate adaptation, serves as a cue for the retrieval of the next 
pattern. Studies with brain-lesioned patients indicate, how-
ever, that there is structure in such spontaneous behaviour. 
In studies of mind-wandering, for example, patients with 
lesions to ventromedial prefrontal cortex (vmPFC) show 
reduced mind-wandering, and their spontaneous thoughts 
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tend to be restricted, focused on the present and on the self, 
suggestive of a limited ability to project coherently into the 
future (Bertossi and Ciaramelli 2016).

We then take our standard, homogeneous Potts network, 
differentiate it in two halves, and ask whether a structure of 
this type may reflect a basic differentiation between frontal 
and posterior cortices in the number or in the strength of 
their local attractor states, or in the time scale over which 
they operate, as expressed in differences, in the model, in the 
three relevant parameters, ΔS , Δw and Δ�2.

We assume that the two sub-networks store the same 
number p of memory patterns (with the same sparsity a), and 
that all the connections already encode these p patterns, as 
a result of a learning phase which is not modelled. We have 
seen in a previous study (Ryom and Treves 2023) that a dif-
ferentiation ΔS has important dynamical implications during 
learning itself, but here we imagine learning to have already 
occurred. For a statistical study, we take the activity patterns 
to have been randomly generated with the same statistics, 
therefore, any correlation between pattern � and � is random, 
and randomly different if calculated over each sub-network. 
These restrictive and implausible assumptions—they dis-
card for example the possibility of structured associations 
between frontal and posterior patterns of different numer-
osity, statistics and internal non-random correlations—are 
needed to derive solid quantitative conclusions at the level 
of network operation, and might be relaxed later in more 
qualitative studies.

Connectivity in the differentiated network

For the statistical analysis, carried out through computer 
simulations, to be informative, the structure of the network 
model and in particular its connectivity have to be chosen 
appropriately. First, each sub-network should have the same 
number of units (half the total) and each unit the same num-
ber of inputs, for the comparisons between different condi-
tions to be unbiased by trivial factors. Second, each sub-
network should be allowed to determine, to some extent, its 
own recurrent dynamics, which requires the inputs onto each 
unit from the two halves not to be equal in strength, which 
would lead to washing away any difference, effectively, at 
each recurrent reverberation.

We then set the connection between units i and j, in their 
tensorial states k and l, as

(1)

J
kl,intra, inter

ij
=

cij

cma
√

(1 −
a

Si
)(1 −

a

Sj
)

p∑

�=1

(
���

i
k −

a
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)

(
���

j
l −

a

Sj

)
(1 − �k0)(1 − �l0),

where {cij} is a sparsity {0, 1} matrix that ensures that Potts 
unit i receives cm intra inputs from other units in the same 
sub-network and also receives cm inter inputs from units of 
the other sub-network. Note that the number of Potts states 
of each unit, S, may depend on which sub-network the unit 
belongs to.

The partially differential dynamics is obtained by set-
ting the strength coefficients as

where the parameter � ∈ [−1, 1] controls the relative strength 
of two terms. For � = 0.0 , the connectivity matrix becomes 
homogeneous and we cannot distinguish the two sub-net-
works from connectivity alone. If � = 1.0 , each sub-network 
is isolated from the other. For values of � between 0 and 1, 
the recurrent connections within a sub-network prevail over 
those from the other sub-network, generating partially inde-
pendent dynamics. We set � = 0.5 as our reference value.

Results

We assume that the attractors of the frontal network have 
been associated one-to-one with those of the posterior 
network, via Hebbian plasticity, during a learning phase, 
which we do not model. When there is no external stimu-
lus, e.g. when modelling creative thinking and future 
imaging, the network can sustain latching dynamics, i.e. it 
can hop from state to state, as in Fig. 1, provided its activ-
ity is appropriately regulated by suitable thresholds, as we 
have reported elsewhere (Treves 2005). Such spontaneous 
dynamics of the entire network might be led to a different 
extent by its frontal and posterior halves, depending on 
their characteristic parameters.

In order to quantify the relative influence of the two 
sub-networks on the latching sequences produced by the 
hybrid Potts model, we look at whether the actual occur-
rence of each possible transition depends on the corre-
lations, computed separately in the frontal and poste-
rior parts, between the two patterns before and after the 
transition.

For the randomly correlated patterns used here, the 
correlations are relatively minor, but they can be anyway 
quantified by two quantities, Cas and Cad (Russo and Treves 
2012; Boboeva et al. 2018), that is, the fraction of active 
units in one pattern that are co-active in the other and in 
the same, Cas , or in a different state, Cad . In terms of these 
quantities, two memory patterns are highly correlated if 
Cas is larger than average and Cad is smaller than aver-
age, and we can take the difference Cad − Cas as a simple 

(2)Jkl
ij
=

(1 + �)

2
J
kl,intra

ij
+

(1 − �)

2
J
kl,inter

ij
,
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compact indicator (actually, a proxy) of the “distance” 
between the two patterns.

How strongly are transitions in a latching sequence driven 
by pattern correlations in each subnetwork? To measure this, 
we take the weighted average of Cas and Cad with the weights 
given by latching sequences; that is, we compute

(and analogously for ⟨Cad⟩T ) where the sum 
∑

(�,�) runs over 
all possible pairs of memories and t�� is the normalized fre-
quency of latching transitions for the pair � , � : 

∑
(�,�) t�� = 1 . 

This average is compared with the “baseline” average, e.g.,

independent of the transitions, where p is the number of 
stored memories in the network. The comparison between 
the two averages, ⟨Cas(d)⟩T  and ⟨Cas(d)⟩B , is one index of 
how strongly latching sequences are related to correlations 
between patterns in one of the two sub-networks.

Second, based on the hypothesis that the frequency of 
transitions tends to decrease exponentially with the distance 
between the two patterns, as defined above, we look for the 
linear regression between the logarithm of the normalized 

(3)⟨Cas⟩T ≡
�

(�,�)

t��C
��

as
,

(4)⟨Cas⟩B ≡
2

p(p − 1)

�

(�,�)

C��

as
,

transition frequency, log(t) , and the proxy of the distance, 
Cad − Cas.

We first consider a case when all the macroscopic param-
eters are equal between the two sub-networks, while the 
connection parameter is set as � = 0.5 . In this case, the 
intra-connections (within each sub-network) are 3 times, on 
average, as strong as the inter-connections (between the two 
sub-networks), but the two halves are fully equivalent, or 
Not Differentiated (ND). With the appropriate parameters, 
in particular the feedback w, we find that the network as a 
whole shows robust latching and that latching sequences in 
each sub-network are well synchronized with each other: 
the two sub-networks essentially latch as one. Comparing 
latching dynamics in two sub-networks, we find that latch-
ing is largely driven by correlations between patterns, in 
either half or in both, as found previously (Russo and Treves 
2012). This can be seen, leftmost bars of Fig. 2a and b, by 
the higher value of ⟨Cas⟩T relative to ⟨Cas⟩B , and vice versa 
for Cad , in the ND case. Correlations in the two sub-net-
works appear to contribute equally to determine latching 
sequences, as expected. This is confirmed by the similar 
negative slopes in the two scatterplots of Fig. 2c.

Different S. We now examine a case in which the two 
networks share the same values of all but one parameter: 
the number of Potts states, S. When the posterior network 
has fewer states ( S = 3 instead of the reference value, 7), the 

Fig. 1   The differentiated network and examples of latching 
sequences. a The differentiated network is comprised of frontal and 
posterior halves, in each of which units receive the same number of 
inputs from both halves, but not of the same average strength. b and 
c The latching sequences—visualized by the overlaps, i.e., by how 
close the state of the network at time t is to each memory pattern 

(assigned an arbitrary color)—are very similar if extracted from the 
posterior (upper panels) or the frontal sub-network (bottom panels). 
In b, parameters are set as in Fig. 2e. In c, parameters are set as in 
Fig. 3c. Close inspection reveals that in (b) the transitions in the fron-
tal network appear to anticipate those in the posterior one, while in 
(c) the trend is not clear, consistent with the results described below



1105Experimental Brain Research (2024) 242:1101–1114	

baselines for both Cas and Cad are shifted, above and below, 
respectively, but their transition-weighted values are simi-
larly positioned, above and below the respective baselines, 
as in the frontal network. Also in terms of the second indi-
cator, the scatterplot of Fig. 2d shows rather similar slopes, 
with only a modest quantitative “advantage” for the fron-
tal network (in red), which can be said to lead the latching 

sequence somewhat more than the posterior one. One should 
note that, with these parameters, both sub-networks would 
latch if isolated.

Different w. In contrast to the two cases above, ND and 
ΔS , we see a major difference between the two sub-networks 
if it is the w parameter which is lower for the posterior net-
work (the rightmost bars of Figs. 2a, b). In this case, it is 

Fig. 2   A latching frontal network leads a non-latching posterior net-
work. Red indicates the frontal and blue the posterior network in this 
and other figures. a and b The transition-weighted averages of Cas 
and Cad are compared to their baseline values for three cases: no dif-
ference between the two networks (ND, leftmost bars), a difference 
in S ( ΔS , middle bars) and a difference in w ( Δw , rightmost bars). 
The gray horizontal line and shaded area indicate the baseline aver-
age and its standard deviation. c–e Scatterplots of (log) transition fre-
quencies between individual patterns pairs versus their “distance”, for 

the three conditions. The darkness of color indicates the number of 
pairs at each combination of abscissa and ordinate. For the ND condi-
tion, parameters are set as wp = wf = 1.1 , Sp = Sf = 7 . For the other 
conditions, the parameters of the frontal network are kept the same 
as in the ND condition, while the parameters of the posterior sub-
network are set as Sp = 3 and wp = 0.6 , respectively, in (d) and (e). 
Note the negative values on the x-axis, particularly in panel (d) upper, 
due to using just a proxy of a proper distance measure, a proxy which 
reaches in the negative range when S = 3
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obviously the correlation structure of the frontal patterns, 
not of the posterior ones, that dominates in determining 
latching sequences. This is also evident from the very dif-
ferent slopes, k, in the scatterplot of Fig. 2e. With the lower 
value w = 0.6 chosen for the posterior sub-network, this time 
it would not latch, if isolated. Note that to preserve its latch-
ing, and for it to be a clear single sequence, we would have to 
set w at almost the same value as for the frontal sub-network, 
unlike the case with the S parameter.

And/or different �2 . We now allow the adaptation time-
scale, �2 , to differ between the two sub-networks. We first 
note that latching sequences between the sub-networks are 
remarkably well synchronized despite their different adapta-
tion timescales (Fig. 1c). If isolated, the two sub-networks 
would each latch at a pace set by its own �2 . Their synchro-
nization thus shows that, even with this relativity weaker 
connectivity coupling (inter-connections 1/3 of the average 
strength of the intra-connections) the two halves are willing 
to compromise, and latch at some intermediate pace, close 
to the one they sustained when �2 was not differentiated.

Furthermore, latching sequences are affected predomi-
nantly by frontal correlations rather than posterior ones. In 
Fig. 3, we show two cases: the two sub-networks have two 
different adaptation timescales; and in the second case also 
different w. We see a moderate effect if �2 is the only param-
eter that differs between the two. Note that in this case the 
posterior sub-network, if isolated, would latch.

The effect is most pronounced if w is also lowered to 
w = 0.6 for the posterior sub-network, as is evident from 
the weak positive slope k it shows, see Fig. 3d. In this case 
it would not latch if isolated.

We have also inverted the �2 difference, making the pos-
terior sub-network, still with a lower w, slower in terms of 
firing rate adaptation. In this case (not shown) latching is 
virtually abolished, showing that the parameter manipula-
tions do not simply add up linearly.

Lesioning the network

To model lesions in either sub-network, we define a proce-
dure that still allows us to compare quantities based on the 
same number of inputs per unit, etc. The procedure acts 
only on the relative weights of the connections (through 
� ), which are modulated while keeping their average for 
each receiving unit always to 1/2. Other parameters of the 
network are set in such a way that the frontal sub-network 
leads the latching sequences and that lesions do not push 
the network into a no-latching phase: the self-reinforce-
ment parameter is set as w = 0.7 for the posterior sub-
network and w = 1.2 for the frontal one, while S and �2 are 
set as specified in Table 1 and thus take the same value 
for both sub-networks. For “healthy” networks, we use 
� = 0.5 in Eq. (2), meaning the intra-connections (within 

the frontal and within the posterior half) are 3 times, on 
average, as strong as the inter-connections (between fron-
tal and posterior halves). For lesioned networks, we use 
smaller values of � than 0.5 for their input connections: 
the smaller the value is, the stronger the lesion is. So, 
for example, a frontal lesion with � = 0.2 implies that its 
recurrent weights are weighted by a factor 0.6 (instead of 
0.75) and the weights from the posterior sub-network by 
a factor 0.4 (rather than 0.25), i.e. the internal weights are 
only 1.5 times those of the interconnections. The poste-
rior sub-network in this case has the same weights as the 
control case.

We then quantify the effect of the lesions with the 
slopes in the scatterplots as before, but also with an 
entropy measure. The entropy at position z in a latching 
sequence measures the variability of transitions encoun-
tered at that position, across all sequences with the same 
starting point. It is computed as

where P��
� (z) is the joint probability of having two patterns 

� and � at two consecutive positions z and z + 1 relative to 
the cued pattern � in a latching sequence, and ⟨⋅⟩� means 
that we average the entropy across all the p patterns that 
are used as a cue. Note that if all transitions were incurred 
equally, asymptotically for large z, the entropy would reach 
its maximum value S∞ = log2[p(p − 1)] (with p patterns 
stored in memory and available for latching). Therefore 
exp{[S(z) − S∞] ln(2)} is an effective measure of the frac-
tion of all possible transitions that the network has explored 
at position z, on average.

In terms of the slopes in the scatterplots, we see that 
posterior lesions do not have a major effect, while fron-
tal lesions reduce the relation between the probability of 
individual transitions and the correlation between the two 
patterns, particularly in the frontal sub-network where it 
was strong in the “healthy” case (Fig. 4).

In terms of entropy, we see that lesions in the posterior 
sub-network do not affect the entropy curve, relative to 
that for the healthy network (Fig. 5). Lesions in the frontal 
sub-network, however, tend to restrict the sequences to a 
limited set of transitions, leading to a marked reduction 
in the fraction of possibilities explored by the lesioned 
network.

Simulated frontal lesions, therefore, produce in our 
model two effects that, while not opposite, are not fully 
congruent either. The first, manifested in the reduced slope 
of Fig. 4a, is suggestive of a loss of coherence in indi-
vidual transitions between brain states; the second, seen in 
the limited entropy of Fig. 5, indicates a restriction in the 
space spanned by the trajectories of spontaneous thought. 

(5)S(z) =
⟨
−
∑

�≠�

P��

�
(z) log2 P

��

�
(z)

⟩
�
,
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To reconcile the two outcomes, we have to conclude that 
while less dependent on the similarity between the two 
patterns, or states, individual transitions are not really 
random, and some become in the lesioned network much 

more frequent than others, gradually veering from creative 
towards obsessive (or perseverative) thought.

Fig. 3   The frontal sub-network is even more dominant with slower 
adaptation. Color code and meaning are the same as in Fig. 2. a and 
b Transition-weighted averages of Cas and Cad versus their baselines 
are shown for two conditions: only �

2
 is different and both w and �

2
 

are different. In both conditions, �
2
 is 100 for the posterior network 

and 400 for the frontal network. In the Δw condition, w is 0.6 for the 
posterior network and 1.1 for the frontal network. c and d Log-trans-
formed transition frequencies between individual patterns pairs ver-
sus their distance
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Discussion

Simulating our model provides some insight about the 
conditions that may enable frontal cortex to determine the 
sequence of states in spontaneous thought dynamics. It is 
important, in assessing the computational findings, to dis-
tinguish what has gone into defining the model from what 
the model gives out in return. For example, much cognitive 
neuroscience research has been devoted to understanding the 
process of segmenting our ongoing experience into separate 
sub-events, or event segmentation (Kurby and Zacks 2008). 
Baldassano and colleagues (Baldassano et al. 2017) have 
recently demonstrated how brain activity within sub-events 
resembles temporarily stable activity patterns, dubbed “neu-
ral states” (Geerligs et al. 2022), which may be identified 
with those long posited to occur in the cortex of primates 
(Abeles et al. 1995) and other species (Jones et al. 2007), 
from analyses of single-unit activity. This notion is concep-
tually similar to the Potts states in a latching sequence, but 
finding evidence that a continuous input flow is segmented 
into discrete or quasi-discrete states in the brain is a major 
achievement, whereas in the Potts network it is a straightfor-
ward outcome of the ingredients used to define the model in 

the first place. Interestingly, these neural states were found 
to occur on different timescales across regions, with more 
but short-lasting transitions in low-level (posterior) sensory 
cortices and fewer but longer-lasting transitions in higher-
level (frontal/parietal) regions. Strikingly, for some of the 
higher order brain regions, neural state transitions appeared 
to overlap with behavioural measures of event boundary per-
ception (Baldassano et al. 2018).

In our study, the central question is which portion of 
the differentiated model network controls the sequence of 
discrete event states. We have seen that three types of dif-
ferentiation, each capturing some aspect of caudo-rostral 
cortical variation, bias sequence control towards the “fron-
tal” half of the network, albeit with different effectiveness. 
A comparison across the three types of differentiation is 
inherently ill-defined and somewhat arbitrary, because ΔS , 
Δw and Δ�2 are all measured on different scales, but it is 
apparent that the first type has a much milder effect than 
the second, and the third is somewhere in between. The 
major effect seen with Δw is likely due to the posterior 
network being unable to latch on its own, with the lower w 
value we have used. The lower S and �2 values do not have 
much of an effect on latching per se. The three types of 

Fig. 4   Correlations between transition frequency and pattern dis-
tance are shown for a network with frontal lesions (a), for a healthy 
network (b) and for a network with posterior lesions (c). Lesions are 

modelled by setting � = 0.2 (see main text). The self-reinforcement 
parameter is set as w = 1.2 for the frontal sub-network and w = 0.7 
for the posterior one
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differentiation are of course not mutually exclusive, and it 
is plausible that in the real brain, if the model makes sense, 
their effect would be cumulative. They do not appear to 
add up linearly, though: we have mentioned that inverting 
the �2 difference with respect to the w difference (i.e., mak-
ing firing rate adaptation faster in the frontal sub-network) 
tends to abolish latching altogether, rather than reduce the 
frontal advantage in leading it.

A limitation of our study is that to compare the sub-net-
works on an even footing we have considered an artificial 
scenario in which activity patterns are only randomly cor-
related, and also there are p in each half network and they 
have been paired one-to-one during learning. Obviously 
in this scenario there is no benefit whatsoever if the net-
work follows a frontally rather than a posteriorly-generated 
sequence: they are equivalent, and both devoid of content. 
It will be therefore important, in future work, to understand 
whether the insights derived under these assumptions are 
applicable also to more plausible conditions, in which the 
frontal and posterior patterns are not paired one-to-one, and 
can take distinct roles, for example along the lines of the 
classic operator/filler (also denoted as role/filler) distinction 
(Do and Hasselmo 2021). In this more complex scenario, 
the frontal patterns, if they have to serve as operators, would 
“take” or be paired in certain cases to a single filler and in 
others to multiple fillers (and possibly to other operators, in 
a hierarchical scheme); but even if just to one, it would be 

one among several options, so the pairing scheme in long-
term-memory would be considerably more complex than the 
one considered here.

A relevant cognitive construct we mention, only partially 
overlapping with that of operator, is that of a temporally-
oriented schema. A schema is a regularity extracted from 
multiple experience, in which B follows A and is then fol-
lowed by C, although the particular instantiation of A, B and 
C will be different every time (Gilboa and Marlatte 2017). 
Note that to be implemented in our network, the skeleton of 
the ABC representation would have to stay activated while 
the specific filling items A, B and C are specified, in suc-
cession, in the posterior cortex. Alternatively, ABC could be 
conceptualized as a short tight latching sequence. Clearly, 
more attention has to be paid to the possibility of formaliz-
ing these constructs in a future well-defined network model.

Mind wandering and creativity

Within its present limitations, still our approach may 
offer insights relevant to the dynamics of state transitions 
in spontaneous cognition, such as those underlying mind 
wandering. Mind wandering occurs when attention drifts 
away from ongoing activities and towards our inner world, 
focusing for example on memories, thoughts, plans, which 
typically follow one another in a rapid, unconstrained fash-
ion (Smallwood and Schooler 2015; Christoff et al. 2016). 

Fig. 5   a The entropy S(z) and its standard error of the mean are 
shown for healthy (black), frontal-lesioned (blue) and posterior-
lesioned (red) networks. Lesions are implemented by setting � = 0.2 
for solid curves, whereas the dashed blue curve is for a milder lesion 
in the frontal network ( � = 0.3 ). The black horizontal line indicates 
the asymptotic entropy value for a completely random sequence gen-
erated from a set of p = 50 patterns. The self-reinforcement param-
eter is set as w = 1.2 for the frontal network and w = 0.7 for the 

posterior network. b A schematic view of the diversity of transitions 
expressed by latching sequences. Circles are centered around an arbi-
trary position, while their areas extend over a fraction 2S(10)−S∞ of the 
area of the square (which would correspond to an even exploration 
of all possible transitions, asymptotically). The large orange circle is 
obtained by setting � = 0.7 , thus modelling a sort of cognitive frontal 
enhancement, perhaps obtained with psychoactive substances
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The dynamics governing the flow of thoughts can indeed 
be described as latching (see also (Ciaramelli and Treves 
2019)).

Mind wandering is known to engage the Default Mode 
Network (DMN), a set of interconnected brain regions, span-
ning from posterior, temporal, and frontal cortices (Buck-
ner et al. 2008; Andrews-Hanna et al. 2014; Raichle 2015; 
Smallwood 2013; Christoff et al. 2016; Stawarczyk et al. 
2011), underlying introspection and spontaneous (endog-
enously triggered) cognition. Ciaramelli and Treves (2019) 
and McCormick et al. (2018) have proposed that the prefron-
tal cortex, especially in its ventral-medial sectors (vmPFC) 
might support the initiation (internal triggering) of mind-
wandering events. Indeed, recent MEG findings show that 
activity in the vmPFC precedes (presumably drives) hip-
pocampal activity during (voluntary) scene construction and 
autobiographical memory retrieval [(Barry et al. 2019); see 
also (Monk et al. 2020, 2021)], and this region may play 
a similar role during spontaneous cognition. Indeed, dam-
age (Bertossi and Ciaramelli 2016; Philippi et al. 2021) or 
inhibition (Bertossi et al. 2017; Giordani et al. 2023) of the 
vmPFC [but not the hippocampus; McCormick et al. (2018)] 
reduce the frequency of mind-wandering.

On one view, vmPFC initiates event construction by acti-
vating schemata (about the self, or common events) that help 
collect relevant details that the hippocampus then binds in 
coherent, envisioned scenes [(Ciaramelli et al. 2019); see 
also Benoit et al. (2014); Moscovitch et al. (2016); Rolls 
(2022)]. Consistent with the schema hypothesis, vmPFC 
(but not hippocampal) patients are particularly impaired in 
event construction when the task benefits from the activation 
of the self schema (Verfaellie et al. 2019; Stendardi et al. 
2021), and are not impaired when the need for self-initiation 
is minimized (De Luca et al. 2019). vmPFC may also gov-
ern schema-congruent transitions between successive scenes 
of constructed events based on event schemata (scripts) 
(Stawarczyk et al. 2011; Lieberman et al. 2019), which 
may explain why vmPFC patients are particularly poor at 
simulating extended events as opposed to single moments 
selected from events (Bertossi and Ciaramelli 2016; Kurczek 
et al. 2015). The results from our computational simulations 
accord with and complement this view. Lesioning the fron-
tal (but not the posterior) sector of the network led to more 
random state transitions, less dependent on the correlation 
between patterns, and also led to shorter-lasting sequences, 
that fade out after fewer state transitions. This pattern of 
findings is expected if transitions in thought states were not 
guided by schematic knowledge, making them less coherent 
in content and self-exhausting.

A second effect we observed is a reduced entropy fol-
lowing lesions in the frontal (but not posterior) half of the 
network, which indicates that the trajectories of state transi-
tions were confined in a limited space, as if mind wandering 

lost its ’wandering’ nature to become more constrained, 
with recurring thoughts characteristic of the perseverative 
responses long observed in prefrontal patients; suggesting 
that vmPFC patients, in addition to an impaired activation 
of relevant schemata, also fail in flexibly deactivating cur-
rent but no longer relevant ones (Gilboa and Marlatte 2017).

The most characteristic memory deficit following vmPFC 
damage is confabulation, the spontaneous production of 
false memories. Confabulations often involve an inability 
to inhibit previously reinforced memory traces (Schnider 
2003). For example, confabulators can falsely endorse per-
sonal events as true because these were true in the past (e.g., 
that they just played football while in fact they used to play 
football during childhood). If presented with modified ver-
sions of famous fairy tales to study, confabulators tend to 
revert to the original versions of the stories in a later recall 
phase (Attali et al. 2009). Similarly, during navigation, con-
fabulators may get lost because they head to locations they 
have attended frequently in the past, instead of the currently 
specified goal destination (Ciaramelli 2008).

The inability to flexibly switch between relevant time 
schemata and memory traces has been linked to reduced 
future thinking and reduced generation of novel scenarios 
in prefrontal patients ((de Vito et al. 2012); see also (Ber-
tossi and Ciaramelli 2016)), who admitted they found them-
selves bound to recast past memories while trying to imag-
ine future events. More in general, prefrontal lesions impair 
creativity. There is interaction between the DMN and the 
fronto-parietal control network while generating (DMN) 
and revising (fronto-parietal network) creative ideas (Beaty 
et al. 2014; Bendetowicz et al. 2017). Bendetowicz et al. 
found that damage to the right medial prefrontal regions 
of the DMN affected the ability to generate remote ideas, 
whereas damage to left rostrolateral prefrontal region of the 
fronto-parietal control network spared the ability to gener-
ate remote ideas but impaired the ability to appropriately 
combine them.

Note, however, that the originality associated with cre-
ative ideas can be conceived as disrupting the automatic 
progression from a thought to the one most correlated to 
it. Fan et al. (2023) had participants perform a creative writ-
ing task, and indeed found the semantic distance between 
adjacent sentences to be positively correlated with the story 
originality. Also, semantic distance was predicted by con-
nectivity features of the salience network (e.g., the insula 
and anterior cingulate cortex) and the DMN. Green et al. 
(2006) have also reported a putative role of mPFC (BA 
9/10) in connecting semantically distant concepts during 
abstract relational integration. In a following study (Green 
et al. 2010), mPFC activity was found to vary monotonically 
with increasing semantic distance between abstract concepts, 
even when controlling for task difficulty. Indeed, preliminary 
evidence from patients with vmPFC lesions is indicative of 
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a greater global semantic coherence in speech compared to 
healthy participants (Stendardi et al., in preparation). These 
results align with our finding that a lesion of the frontal 
component of the network produces a reduction in entropy, 
making latching dynamics “less creative”; but not, prima 
facie, with the reduced slope in Fig. 4a, which indicates that 
the lesion would produce more random transitions, frequent 
also among distant patterns. The apparent contradiction can 
be reconciled by noting that, as seen above, individual ran-
dom transitions can still result in reduced entropy, if they 
tend to recur perseveratively within a sequence; and also 
that semantic coherence may reflect pattern correlation in 
posterior rather than frontal cortices, whereas it is logical/
syntactic consequentiality that is expected to be impaired by 
random frontal transitions. In fact, in our model lesion, the 
decreased slope in the frontal sub-network seen in Fig. 4a 
(more random transitions) is accompanied by a slightly 
increased slope, suggestive of more semantic coherence, 
posteriorly.

Clearly, a major refinement of our approach is required, 
before these suggestions can be taken seriously, and articu-
lated in a more nuanced and anatomy-informed view (Rolls 
et al. 2023) of how operating along the time dimension may 
be coordinated across cortical areas.

Appendix A: Potts model details

A Potts neural network is an autoassociative memory net-
work comprised of N Potts units, which model patches of 
cortex as they contribute to retrieve distributed long-term 
memory traces addressed by their contents (Treves 2005). 
Each Potts unit has S active states, indexed as 1, 2,⋯ , S , rep-
resenting local attractors in that patch, and one quiet state, 
the 0 state. The N units interact with each other via tensor 
connections, that represent associative long-range interac-
tions through axons that travel through the white matter 
(Braitenberg and Schüz 1991), while local, within-gray-
matter interactions are assumed to be governed by attrac-
tor dynamics in each patch. The values of the tensor com-
ponents are pre-determined by the Hebbian learning rule, 
which can be construed as derived from Hebbian plasticity 
at the synaptic level (Naim et al. 2018)

where cij is either 1 if unit j gives input to unit i or 0 other-
wise, allowing for asymmetric connections between units, 
and the � ’s are the Kronecker symbols. The number of 
input connections per unit is cm . The p distributed activity 
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simplest model, as composition of local attractor states {��
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the state of unit i in pattern � and is randomly sampled, inde-
pendently on the unit index i and the pattern index � , from 
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Constructed in this way, patterns are randomly correlated 
with each other. We use these randomly correlated memory 
patterns {��

i
}�=1,...,p in this study. The parameter a is the spar-

sity of patterns—fraction of active units in each pattern; the 
average number of active units in any pattern � is therefore 
given by Na.

Local network dynamics within a patch are taken to be 
driven by the “current” that the unit i in state k receives

where the local feedback w, introduced in Russo and Treves 
(2012), models the depth of attractors in a patch, as shown 
in Naim et al. (2018)—it helps the corresponding Potts unit 
converge to its most active state. The activation along each 
state for a given Potts unit is updated with a soft max rule

where U is a fixed threshold common for all units and � is 
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the Potts network additionally expresses latching dynamics, 
the key to its possible role in modelling temporal schemata.

The unit-specific thresholds �A
i
 and �B

i
 describe local 

inhibition, which in the cortex is relayed by at least 3 main 
classes of inhibitory interneurons (Tremblay et al. 2016) 
acting on GABAA and GABAB receptors, with widely dif-
ferent time courses, from very short to very long. Formally 
in our model, �A

i
 denotes fast, GABAA inhibition and �B

i
 

denotes slow, GABAB inhibition and they vary in time in 
the following way:

where one sets 𝜏A < 𝜏1 ≪ 𝜏2 ≪ 𝜏B and the parameter �A sets 
the balance of fast and slow inhibition. Specifically in this 
work, we set these parameters as �A = 10 , �B = 105 , �1 = 20 
and �A = 0.5.

Appendix B: Simulation details

We have used an asynchronous updating, where one unit is 
updated at a time with a random order. Updating all Potts 
units in the network once is our measuring unit of simula-
tion time: all timescales of the model are measured with 
this unit. We stop the simulation after updating the entire 
network 10,000 times (except for Fig. 5, see next para-
graph). Then, we cut out the first 3 patterns in the sequence 
to remove the effect of initialization. Every stored memory 
is used as a cue with its full representation.

In order to compute the probability P��
� (z) in Eq. (5), 

we have run p × 1000 simulations for each condition. For 
each memory pattern, we take 40% of its active units and 
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flip them into different states. We prepare 1000 corrupted 
versions of each memory by repeating this procedure 1000 
times. Each of these corrupted versions is used as a cue in 
each simulation, which is terminated after 12 transitions.

Unless specified explicitly, parameters of the Potts 
model are set as in Table 1.
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