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of extracellular vesicles in
brain metastases: a
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University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
Background: Extracellular vesicles (EVs) are small, transparent vesicles that can

be found in various biological fluids and are derived from the amplification of cell

membranes. Recent studies have increasingly demonstrated that EVs play a

crucial regulatory role in tumorigenesis and development, including the

progression of metastatic tumors in distant organs. Brain metastases (BMs) are

highly prevalent in patients with lung cancer, breast cancer, and melanoma, and

patients often experience serious complications and are often associated with a

poor prognosis. The immune microenvironment of brain metastases was

different from that of the primary tumor. Nevertheless, the existing review on

the role and therapeutic potential of EVs in immune microenvironment of BMs is

relatively limited.

Main body: This review provides a comprehensive analysis of the published

research literature, summarizing the vital role of EVs in BMs. Studies have

demonstrated that EVs participate in the regulation of the BMs immune

microenvironment, exemplified by their ability to modify the permeability of

the blood-brain barrier, change immune cell infiltration, and activate associated

cells for promoting tumor cell survival and proliferation. Furthermore, EVs have

the potential to serve as biomarkers for disease surveillance and prediction

of BMs.

Conclusion: Overall, EVs play a key role in the regulation of the immune

microenvironment of brain metastasis and are expected to make advances in

immunotherapy and disease diagnosis. Future studies will help reveal the

specific mechanisms of EVs in brain metastases and use them as new

therapeutic strategies.
KEYWORDS
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Introduction

Metastases are typically associated with unfavorable prognoses

and represent the primary cause of mortality in cancer patients (1).

Brain metastasis (BMs) is a common clinical occurrence,

particularly in patients with advanced non-small-cell lung cancer

(NSCLC), with BMs developing in up to 40% of cases (2). The

majority of patients with brain metastases experience significant

changes in nervous system function, adversely impacting their

quality of life. However, due to the limited treatment options, the

prognosis remains unfavorable. As a result, brain metastases

significantly impact the survival time and quality of life for

patients. Early-stage patients with BMs often face challenges in

receiving optimal treatment due to a lack of symptoms. However,

there is still a lack of noninvasive and highly accurate tumor

biomarkers in the early stages, which could play a significant role

in BMs screening. Despite substantial progress in chemotherapy,

radiotherapy, and targeted therapy, patients with advanced BMs

continue to have a poor prognosis, imposing a substantial burden

on families and society. Therefore, there is an urgent need for

additional prognostic and risk indicators.

In the current phase of scientific exploration and implementation,

researchers are investigating the structure, related technologies, and

mechanisms of exosomes. A significant milestone was reached at the

end of 2018 when the International Society for EVs issued guidelines to

establish standardized nomenclature for EVs. Presently, the majority of

techniques used for isolating exosomes result in the isolation of

heterogeneous populations of EVs derived from various biogenic

sources. For the sake of precision and clarity, we will henceforth

refer to these vesicles as “EVs,” which are commonly referred to as

“exosomes” in scientific literature. The Minimal Information for

Studies of Extracellular Vesicles 2018 (MISEV2018) guidelines

specify the use of membrane vesicles derived from small cells (3).

EVs, composed of nanoscale vesicle structures secreted by the

majority of cells, comprise three distinct types of vesicles, exosomes

(30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies

(1000-5000 nm). Cells can secrete exosomes in various states,

apoptotic bodies are secreted during apoptosis, and microparticles

are released when cells receive external stimuli such as radiation.

EVs play a pivotal role in intercellular communication and

participate in various physiological functions (4). As an

illustration, the cargo of fatty acids carried by tumor EVs and

particles (EVPs), specifically palmitic acid, induces the secretion of

tumor necrosis factor (TNF) by Kupffer cells. This process creates a
Abbreviations: sEVs, small extracellular vesicles; miRNAs, microRNA; circRNA,

circular RNA; lncRNA, long noncoding RNA; CAF, Cancer-associated fibroblast;

TAM, Tumour-associated macrophage; IL, Interleukin; 5-FU, 5-Fluorouracil;

MDSC, Myeloid-derived suppressor cell; PD-1, Programmed death receptor

protein 1; PD-L1, Programmed death-ligand 1; BMs, Brain metastasis; NSCLC,

non-small-cell lung cancer; MVBs, Multivesicular bodies; APCs(MVBs), Antigen

presenting cells; TNBC, Triple-negative breast cancer; TLR2, Toll-like receptor 2;

BBB, Blood-brain barrier; BCP, B cell precursor; CNS, Central nervous system;

VEGF, Vascular endothelial growth factor; HDL, High-density lipoproteins; LDL,

Low-density lipoproteins.
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pro-inflammatory microenvironment, inhibits fatty acid

metabolism and oxidative phosphorylation, and contributes to the

formation of fatty liver (5). Moreover, studies have indicated that

tumor type-specific proteins present in EVPs can aid in the

classification of unknown primary tumors. The protein content of

EVPs can serve as a dependable biomarker for the detection and

identification of different types of cancer (6). The aforementioned

studies demonstrate the significant impact of EVs on the onset and

progression of tumors; however, the influence on brain metastases

remains uncertain. The presence of the blood-brain barrier

represents a fundamental distinction between the brain and other

bodily tissues and organs. Owing to the distinctive structure of EVs,

they possess the ability to traverse the blood-brain barrier and

influence the onset and progression of brain metastases. In recent

times, there has been a growing number of articles that elucidate the

role of EVs or exosomes in the context of brain metastases. This

surge in research output has fueled the expansion of exosome-

related investigations in this field.

The objective of this review is to present a comprehensive

overview of the recent major advancements in the field, focusing on

the role and application of EVs in brain metastases. A

comprehensive literature search was conducted using Embase,

PubMed, Web of Science, and Clinicaltrials.gov databases to

identify relevant publications until November 1, 2023. The

screening process for literature pertaining to “Brain metastasis”

[Mesh], “Exosomes” [Mesh], and “Extracellular vesicles” adhered to

the guidelines established in MISEV 2018.
Characteristics of
extracellular vesicles

Structure and Biological Origin of
Extracellular Vesicles

In their study, researchers observed the transformation of sheep

reticulocytes into mature red blood cells, during which they release

small vesicles containing transferrin metabolites. Initially dismissed

as cell debris, further research recognized these vesicles as distinct

structures (7). The process begins with the plasma membrane

forming early endosomes, which evolve into multivesicular bodies

(MVBs) through vesicle formation (8). MVBs are crucial for various

cellular functions, including endocytosis, protein sorting, storage,

transport, and the release into the extracellular space, either by

degradation or fusion with the cell membrane (9). Although the

endosomal sorting complex required for transport (ESCRT) has

been implicated in exosome formation, evidence suggests ESCRT-

independent pathways also play significant roles (10–12). Novel

mechanisms, such as one controlled by RAB31, further expand our

understanding of exosome biogenesis (Figure 1).

Extracellular vesicles (EVs) are categorized into exosomes (30-

150 nm), microvesicles (100-1000 nm), and apoptotic bodies (1000-

5000 nm) (13, 14), each carrying vital biological materials like

proteins, DNA, RNA, enzymes, and lipids (15, 16). Initially

mistaken for waste, these vesicles are now recognized for their
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critical roles in human development and regulation. They influence

biomarker levels and act as therapeutic agents and drug delivery

systems, especially in autoimmune diseases (17–19).

Exosomes are considered the most applicable vesicles due to

their nanometric size and ease of isolation. These single-cell

exosomes have a membrane structure composed of bilayers of

lipids, measuring 30-150 nm in size and having a density of

approximately 1.13-1.21 g/ml (20). Exosomes are produced in

most human cells and are widely distributed in various bodily

fluids, including blood, urine, cerebrospinal fluid, tears, saliva, milk,

ascites, lymph, and amniotic fluid (21). Ectosomes (difference with

exosomes), also known as microparticles or microvesicles, derived

from plasma membranes, exhibit similar functions to exosomes

(22). Apoptotic bodies, observed during apoptosis, are also referred

to as apoptotic vesicles. They can be mistakenly identified as other

EVs (23). The functionality of EVs largely relies on their complex

and diverse cargo. Approximately 76% of this cargo consists of

proteins, while 15% comprises mRNA. The remaining components

include DNAs, microRNAs (miRNAs), circular RNAs (circRNAs),

and long noncoding RNAs (lncRNAs). These components have the

potential to significantly alter recipient cells that interact with

exosomes (24–38).

In the current state, there is a lack of optimal separation

strategies or markers for distinguishing between different sources

of EVs. Therefore, it is challenging to propose specific and

universally applicable markers for MVB-derived “exosomes”

compared to other small EVs. The term “exosomes” refers to EV

preparations that have been isolated from larger vesicles, but these

preparations are actually mixtures of exosomal and non-exosomal
Frontiers in Immunology 03
EV particles (29). Following the guidelines of MISEV2018, we have

used the term “small extracellular vesicles (sEVs)” to refer to

vesicles with diameters of either 200 nm or 100 nm, instead of

using the term “exosomes” (4).
Characterization, storage, and separation
of sEVs

Various protocols have been employed for the separation of

sEVs (30, 31).Currently, ultracentrifugation is widely used for the

isolation of sEVs (32). Classic techniques, including density

gradients (33), immunoisolation (34), precipitation (35), and

filtration (36), are also utilized. Each method has advantages and

disadvantages in terms of recovery, specificity, time, and cost (37,

38). Despite the development of several novel techniques in recent

years (39–42), complete isolation of sEVs remains challenging.

Therefore, a combination of methods will remain recommended

in the future. Identifying sEVs is also challenging. MISEV2018

guidelines recommend providing quantitative descriptions of both

the EV source and EV preparation. EV characteristics are routinely

assessed by detecting and analyzing protein content. For positive

identification, EVs must contain at least one transmembrane/lipid-

bound protein (typically CD9, CD63, CD81, and integrin) and one

cytosolic protein (typically ALIX, TSG101, syntenin, and HSP70).

Additionally, the levels of at least one negative protein, such as

albumin, lipoproteins, or ribosomal proteins, must be determined.

Furthermore, analysis of functional proteins, including histones,

cytochrome C, calnexin, and Grp94 (7), is required for sEVs.
FIGURE 1

The contents of exosomes. The cell membrane invagination will form endosome, which will then form multivesicular bodies (MVB), which will be
secreted to the exocytosomes as exosomes. Exosomes contain a variety of proteins, lipids, DNA, RNA and other important information of the
mother cell.
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Western blotting is the most commonly used method for

detecting proteins on the surface and within a cell. Fluorescent

microscopy enables the detection of structures that have been

labeled with fluorescent dyes (43). Flow cytometry has limitations

in detecting SEVs due to their small size and low amount of surface

antigens (44). In recent years, there has been a significant

improvement in the affordability and accessibility of mass

spectrometry techniques (45). However, when it comes to protein

extraction, a large quantity of small extracellular vesicles (sEVs) is

required, which can often reduce the overall efficiency of the process

(9). To fully characterize the heterogeneity of individual vesicles, it

is recommended to employ two complementary techniques, such as

transmission electron microscopy or atomic force microscopy (46).

These imaging techniques provide valuable insights into the

structural characteristics of sEVs, allowing for a better

understanding of their composition and behavior. In addition to

extracting and characterizing sEVs, proper storage conditions are

essential for maintaining the integrity and preserving the

characteristics of these vesicles. Currently, there is no general

consensus regarding the storage conditions for the original

samples from which sEVs are extracted, specifically whether they

should be stored at -80°C and used promptly when conducting

experiments (47, 48).
EVs regulate the microenvironment of
brain metastases

EVs affect the pre-metastatic
immune microenvironment

Recent studies have demonstrated the crucial role of exosomes

in establishing a pre-metastatic immune microenvironment for

brain metastasis. Hoshino et al. conducted an analysis on the

biodistribution of tumor-secreted exosomes and discovered that

integrins (ITGs) fuse with T cells in a tissue-specific manner,

thereby facilitating organ-specific colonization and creating a pre-

metastatic microenvironment for brain metastasis (49). Moreover,

tumor-secreted CEMIP+ exosomes are taken up by brain

endothelial and microglial cells, resulting in the upregulation of

pro-inflammatory cytokines encoded by Ptgs2, Tnf, and Ccl/Cxcl,

which promotes brain vascular remodeling and metastasis (50).

This suggests that exosomes have the ability to modify the

premetastatic immune microenvironment, facilitating tumor

metastasis to target organs. Additionally, researchers have

discovered that cancer-derived extracellular miR-122 modifies

glucose utilization in recipient premetastatic niche cells, leading

to the reprogramming of systemic energy metabolism to aid disease

progression. Consequently, glucose becomes more readily available

to metastatic tumor cells in the brain, allowing for their initial

expansion (51). Moreover, miR-19a transferred from astrocyte EVs

to metastatic breast cancer cells downregulates PTEN and increases

proliferation of the recipient tumor cells (52). It has also been

observed that the expression of serum exo-AnxA2 is elevated in

African-American (AA) women with triple-negative breast cancer

(TNBC), promoting angiogenesis (53). EVs derived from breast
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tumors can interact with Toll-like receptor 2 (TLR2) on

macrophages, stimulating the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) signaling pathway and

increasing the production of pro-inflammatory cytokines such as

IL-6 and tumor necrosis factor alpha (TNF-a) (54). Additionally,
these EVs released from drug-resistant MCF7 breast cancer cells

stimulate IL-6 expression and decrease macrophage chemotaxis

(55). Tumor-derived EVs containing tumor necrosis factor-related

apoptosis inducing ligand (TRAIL) induce apoptosis in vitro (using

the oligodendroglioma G26/24 cell line) (56). Furthermore, in

breast cancer, loss of XIST activates MSN-c-Met and reprograms

microglia through exosomal miR-503, thus promoting brain

metastasis (57). miR-210 has been reported as a pro-angiogenic

miRNA in normal adult mouse brain (58) and is overexpressed in

cells that specifically metastasized to the brain (59). The possibility

of EVmiR-210 participating in brain metastasis and angiogenesis of

breast cancer needs further study.

Researchers have demonstrated that EVs derived from

melanoma, particularly exosomes, activate pro-inflammatory

signaling in both lung fibroblasts and astrocytes (60). This

exosome-mediated pro-inflammatory reprogramming plays a

crucial functional role in the recruitment of immune cells by

activated fibroblasts and astrocytes (61). Additionally, blasts from

B cell precursor (BCP)-acute lymphoblastic leukemia (ALL) release

multiple cytokines and exosomes containing IL-15. These exosomes

bind to and are internalized by astrocytes and brain vessel

endothelial cells. Consequently, astrocytes produce VEGF-AA,

which disrupts the integrity of the blood-brain barrier (BBB) (62).

Exosomes derived from human brain microvascular endothelial

cells (HBMECs) induce an increase in S100A16 levels in SCLC brain

metastasis. The protective effect mediated by S100A16 is related to

the up-regulation of prohibitin (PHB)-1, a protein found in the

mitochondria ’s inner membrane. PHB-1 helps preserve

mitochondrial membrane potential (DCm) and supports the

survival of SCLC cells in the brain (63). Zhang and colleagues have

recently shown that miR-19a from astrocytes downregulates PTEN

expression in cancer cells. This downregulation leads to increased

secretion of CCL2 and recruitment of myeloid cells, ultimately

promoting brain metastasis (52). Furthermore, the transfer of

exosomal cargo induces transcriptomic changes that enhance the

inflammatory phenotype of stromal cells, similar to that of cancer-

associated fibroblasts (CAFs) (64). Overall, extracellular vesicle-

derived miRNA, proteins, and genes contribute to the creation of a

pre-metastatic microenvironment and promote tumor metastasis by

influencing the phenotype of intracranial immune cells while

improving the metastatic ability of tumor cells (Figure 2).
EVs affect blood-brain barrier permeability

The central nervous system (CNS) is tightly regulated by the

blood-brain barrier (BBB) and the neurovascular unit (NVU),

composed of endothelial cells (ECs), pericytes, and astrocytic

endfeet, to ensure normal brain function (65). The primary event

in brain metastasis is the infiltration of cancer cells through the

blood-brain barrier (BBB). Researchers have demonstrated that
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exosomes can cross the BBB and transport cargo, bypassing the

mononuclear phagocyte system (MPS) (66). Tumor-derived EVs

can breach the intact BBB in vivo by utilizing transcytosis as the

underlying mechanism. Researchers have also identified and

characterized the mechanism by which tumor-derived EVs

overcome the low physiological rate of transcytosis in the BBB.

This is achieved by reducing brain endothelial expression of rab7

and enhancing transport efficiency (67). A study demonstrated that

TGF-b1-mediated exosomal lnc-MMP2-2 derived from non-small

cell lung cancer (NSCLC) increases BBB permeability and facilitates

brain metastasis of NSCLC (68). In addition, lncRNA GS1-600G8.5

was found to be significantly upregulated in breast cancer cells with

a high propensity for brain metastasis, in contrast to exosomes

derived from poorly metastatic breast cancer cells. Disruption of the

BBB by exosomal lncRNA GS1-600G8.5 promoted the passage of

breast cancer cells, potentially through the targeting of tight

junction proteins. These studies have provided a novel

understanding of the role of exosomal lncRNAs in cancer brain

metastasis (69) (Table 1). Evs derived from MDA-MB-231 breast

cancer cells reduce the expression of the tightly connected molecule

ZO-1 by loading miR-105 (70). Another study on BMS breast

cancer cells also confirmed the effect of EV miR-181c on the

localization of actin filaments, resulting in increased brain

endothelial permeability (71). These may be the potential

mechanisms by which tumor-derived EVs affects the integrity of

the blood-brain barrier. The findings indicate that EVs can

compromise the integrity of the blood-brain barrier and facilitate

the formation of brain metastases.
Frontiers in Immunology 05
EVs affect the survival and proliferation of
tumor cells

Tumor suppressor genes, such as PTEN, encode the

phosphatase PTEN. Expression of PTEN in metastatic tumor cells

is hindered by the presence of EV-miR-19 released from astrocytes.

Moreover, tumor cells lacking PTEN engage in the recruitment of

IBA1+ myeloid cells to enhance proliferation. Consequently, the

recruited myeloid cells secrete NF-kb and CCL2, thereby inhibiting

their own apoptosis and promoting the occurrence of brain

metastasis (72). The underlying phenomenon can be illustrated as

follows. The miRNA derived from stromal cells within the tumor

microenvironment stimulates cell proliferation while concurrently

inhibiting cell apoptosis, thus promoting tumor growth.

Tumor-derived exosomes have the potential to enhance tumor cell

proliferation. A recent study observed an increase in the expression of

miR-503, a negative regulator of the X-inactive specific transcript, in

breast cancer patients with brain metastasis. Subsequently, the

upregulation of miR-503 in microglia promotes the transformation

from an M1 to an M2 phenotype (73). The acquisition of an M2

phenotype by microglia facilitates an immunosuppressive tumor

environment by impeding T cell proliferation. These findings

confirm that tumor-derived exosomes have the ability to modulate

immune cell function, promoting immune evasion mechanisms and

creating a conducive environment for tumor cell proliferation (74).

Exosomes derived from antigen presenting cells (APCs), in addition to

containing MHC complexes, have the ability to directly or indirectly

activate CD8+ T cells and CD4+ T cells (75). Dendritic cell-derived
FIGURE 2

Functions of EVs in developing pre-metastatic microenvironment. EVs derived from antigen presenting cells (APCs) can also activate CD8+and CD4+

T cells. Exosomes carrying PD-L1 promoted tumor growth and reduced the number of T cells in the spleen and lymph nodes in mouse experiments.
Integrins (ITGs) fuse with target cells in a tissue-specific manner to direct organ-specific colonization. Tumour-secreted CEMIP+ exosomes uptaked
by brain endothelial and microglial cells, upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, promote brain vascular
remodelling and metastasis. Human brain microvascular endothelial cells (HBMECs)-derived exosomes induce the elevated S100A16 in SCLC brain
metastasis, and the S100A16-mediated protective effect is related to the up-regulation of prohibitin (PHB)-1.
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exosomes are capable of inducing a pro-inflammatory cytokine profile,

while exosomes derived from tumor cells typically induce a pro-

tumorigenic immune profile. Remarkably, exosomes carrying PD-L1,

identical in structure to the surface of tumor cells, are capable of

binding to T cells (76). An experiment conducted with CD8+ T cells

demonstrated that PD-L1-incorporated exosomes inhibit their

proliferation. In mouse experiments, exosomes carrying PD-L1 were

found to promote tumor growth and decrease the number of T cells in

the spleen and lymph nodes (76). During the early stages of apoptosis,

decline in mitochondrial membrane potential and increase in radical

production can be observed. Exosomes play a significant role in

preventing the decline in mitochondrial membrane potential during

the early stages of apoptosis through the actions of PHB, a protein

found in the mitochondrial inner membrane (77). These findings

suggest that exosomes have the ability to regulate tumor cell stability

and promote their proliferation by modulating mitochondrial

membrane potential. Overall, EVs, particularly exosomes, can

significantly impact the survival and proliferation of tumor cells

through their influence on mitochondrial function.

Application potential of extracellular
vesicles in disease monitoring and
prediction of BMs

EVs as potential tumor markers for
brain metastasis

Pathologists commonly perform tissue biopsies for cancer

diagnosis and treatment monitoring purposes. In contrast, liquid
Frontiers in Immunology 06
biopsies offer minimal invasiveness, the potential for serial testing,

and the ability to detect cancer at an earlier, more treatable stage.

With rising expectations for liquid biopsy technologies, exosomes

are emerging as a valuable resource for early cancer detection.

It has been demonstrated in previous studies that cells release

exosomes, abundant in blood, cerebrospinal fluid (CSF), and

urine. Currently, the detection method is becoming more

specialized and sensitive. In vitro experiments showed higher

expression levels of these exosome miRNAs in CRC cell lines

compared to non-tumor cells (78). Patients with gastric cancer

(GC) exhibited a significant increase in plasma LINC00152 levels

compared to healthy controls (79). Exo-miRNAs can serve as

biomarkers for early-stage prognosis of brain metastases. Skog

et al. (80) previously reported the isolation of serum-derived EVs

from patients with brain tumors and the detection of specific

genetic alterations in the EGFR gene. Cerebrospinal fluid (CSF)

has been found to be a suitable biofluid for analyzing the

macromolecular contents of EVs in previous EV studies. Chen

et al. demonstrated that mutant IDH1 G395A can be detected in

CSF EVs with a sensitivity of 63% and a specificity of 100% (81).

Figueroa et al. (2019) reported that, in comparison to the gold

standard qPCR method used for detecting the EGFRvIII transcript

in brain tumor tissue, extracellular vesicular RNA analysis allows

for the detection of the oncogene EGFRvIII with a sensitivity of

60% and a specificity exceeding 98% (82). Manda et al. conducted

similar studies on plasma, which yielded an 80% sensitivity and a

79% specificity (83). Akers et al. demonstrated that miR-21 (84)

and miRNA signature (85) from CSF EVs can differentiate

between tumor and non-tumor disease states.
TABLE 1 Role of sEVs in brain metastasis.

Type Contents Donor
cells

Recipient cells Function Ref.

Protein ITGs Cancer cells T cells establish pre-metastatic microenvironment (49)

Protein CEMIP Cancer cells brain endothelial and
microglial cells

promote brain vascular remodelling and metastasis (50)

Protein TRAIL G26/24 cell line Astrocyte induce astrocyte apoptosis in vitro (56)

Protein IL-15 BCP-ALL astrocytes, brain vessel
endothelial cells

disrupts the integrity of the blood-brain barrier (BBB) (58)

Protein S100A16 HBMECs Cancer cells supports the survival of SCLC cells in brain (59)

miRNA miR-19a Astrocyte Cancer cells enhanced the proliferation of the recipient tumour cells (60)

miRNA miR-122 Cancer cells niche cells reprogram systemic energy metabolism to facilitate
disease progression

(51)

miRNA miR-503 Cancer cells Microglia promote Brain Metastasis (53)

lncRNA lnc-MMP2-2 Cancer cells brain vessel endothelial cells increases BBB permeability (66)

lncRNA lncRNA
GS1-600G8.5

Cancer cells brain vessel endothelial cells disrupted the BBB (67)

miRNA miR-210 Cancer cells brain vessel endothelial cells promote brain vascular remodelling and metastasis (58)

miRNA miR-105 Cancer cells brain vessel endothelial cells disrupted the BBB (70)

miRNA miR-181c Cancer cells brain vessel endothelial cells disrupted the BBB (71)

Protein IL-6 Cancer cells Macrophage promote Brain Metastasis (55)
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EVs as new targets for brain
metastasis therapy

Exosomes are believed to play a role in the development,

metastasis, and cell proliferation of brain metastasis. Directly

targeting the proteins and nucleic acids within exosomes has the

potential to suppress cancer development. This research is expected

to generate novel insights for the diagnosis and treatment of brain

metastasis. Cell surface molecules, such as ANXA2 (86) and

miRMA (87), are considered potential targets for brain metastasis

therapy. PD-L1 (Programmed Cell Death-Ligand 1) is expressed in

EVs secreted by tumors and can metastasize to other cells. Binding

of PD-L1 with PD-1 activates the PD-1/PD-L1 pathway, resulting in

diminished anti-tumor activity of T cells and induction of T-cell

apoptosis. This pathway ultimately facilitates immune escape by

tumor cells (76, 88). Reducing the expression of Rab27a and using

an exosome inhibitor (GW4869) not only impacted exosome

production but also inhibited the release of PD-L1 from

exosomes (89). Therefore, these findings have the potential to

unleash powerful anticancer effects. This represents a significant

stride towards precision medicine and personalized treatment for

brain metastasis.
EVs as new drug delivery systems for brain
metastasis therapy

In patients with central nervous system (CNS) metastases, the

efficacy of standard chemotherapies or targeted agents is

constrained by the limited penetration of antineoplastic agents

across the blood-brain barrier (90). Exosomes serve as a

promising drug delivery system to overcome the challenge of

chemotherapeutic drugs crossing the blood-brain barrier. Using

exosomes as drug delivery systems offers several advantages, such as

low toxicity, membrane-like structure, flexibility, high drug carrying

capacity, passive targeting, good biocompatibility, as well as

improved drug bioavailability and sustained release (91, 92). The

loading methods of drugs into exosomes can be categorized into

two types: endogenous and exogenous approaches (93). In

endogenous loading, parent cells undergo genetic modification to

express specific proteins or nucleic acids to be packaged in the

released vesicles. Alternatively, drugs can be loaded exogenously by

incorporating them into exosomes derived from cell culture media

or body fluids, such as urine, blood, saliva, or breast milk. Various

vesicular systems, including niosomes, proniosomes, ethosomes,

ufasomes, pharmacosomes, transferosomes, and phytosomes, have

been extensively investigated due to their capability to deliver drugs

to the target site while minimizing toxicity to healthy tissues (94).

The study examined zebrafish embryos to assess the

effectiveness of exosomes in delivering anticancer drugs to the

brain in vivo (95). Additionally, experiments with mice

demonstrated the ability of exosomes to transport siRNA across

the blood-brain barrier and into the brain (96). In an initial study,

the researchers investigated whether naturally brain-targeted

exosomes, derived from brain endothelial cells, could transport
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siRNA specific to the tumor marker vascular endothelial growth

factor (VEGF) across the blood-brain barrier (BBB) in both in vitro

and in vivo settings. The researchers successfully suppressed

zebrafish tumors that were xenografted with VEGF through the

delivery of VEGF using exosomes, and subsequently achieved

tumor knockdown in zebrafish utilizing the delivered VEGF.

These findings provide support for the potential use of natural

exosome vesicles in targeted delivery of siRNA to the brain for the

treatment of brain diseases (97). In another study, it was

demonstrated that exosomes, namely Exo-cur which encapsulated

curcumin, and Exo-JSI124 which inhibited signal transducer and

activator of transcription 3 (Stat3), could be noninvasively delivered

to microglia cells through intranasal administration. The study

further revealed the preventive effect of intranasally administered

Exo-cur or Exo-JSI124 on LPS-induced brain inflammation in mice

(98). A similar study reported that niosomes incorporating folic

acid were taken up by rat brain models with an uptake rate of

approximately 48.15% (99). This suggests that exosome is a novel

treatment stratege for brain tumors and metastases.
The practical application of EVs in the
treatment of brain metastases

sEVs hold immense potential in the field of cancer

immunotherapy (49). Immunotherapy-related clinical trials have

gradually emerged as a result of the development of PD-1/PD-L1

research for MSI-H and dMMR patients. Recent research in tumor

immunotherapy has primarily focused on inhibitors of the

programmed death receptor protein 1 (PD-1) and programmed

death-ligand 1 (PD-L1) to enhance immunity and overcome

immune suppression by activating and promoting immune cells

(80). Previous studies have predominantly explored the role of

soluble PD-L1, with limited research on sEV-PD-L1. sEVs, with

their secretory properties, can harbor inhibitors and killers of T cells

within the local tumor microenvironment. Moreover, they possess

the ability to migrate to distant sites, potentially facilitating tumor

immune evasion (100). According to Fan et al. (101), the stability of

sEV-PDL1 and its impact on T cell function can serve as indicators

of a patient’s immune status and long-term prognosis. Furthermore,

a 2020 study by Zhang et al. (102) revealed that after two or more

cycles of chemotherapy, 5-FU can upregulate the expression of sEV-

PD-L1, leading to immunosuppression.
Potential advantages and challenges
of EVs as a treatment strategy for BMs

Since the beginning of this decade, EVs have attracted

considerable attention. A new perspective on brain metastasis

prevention and treatment is presented by this research that

expands our understanding of the functions of small extracellular

vesicles (sEVs) and the mechanism of development of tumors. In

general, BM metastasis-related sEVs are characterized by complex

cargo as the primary mechanisms of action. Furthermore, many
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unknown mechanisms and molecules, as well as communication

between BM cells and the tumor microenvironment, contribute to

the overall complexity and uncertainty. With the deeper

investigation of exosomes, exosomes are expected to become a

new target for cancer treatment and potential tool for early

diagnosis of brain metastases.

According to these results, exosome-carried molecules can serve

as biomarkers for the detection of diseases in its early stages. On the

other hand, exosomes show a relatively high stability. Tissue-

specific protein in exosome is found to be stable when stored at

-80°C or colder, probably for a extended periods of time. Moreover,

EVs can be obtained from autologous dissected primary tumor cells

in clinical applications, making them biocompatible and safe

options for personalized cancer therapy.

Opportunities and challenges coexist, of course. It is unknown

which molecules play a dominant role in the comprehensive effect

as well as the mechanisms that underlie the complex cargo. Several

large-scale and multicenter studies have not been conducted due to

immaturity of technology, diversity of detection methods and

results, and high detection costs. A further challenge to the

universality in existing research may be the genetic differences

between East and West, between countries, and even between

regions. Thus, scientific findings must be validated before being

applied to clinical practice, a collaborative effort between clinicians,

pharmacists, and other professional scientists is urgently needed to

evaluate the safety, effectiveness, and stability of sEVs. Regardless, it

is foreseeable that in the near future, sEVs will be an important tool

for accurate early diagnosis and personalized and efficient treatment

of cancers due to their unique biological characteristics, offering

infinite power to overcome cancers.
Application potential of nanoscale
biomembrane vesicles for brain
metastasis therapy

Nanoparticles in nano drugs are commonly categorized as

vesicular, lipid-based, or polymeric. Several vesicular systems, such

as niosomes, proniosomes, ethosomes, ufasomes, pharmacosomes,

transferosomes, and phytosomes, have been extensively studied for

their potential to deliver drugs to target sites while minimizing

damage to healthy tissues. Consequently, nanoscale biomembrane

vesicles show promising potential for treating brain metastases.
Liposomes

Liposomes are vesicles composed of a lipid bilayer that

encapsulates an aqueous core, offer a promising mechanism for

drug delivery due to their biocompatibility as nanovesicles and

their ability to protect encapsulated drug molecules from

degradation (103, 104). Additionally, liposomal preparations have

advantages over other nanocarriers and are considered the gold

standard in nanomedicine, with numerous clinically approved

liposomal products available for various diseases (105). However,

their application in the treatment of brain metastases is rarely
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reported. Conventional liposomes have limitations such as their

inability to interact with high-density lipoproteins (HDL) and low-

density lipoproteins (LDL) (106). These problems can be overcome

by using stealth liposomes, which are modified with biocompatible,

inert, and hydrophilic polymers such as polyethylene glycol (PEG),

poly(2-ethyl-2-oxazoline) (PEOZ), polyacrylamide (PAA), polyvinyl

pyrrolidone (PVP), and poly-2-methyl-2-oxazoline (PMOZ) (107).

These liposomal modifications have been extensively studied for the

treatment of autoimmune diseases like rheumatoid arthritis (RA) and

psoriasis. Recently, liposomal-based vesicular drug delivery systems

that can cross the blood-brain barrier (BBB) and target injured

vasculature sites in inflammatory tissues have emerged as potential

candidates for treating multiple sclerosis (MS) (108). This provides a

strong theoretical basis for exploring the application of this drug

delivery system in the treatment of brain metastases.
Niosomes

Niosomes are a type of vesicular nanocarrier that has

revolutionized drug delivery in recent years due to their numerous

advantages (109). Niosomes can have different sizes and structures,

small unilamellar vesicles (SUVs) are niosomes ranging from 10 to

100 nm in size, while large unilamellar vesicles (LUVs) are niosomes

ranging from 100 to 3000 nm in size (110). Studies have

demonstrated that the unique surface chemistry of niosomes

enables them to cross the blood-brain barrier (BBB) and offers the

potential for active targeting through surface modification with

ligands (111). Numerous studies have shown that niosomes can

cross the blood-brain barrier, offering relief from the symptoms of

various autoimmune diseases that impact brain function (112). A

similar study reported that niosome-incorporated folic acid was taken

up by rat models’ brains at an uptake rate of approximately 48.15%

(113) (Figure 3). Inflamed areas contain a higher concentration of

macrophages, which are immune-related cells responsible for

triggering inflammation, making them a primary target for drug

development (114). Researchers have shown that targeting

macrophages with biocompatible nanovesicular systems can greatly

enhance the treatment of autoimmune diseases such as rheumatoid

arthritis (RA) (115). Niosomes also hold promise for the treatment of

brain metastases.
Conclusions

EVs serve as crucial intercellular communication mediators

with potential benefits and obstacles in managing brain

metastases (BMs). EVs transport metastatic factors, miRNA, and

proteins, facilitating the migration, colonization, and regulation of

cancer cells in brain tissue. Moreover, EVs hold promise as

biomarkers for monitoring and predicting the progression and

prognosis of brain metastases. However, there are ongoing

challenges in addressing the preparation, purification, stability,

persistence, safety, and biodistribution of EVs as a therapeutic

strategy. Hence, future research should prioritize optimizing EVs’

preparation techniques, developing drug delivery systems, and
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conducting clinical experiments to enhance their therapeutic

potential for brain metastases. Meanwhile, there are more clinical

studies targeting primary brain tumors, and there is a lack of the

application of EVs as diagnostic and therapeutic drugs for

metastatic brain tumors, indicating a limited amount of research

on the mechanisms of EVs in metastatic brain tumors.

Understanding the mechanism of action of EVs is crucial in

guiding the development of effective clinical applications based

on EVs.

In conclusion, extracellular vesicles play a significant regulatory

role in managing lung cancer brain metastases and have potential

value in therapeutic and diagnostic applications. Future studies

should prioritize enhancing mechanistic research and conducting

clinical trials to promote the practical utilization of extracellular

vesicles as a treatment strategy and overcome associated challenges.

These efforts will offer brain metastases patients personalized and

innovative treatment alternatives, ultimately enhancing their

quality of life and prognosis.
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FIGURE 3

sEVs as tools and targets in brain metastasis therapy. (A) sEVs as a new target for brain metastasis therapy. (B) sEVs as a new drug delivery system for
brain metastasis therapy. (C) Article-meta Nanoscale biomembrane vesicles Applications.
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