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Lodging is a crucial factor that limits wheat yield and quality in wheat breeding.

Therefore, accurate and timely determination of winter wheat lodging grading is of

great practical importance for agricultural insurance companies to assess agricultural

losses and good seed selection. However, using artificial fields to investigate the

inclination angle and lodging area of winter wheat lodging in actual production is

time-consuming, laborious, subjective, and unreliable in measuring results. This

study addresses these issues by designing a classification-semantic segmentation

multitasking neural network model MLP_U-Net, which can accurately estimate the

inclination angle and lodging area of winter wheat lodging. This model can also

comprehensively, qualitatively, and quantitatively evaluate the grading of winter

wheat lodging. The model is based on U-Net architecture and improves the shift

MLP module structure to achieve network refinement and segmentation for

complex tasks. The model utilizes a common encoder to enhance its robustness,

improve classification accuracy, and strengthen the segmentation network,

considering the correlation between lodging degree and lodging area parameters.

This study used 82 winter wheat varieties sourced from the regional experiment of

national winter wheat in the Huang-Huai-Hai southern area of the water land group

at the Henan Modern Agriculture Research and Development Base. The base is

located in Xinxiang City, Henan Province. Winter wheat lodging images were

collected using the unmanned aerial vehicle (UAV) remote sensing platform.

Based on these images, winter wheat lodging datasets were created using

different time sequences and different UAV flight heights. These datasets aid in

segmenting and classifying winter wheat lodging degrees and areas. The results

show that MLP_U-Net has demonstrated superior detection performance in a small

sample dataset. The accuracies of winter wheat lodging degree and lodging area

grading were 96.1% and 92.2%, respectively, when the UAV flight height was 30 m.

For a UAV flight height of 50 m, the accuracies of winter wheat lodging degree and

lodging area gradingwere 84.1% and 84.7%, respectively. These findings indicate that

MLP_U-Net is highly robust and efficient in accurately completing the winter wheat

lodging-grading task. This valuable insight provides technical references for UAV

remote sensing of winter wheat disaster severity and the assessment of losses.
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Introduction

Wheat is a food crop worldwide, providing sustenance for

approximately a third of the global population (Zhang et al.,

2014; Wen et al., 2022). According to the Food and Agriculture

Organization, the global wheat planting area was 223 million

hectares, yielding 776 million tons (FAO, 2021). Given China’s

increasing population and decreasing arable land, boosting wheat

yields is the key to achieving self-sufficiency. However, wheat

production is frequently hampered by extreme weather, such as

typhoons, heavy rains, and hailstorms, bringing many uncertainties

to the wheat yield. Therefore, using unmanned aerial vehicle (UAV)

remote sensing to monitor wheat disasters and predict yields has

become essential to ensure food security.

Lodging is a significant problem in field production, which can

cause a severe reduction in crop yields by up to 50% (Foulkes et al.,

2010; Berry and Spink, 2012; Peng et al., 2014; Singh et al., 2019;

Zhao et al., 2020). This phenomenon occurs when the aboveground

stems lose their upright state (stem lodging) or when root soil

attachment is damaged (root lodging) (Pinthus, 1974). It is

commonly observed that the middle and later stages of wheat

growth can cause partial or majority wheat lodging (Sara et al.,

2019). Wheat lodging has been found to impact its individual

development and overall yield and quality (Liu et al., 2014; Yang

et al., 2021). Therefore, it is crucial to evaluate the degree and area of

lodging promptly and accurately. This information is essential for

analyzing wheat disasters and providing a reference for identifying

the level of wheat lodging disasters and breeding improved varieties.

Furthermore, it is a critical basis for agricultural insurance

companies to assess the degree of wheat lodging and determine

agrarian losses.

In crop breeding practice, researchers are working on

developing fall-resistant wheat varieties (Piñera-Chavez et al.,

2016) and prediction models for extreme weather events (Sterling

et al., 2003). One of the challenges in this field is acquiring wheat

lodging information, typically done through manual and remote

sensing measurements. However, these methods can be subjective

and time-consuming. Therefore, remote sensing measurement has

been developed based on spectral, texture, and color characteristics

to monitor wheat lodging information in different regions. Chauhan

et al. (2020) developed a multitemporal discriminant analysis

method that uses partial least squares to classify the severity of

wheat lodging. Chauhan et al. (2019) have analyzed the spectral

variability of different lodging severity levels using UAV

multispectral data. They have also classified them using high-

resolution UAV data. Zhang et al. (2020) have employed a UAV

system for image acquisition and machine learning algorithms to

detect the occurrence of wheat lodging. Tian et al. (2021) utilized

multispectral and RGB cameras installed on a UAV platform to

analyze the image features of non-lodging and lodging rice. They

have examined several factors, such as spectral reflectance,

vegetation index, texture, and color, to optimize lodging detection

indicators. After analyzing these factors, they established a rice
Frontiers in Plant Science 02
lodging detection model based on selected image features to

distinguish between non-lodging and lodging rice. Yang et al.

(2017) proposed a hybrid spatial and spectral-based image

classification technique to detect lodging areas effectively. Shu

et al. (2020) presented a method that relied on changes in maize

plant height to monitor the degree of lodging, using dual-

polarization Sentinel-1A data to calculate the lodging angle. Sun

et al. (2019) employed maximum likelihood classification to classify

the UAV multispectral image features and extract four maize

lodging grades.

Artificial intelligence (AI) has significantly increased

agricultural information in recent years. Various studies have

applied AI techniques, such as machine vision, to this area with

promising results (Kamilaris and Prenafeta-Boldú, 2018; Bu and

Wang, 2019; Liu et al., 2019; Nguyen et al., 2020; Song et al., 2020;

Yang et al., 2020; Koh et al., 2021; Mao et al., 2022). Wilke et al.

(2019) used SfM technology to quantify barley’s lodging area and

severity. Rajapaksa et al. (2018) extracted texture features from

wheat UAV images using a gray-level co-occurrence matrix, local

binary patterns, and a Gabor filter to classify lodging degrees.

Studies have also explored various methods for analyzing and

predicting the lodging area in crops, using deep learning and

neural networks. Su et al. (2022) used an improved U-Net

network to statistically analyze lodging wheat through small-

sample training. Yang et al. (2020) combined edge computing

with EDANet to predict lodging areas quickly and effectively.

Zhao et al. (2019) proposed a new method for evaluating rice

lodging based on a deep learning U-Net structure, facilitating

efficient extraction of rice lodging areas in a large area. Zhang

et al. (2020) proposed a method based on transfer learning and the

DeepLabv3+ network to extract lodging areas in different growth

wheat stages, which is better than the traditional U-Net. Tang et al.

(2022) proposed a semantic segmentation network model called

PTCNet, which performed well on high-resolution satellite datasets

by integrating features from multiple scales.

However, the above researchers mainly adopted conventional

machine and deep learning methods for feature classification. They

have failed to combine and optimize different feature screening and

classification methods. As a result, the accuracy of the results is low,

and their results lack universality. Deep learning algorithms in this

study mainly use raw images that have not been spliced to extract

the lodging area. However, this area has high heading and lateral

overlap, which requires manual deduplication before and after

image processing. Moreover, none of the abovementioned

methods analyzed the degree and area of lodging combined. This

study aims to construct and label lodging datasets for different

wheat varieties and improve the technique of extracting lodging for

plot areas with different regions and flight heights. Additionally, the

study seeks to establish a classification semantic segmentation dual

task neural network model MLP_U-Net while completing the

classification of lodging degree and lodging area categories and

establishing a joint weighted loss balance for multiple task weights

to prevent gradient explosion.
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Materials and methods

Study area

The study area is located in the winter wheat regional

experiment at Henan Modern Agricultural Research and

Development Base of Henan Academy of Agricultural Sciences.

According to the details provided, this study area is located at 35°0′
44″ north latitude and 113°41′44″ east longitude, with an altitude of

97 m, as shown in Figure 1. The region of Yuanyang County,

located in the North China Plain, falls under a warm temperate

continental monsoon climate, with the primary crop grown in

autumn being winter wheat. The average annual rainfall and

temperature are 549.9 mm and 14.4°C, respectively, with annual

sunshine hours ranging from 2,300 h to 2,600 h. Winter wheat in

this study area is in the filling period, and the region is likely to

experience a high risk of lodging due to the extreme climate.

A total of 82 winter wheat varieties were tested in a completely

randomized group design with three replications and a plot area of

12 m2. The seeds were sown during the appropriate sowing period

according to the experimental plan, and the field management

measure is higher than those of the ordinary field.
Data collection

This study used the DJI 4 Pro UAV with a wheelbase of 350 mm,

camera pixels of 20 million pixels, image sensor of 1 inch CMOS, lens

parameters of FOV 84°, 8.8 mm/24 mm (35-mm format equivalent),

and aperture of f/2.8-f/11. Equipped with GPS/GLONASS dual-mode

positioning, the captured image resolution is 5,472 pixels × 3,078 pixels,

and the aspect ratio is 16:9. The flight adopts the route automatically

planned by the DJI UAV, and the aerial photography is completed and

landed with automatic return. The image collection time for flyover 1

was 10:00 am on 14/05/2020, the weather clear and cloudless, and it
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was taken vertically, with the flight altitude of 30m, flight speed of 3 m/

s, and flight duration of 25 min; the heading overlap and lateral overlap

were both 80%, camera photography mode was taken at equal time

intervals, and 700 original images were finally collected. The hardware

facilities and parameter settings of flyover 2 are the same as flyover 1,

with the collection time of 20/05/2022 and the flight altitude of 50 m.

Regardless of the changes in flight altitude between flyover 1 and

flyover 2, as long as the flight altitude is controlled in a controlled

operating environment, through appropriate training and parameter

adjustments, this research method has a certain degree of universality

and accuracy.
Data preprocessing

The collected data must be preprocessed, and the PIX4D mapper

software is used for radiometric calibration and geometric correction

on the original image. This process is done to obtain digital orthophoto

images of the experimental field. Once the images are concatenated, the

resolution is 5,153 pixels × 3,999 pixels. The stitched image is cropped

and appropriately rotated, and the processed image resolution becomes

1,196 pixels × 2,853 pixels, as shown in Table 1.

As shown in Figure 2, the darker the color, the higher the degree of

lodging. Additionally, the number of lodging plots in flyover 2 is more

than that in flyover 1. Additionally, there is a significant difference in

training difficulty due to the varied distribution of data samples in

different datasets. Therefore, flyover 1 has fewer lodging plots than

flyover 2, making training less complicated. Moreover, flyover 1 is

undersampled, and flyover 2 is oversampled. The two flyovers were

located in the same experimental field in different years, covering 15

rows. Flyover 1 covered 487 plots of 82 winter wheat varieties with

uniform data distribution. However, linear transformation for data

enhancement may result in uneven data distribution. This study

collected samples from flyover 2 in the same region in 2022 to

increase the sample size. Flyover 1 uses nine rows of data from the
FIGURE 1

Location of the study area.
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north of the study area for the training set, while flyover 2 uses 10 rows

from the north for the training set. Other data are used as the test set.

The specific process comprises the following five steps:
Fron
1. Classification data labeling: A labeling tool was used to

annotate the plots as VOC format data. Flyover 1 used

integrated field sampling and visual interpretation, and

flyover 2 used visual interpretation.

2. Cell extraction: This step is conducted using RoIAlign

(Chauhan et al., 2020) to generate candidate regions in

the original data according to the location coordinates of

the labeled data using the bilinear interpolation method.

Then, the candidate regions are mapped to produce a

feature map that is 128 pixels × 512 pixels in size.

3. Manual labeling: Semantic segmentation pixel-level

labeling of images was done using the LabelMe tool. The

lodging wheat region was marked as the foreground, and

the non-lodging wheat region was marked as the

background, which was converted to a binary image label.

4. The classification part of the model generates the prediction

category, while the segmentation part generates the mask

map. Then, the mask map is mapped with ground object

relationships to obtain the predicted area value of the plot.
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From there, the percentage of the lodging area in the plot’s

total area is calculated to obtain the lodging area prediction

category. The predicted data are downsampled to the

original resolution and overlaid onto the source data

graph by labeling the data position, making the predicted

results clear and visible.

5. Accuracy verification: The model evaluation index is

calculated using the mask map generated by the model, and

the model prediction’s accuracy is evaluated by comparing it

with the labeled data through the confusion matrix. This

method helps verify the model’s accuracy and determine its

performance in predicting the expected outcomes.
As shown in Figure 3, the source data are input to the neural

network through RoIAlign to generate candidate regions for each

plot. The neural network outputs prediction classification and a

mask map. The predicted lodging area values are obtained from the

mask map. These values are then combined with the source data to

obtain the lodging degree grading (Figures 4, 5) and the lodging area

grading (Figures 6, 7) of the prediction map.

However, the resolution of a single image after stitching processing

is quite large, measuring 1,196 pixels × 2,853 pixels, posing challenges

for deep learning to process the stitched image directly. Therefore,

training and testing the data before stitching may be more practical, as

this can help avoid manual deduplication of highly overlapping data.

As a result, we designed a multitask neural network model training to

reduce the overfitting problem by training the model with small

samples to achieve good results. Moreover, we set randomly

discarded neurons in the multitask neural network to disturb and

add noise between different tasks using multitask learning to improve

the network’s robustness.
Multitask learning model

Our model is developed based on the multitask learning method

(Caruana, 1993; Zhang et al., 2014; Ranjan et al., 2017; Ruder, 2017;

Zhang and Yang, 2018), which differs from single-task learning. Most

conventional machine learning models are single-task learning, such as

lodging region segmentation and wheat spike counting. However,
TABLE 1 Dataset processing.

Dataset processing Flyover 1 Flyover 2

Image size of dataset 1196
pixels×2853 pixels

1196
pixels×2853 pixels

samples number of
original dataset (image)

1 1

Preprocessed image size
for each plot

128 pixels×512 pixels 128
pixels×512 pixels

Number of plots after pre-
treatment (image)

487 487

Number of training
set (image)

689 689

Number of testing
set (image)

159 131
FIGURE 2

Data sample distribution.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1284861
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zang et al. 10.3389/fpls.2024.1284861
multitask learning involves solving simple and independent

subproblems individually and combining their results to obtain the

results of a complex problem. This approach is simple to implement

but has some limitations. Each subproblem is not independent, and

they may be correlated. If the real problem is divided into multiple

subproblems, the rich correlation information between the issues will

be ignored, and multitasking learning will be created to solve this

problem. Using a shared layer between multiple tasks, a multitask

learning model can leverage their correlation and improve learning.

However, some information may not be as relevant to all functions,

including low correlation between tasks, which can instead bring

random noise and hinder the ability to achieve better

generalization results.
MLP_U-Net model structure

The encoder–decoder framework is commonly used for

semantic segmentation tasks by cascading the encoder and
Frontiers in Plant Science 05
decoder information. This model is effective in recovering fine-

grained details in complex backgrounds. U-Net is a popular model

that uses this framework in medical image processing, and its

performance is excellent. Moreover, this model has become a

mainstream semantic segmentation model. However, the depth of

the encoder and decoder networks must be continuously adjusted to

achieve the best results according to the task difficulty and the

amount of labeled data available for training. UNet++ indirectly

fuses several different levels of features through short joins and up-

and downsampling operations (Zhou et al., 2018). However,

merging features at the same level of the encoder and decoder in

UNet++ is beneficial in allowing the encoder to process features

with various sensory field sizes. This approach also enables the

network to meet the demands of different data volumes and tasks

for network depth. Despite these advantages, UNet++ still has many

parameters and limited extraction capability for multiscale features.

Multilayer perceptron (MLP) is a feedforward artificial neural

network model consisting of input, hidden, and output layers, with

deep layers and multiple nodes in each layer (Pinkus, 1999).
FIGURE 3

Data preprocessing and postprocessing.
A B

FIGURE 4

Qualitative analysis of lodging degree grading for dataset 1. (A) Labeling diagram; (B) Model prediction diagram.
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Multilayer perceptron layers are interconnected, and its perceptron

can contain multiple hidden layers. In recent years, the success of

models based on MLPs has proven that neither convolutional nor

attention mechanisms are necessary conditions for excellent model

performance. MLP-Mixer is a model based on a multilayer

perceptron, replacing the convolutional operation in traditional

CNN and the self-attention mechanism in Transformer (Llya et al.,

2021). This model divides the input image into several patches and

simultaneously maps the rows and columns, allowing for better

information fusion in the channel and spatial domains.

Additionally, it can handle multiscale features well. As a result,

this study designs a model based on MLP and a multitask learning

method for wheat lodging grading tasks. This model is designed to

complete the lodging grading task with less data volume and

computational resources while having strong multiscale feature

extraction capability.

As shown in Figure 8, the semantic segmentation of this model

consists of a continuous downsampling part, a feature refinement

part based on the MLP layer, and an upsampling part based on the

channel attention mechanism. The downsampling part comprises a
Frontiers in Plant Science 06
convolutional layer, a pooling layer, and an activation function.

This study sets the number of channels in each layer to 16, 32, 64,

128, and 256 in downsampling, and the size of the feature map

decreases from [512,128] to [16,4]. This simple structure and fewer

parameters can significantly reduce the overfitting problem caused

by small samples.

By generating a predictive classification from the downsampled

feature maps after the global pooling layer, the classifier can ensure

the number of common layers while keeping the task simpler than

semantic segmentation. This approach may introduce some noise to

the semantic segmentation task, but it also facilitates the

model’s generalization.

Based on the MLP layer, our feature refinement part is

structured with the same input and output size. As shown in

Figure 8, En1–En5 represent five downsampling cycles and 1–5

represent the depth of the model. Moreover, each model layer

consists of two MLP Blocks, and MLPB11–MLPB42 represent the

depth of the model. Taking the bottom layer as an example, MLP

Block 41 and MLP Block 42 have two consecutive Shift MLP layers.

The first MLP Block uses convolution with a step size 2 to increase
A B

FIGURE 5

Qualitative analysis of lodging area grading for dataset 1. (A) Labeling diagram; (B) Model prediction diagram.
A B

FIGURE 6

Qualitative analysis of lodging degree grading for dataset 2. (A) Labeling diagram; (B) Model prediction diagram.
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the input channel from C to 3/2C. Even though the model layers are

deepened by En4, they have not reached the depth of En5.

Therefore, we redefine this model as MLP Block41, which differs

from En5. As a result, the second MLP Block uses convolution with

a step size of 1 to increase the number of channels from C to 2C. We

define this as MLP Block42, in which the generated feature map is

the same size as the lower layer module undergoing convolution

operation and exhibiting strong pluggability and scalability.

The MLP layer is depicted in Figure 9, where we pass the input

part through two different Shift MLP layers. We also connect the

residuals through a fully connected layer, DW convolution, after the

activation function and the input features. DW convolution is

preferred due to its fewer parameters and its efficiency.

Additionally, we use GELU instead of RELU because it is a

smoother alternative and performs better.

The channel attention mechanism is used to refine and splice

the upsampling feature map generated by the MLP Block step by

step, and upsampling is performed. This process helps to maintain

the integrity of semantic information by cascading the features of

the upper layer with the same resolution features of the same layer.
Frontiers in Plant Science 07
Improved shift MLP module architecture

MLP has been widely used for computer vision tasks in recent

years. As a result, several studies (Borghi et al., 2021; Rao et al.,

2021; D'orazio et al., 2022; Touvron et al., 2022) have demonstrated

superior performances of the MLP-based approaches, which do not

rely on attention mechanisms. MLP-Mixer (Llya et al., 2021) is a

new architecture for a model based on multilayer perceptron, which

replaces the convolution operation in traditional CNN and the self-

attention mechanism in Transformer (Wu et al., 2021). This MLP-

Mixer divides the input image into several patches to map rows and

columns simultaneously, realizing information fusion in channel

and spatial domains. Spatial shift MLP (Yu et al., 2021) replaces the

token-mixing in MLP-Mixer with a spatial shift operation for

enhancing the connection between various patches.

Figure 10 shows an improvement in the Shift MLP architecture,

where the input is divided into eight different groups, with each of the

four groups offset along different axes (H-axis and W-axis). Moreover,

the grouping is offset in reverse along different axes, and two blocks are

pieced together. Then, we performed the residual connection between
A B

FIGURE 7

Qualitative analysis of lodging area grading for dataset 2. (A) Labeling diagram; (B) Model prediction diagram.
A B C

FIGURE 8

Comparison of model structure. (A) U-Net; (B) U-Net++; (C) MLP_U-Net.
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the two pieced feature maps and the input features to obtain the final

feature map. When grouping is performed, the groupings cannot be

completely distinguished due to the different feature map sizes. As a

result, the number of channels in the last group differs from other

groupings. The improved shift MLP technique involves splicing the

first five groups with the previous five groups after rotating them by

different axes in two. This process allows the features to be restored to

the original feature map size. The purpose of setting up two axes is to

ensure that each patch goes through two different shift axes in each

training round. The step size of each shift can be either [−2,−1,1,2] or

[2,1,−1,2]. By fusing features and shifting dimensions, combined with

different semantic information in different groups, an approximate

long-distance interaction process can be achieved even if only adjacent

patches are associated from the perspective of a single spatial offset

module based on the overall stacked structure.
Loss of multitask learning

The loss of multitask learning has always been a major difficulty

in model construction. Reasonable loss can add appropriate noise
Frontiers in Plant Science 08
between multiple tasks and thus improve the robustness of the

model; conversely, the tasks contradict each other and lead to model

failure to converge. This model needs to balance the classification

loss and segmentation loss. Since the semantic segmentation task is

more difficult to train than the classification task, we weight the loss

of each task according to the percentage between the training

rounds and the loss to obtain the final loss as shown in Equation 1.

ltol = avg((e
−(

lcls
lcls+lseg

)�a
+ eps� b)lcls + lseg e

−(
lcls

lcls+lseg
)�a

) (1)

Where lcls is the classification loss value, lseg is the semantic

segmentation loss value, and a and b are the custom parameters.

This study uses cross entropy and binary cross entropy to

calculate the classification loss and semantic segmentation loss of

the model, respectively. The parameter a is used to balance the

mixing factor of the network in the final loss contribution. If the loss

function of one task is far greater than that of another task, which

leads to the inability of another task to learn or the gradient

explosion, the task with a large proportion of loss function will be

punished; otherwise, it will be weighted forward. In this study, the

segmentation loss is the average of all pixels, and the misclassified
FIGURE 9

MLP_U-Net underlying model structure.
FIGURE 10

Improved Shift MLP module structure.
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pixels is smaller than the total pixels, resulting in a segmentation

loss value that may be smaller than the classification loss value.

After with reasonable weighting, the semantic segmentation task

can be better performed without affecting the classification task.

Before the segmentation network is stabilized, it is difficult to

train the classification network, and although the loss share

between tasks is balanced by the parameter a, the fluctuation

of the classification task at the initial stage still poses a

considerable challenge to the segmentation task. Therefore,

this study focuses on weighting during the training period,

with a focus on training semantic segmentation tasks in the

early stages. After the semantic segmentation loss gradually

stabilizes, the classification loss weight is gradually increased

with the training rounds.

Using F1 value as the basis for segmentation loss, adjust the

parameters of the training set using fivefold cross validation. By

reasonably adjusting the parameter b, the classification loss is made

to be at a low value at the early stage of training to make the

semantic segmentation model converge faster. If using a too low b
value, it leads to the loss of noise from classification at the early

stage of training, and a too high b value may lead to

gradient explosion.
Experimental parameter setting

The experiments selected Intel® Core™ i7-10600 CPU with

2.90 GHz and NVIDIA GeForce RTX3090 GPU with 24 GB video

memory. The experiment used PyTorch as the deep learning

framework, dividing the training and testing sets into multiple

batches, traversing all batches, and completing one iteration. The

optimizer is selected as Adam, which automatically adjusts the

learning rate.
Evaluation indices

The classification task uses accuracy (ACC) as an evaluation

index to quantify the ability to classify the degree of lodging. The

segmentation task uses Precision, Recall, F1, and IoU indices to

evaluate the model performance. The Precision refers to the

proportion of predicted lodging area to actual lodging area; Recall

represents the proportion of predicted lodging area to actual lodging

area; F1 is the harmonic mean of precision and recall; and the IoU

index is the overlap rate between the predicted area and actual area of

lodging. The calculation formula is shown in Equations 2–6:

ACC =
T

T + F
(2)

Pre =
TP

TP + FP
(3)

Rec =
TP

TP + FN
(4)
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F1 = 2� Pre� Rec
Pre + Rec

(5)

IoU =
TP

FN + TP + FP
(6)

where TP is the number of pixels correctly identified as lodging

wheat, TN is the number of pixels correctly identified as non-

lodging wheat, FP is the number of pixels mistakenly identified as

non-lodging wheat, FN is the number of pixels incorrectly identified

as lodging wheat, T is the number of accurate classification plots,

and F is the number of incorrectly classification plots.
Results and discussion

Training results

The accuracies of the training process, loss values, and F1 are

shown in Figure 11A. Even if we weight the loss so that the semantic

segmentation loss value accounts for a large proportion of the total

loss value of the model, the accuracy is higher due to the fewer

classification tasks, making the curve grow faster. It can be seen

from Figure 11B that with the increase of iteration times, the overall

trend of the loss function is smooth, and the convergence speed is

fast, allowing multitask model training to be conducted.
Quantitative analysis

According to Tables 2, 3, theMLP_U-Net model used in this study

was compared with various other models, including SegNet (area

extraction task) (Badrinarayanan et al., 2017), U-Net (area extraction

task), DeepLabV3 (area extraction task), U-Net++ (area extraction

task), ResNet50 (classification task) (He et al., 2016), MobileNetv3

(classification task) (Howard et al., 2019), and conventional machine

learning methods (Zhao et al., 2021). Using models from the previous

research work, we developed traditional machine learning methods to

extract wheat lodging areas for flyover 1, with an extraction error of

26.16%. Our model outperformed the traditional machine learning

methods that relied onmanual extraction of color features, which could

not adapt to target size and complex background changes and had

many false positives and missed detection areas. We compared flyover

1 with flyover 2 using a deep learning model. From the results,

MLP_U-Net outperforms conventional machine learning methods

and has higher model parameters and actual parameters in the deep

learning models, which could accurately and efficiently complete the

grading task of lodging degree and lodging area. The grading accuracy

of lodging degrees in flyover 1 and flyover 2 reached 96.1% and 84.1%,

respectively, and their F1 reached 81.3% and 82.0%, respectively.

Moreover, the grading accuracy of lodging area reached 92.2% and

84.7%. Due to the deviation between the evaluation index of the dataset

model and the actual index, the evaluation index of the flyover 1 model

is low, while the actual index is high. Contrarily, flyover 2 has too many

full negative samples, leading to the low calculation value of the

confusion matrix.
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Ablation study

The ablation experiment aims to remove some parts of the

network and identify whether network performance fluctuates by

controlling variables (Ranchordas and Araújo, 2009). As a result, we

performed ablation experiments on different modules to verify the

effectiveness of MLP_U-Net. The goal was to test the module’s
Frontiers in Plant Science 10
effectiveness and determine if the model had redundant modules.

We removed the MLP structure module and channel attention

mechanism module to verify the effectiveness of each module using

the method of controlling variables. Tables 4, 5 show the results.

Adding the ablated MLP module impacts the challenging dataset

significantly, improving the grading ACC of the lodging area by

6.1% on flyover 2. The results indicate that adding the ablation
TABLE 2 Evaluation index for dataset 1.

Models
Grading ACC of

lodging degree (%)
Extraction of lodging area (%) Grading ACC of

lodging area (%)
Pre Rec F1 IoU

MLP_U-Net 96.1 78.5 84.2 81.3 68.5 92.2

SegNet / 58.6 80.5 67.8 51.3 66.9

U-Net / 64.2 84.7 73.0 57.5 88.3

DeepLabV3 / 74.9 83.9 79.1 65.5 81.8

U-Net++ / 80.3 78.8 79.6 66.1 78.6

ResNet50 88.3 / / / / /

MobileNetv3 91.6 / / / / /
TABLE 3 Evaluation index for dataset 2.

Models
Grading ACC of

lodging degree (%)
Extraction of lodging area (%) Grading ACC of

lodging area (%)
Pre Rec F1 IoU

MLP_U-Net 84.1 89.0 76.0 82.0 69.5 84.7

SegNet / 84.1 74.0 78.7 64.9 47.3

U-Net / 75.5 82.6 78.9 65.1 80.9

DeepLabV3 / 89.6 76.9 82.7 70.6 81.7

U-Net++ / 90.3 71.2 79.7 66.2 71.0

ResNet50 77.9 / / / / /

MobileNetv3 83.6 / / / / /
A B

FIGURE 11

Model training index. (A) Training probability; (B) Training loss.
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channel attention mechanism impacts the simple dataset

significantly, and the grading ACC of lodging degree and area

improves by 0.6% and 1.3%, respectively, on flyover 1. Our model

has a more robust recognition performance based on the

simultaneous addition of both modules.
Qualitative analysis

According to the regional trials of China’s national wheat

varieties, the degree of wheat lodging is classified into five grades

based on the Ministry of Agriculture and Rural Affairs of the

People’s Republic of China’s (2007). The five grades are no

lodging (grade 1) and slight lodging, with plant inclination angle

less than or equal to 30° (grade 2). Other gradings are moderate

lodging, with a plant inclination angle of 30°–45° (grade 3). Grade 4

reflects heavy lodging, with a plant inclination angle of 45°–60°, and

grade 5 shows severe lodging, with a plant inclination angle of 60° or

more. Due to the limited number of lodging plots in grades 2 and 4

in this study, grades 2 and 3 are collectively referred to as grade 3.

Moreover, grades 4 and 5 are called grade 5 during data processing.

Figure 4 depicts the experimental results offlyover 1, where the blue

area represents grade 1, the yellow area represents grade 3, and the

red area represents grade 5. This grading shows that the number of

correctly identified plots is 147, and the number of incorrectly

identified plots is 7. Figure 5 presents the experimental results of

flyover 2, where the blue area represents grade 1, the orange area

represents grade 2, the yellow area represents grade 3, and the red

area represents grade 4. This study identified 116 plots correctly,

and the number of plots incorrectly identified was 15.

This study also classified the lodging area of wheat into five

grades: no lodging (grade 1) and slight lodging, with lodging area

less than or equal to 30% (grade 2). Others are heavy lodging, with
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lodging areas between 30% and 60% (grade 3), and severe lodging,

with lodging areas greater than or equal to 60% (grade 4). Figure 6

shows the experimental results of flyover 1, depicting the number of

correctly identified plots as 140 and the number of incorrectly

identified plots as 14. Figure 7 presents the experimental results of

flyover 2, in which the number of plots correctly identified is 114

and the number of plots incorrectly identified is 17.

Our study used deep learning and image processing to

significantly reduce the workload of manual statistics for wheat

lodging detection when classifying large-scale wheat lodging areas

under field conditions. Regarding subjectivity, the deep learning

technique solves the problem of phenotypic errors caused by

individual subjective differences techniques. As a result, the deep

learning method is more stable in repeated measurements and is of

great importance in wheat lodging detection. Figures 5, 7 show that

several factors may impact the model’s accuracy. These factors are

differences in lodging phenotypic characteristics among different

wheat varieties, variable lighting conditions, different angles of

UAV during image capture, different flight altitudes, and

differences in geomorphic characteristics at different time

sequences (Hasan et al., 2018; Madec et al., 2019; David et al.,

2020). The problem of overlapping plot lodging areas still exists due

to the vast lodging areas in flyover 2, indicating that the lodging

wheat areas cover non-lodging wheat areas, resulting in

grading errors.
Analysis of data difference

As shown in Table 6, grade 1 accuracy of lodging detection is

the highest owing to its low misclassification rate. However, most

models are robust in distinguishing between lodging and non-

lodging. Grades 2 and 3’s lodging detection accuracy is still low
TABLE 4 Ablation study of dataset 1.

MLP_U-Net
Grading ACC of lodging

degree (%)
Extraction of lodging area (%) Grading ACC of

lodging area (%)
Pre Rec F1 IoU

Ablation channel attention mechanism +
Ablation MLP module

96.8 79.3 84.3 81.7 69.1 85.1

Ablation channel attention mechanism 95.5 82.2 82.3 82.2 69.8 90.9

Ablation MLP module 96.1 86.2 78.3 82.0 69.5 92.9
TABLE 5 Ablation study of dataset 2.

MLP_U-Net
Grading ACC of lodging

degree (%)
Extraction of lodging area (%) Grading ACC of

lodging area (%)
Pre Rec F1 IoU

Ablation channel attention mechanism +
Ablation MLP module

85.6 90.2 89.7 74.2 81.2 72.5

Ablation channel attention mechanism 86.4 90.5 73.7 81.2 68.4 80.9

Ablation MLP module 85.6 90.0 71.8 79.9 66.5 78.6
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due to threshold problems causing misclassification of the lodging

area. Table 7 shows a significant difference in sample distribution

between flyover 1 and flyover 2 due to temporal differences. For

example, flyover 1 has a small number of lodging plots, while

flyover 2 has the opposite trend. Different network models exhibit

strong tendencies due to data differences. For instance, the network

model of U-Net is shallower and tends to have positive samples,

while U-Net++ balances features of different layers and has negative

samples. MLP_U-Net has added suitable noise to the network,

enhancing its adaptability and choosing appropriate network depth,

refinement module, and adversarial nature of the multitasking.

Since the lodging boundary of grades 2 and 3 is fixed, some

values with minor area identification deviations may exceed the

upper and lower thresholds, resulting in grading errors. Despite

obtaining better performance, our model is poor in discriminating

grades 2 and 3 lodgings with fewer samples and apparent

thresholds. This model also performs poorly in a single dataset. It

also has the disadvantage of an advantage interval. Suppose uniform

training and testing are conducted using data from the same height

and lodging area in the same plot. In that case, MLP_U-Net has no

significant advantage over other models with a single task.
Conclusion

This study suggests a novel approach to determine the grading

system’s lodging level using deep learning-based image grading.

Field experiments were conducted to validate the feasibility of the

proposed method, and the results showed promising outcomes.

We demonstrate that deep learning can be used to automatically

calculate lodging degree and area, which can help assess the risk of

large-area lodging yield reduction. Therefore, we constructed a

new dataset comprising 82 winter wheat varieties of two-time

series. We also proposed a detection method for winter wheat

lodging grading, which could process the stitched images of UAVs

with different flight heights, difficulties, time series, and plot sizes.

Our study shows that the training and testing task can be

completed through the single image of a small sample. We

constructed a multitask neural network model MLP_U-Net for

the plot to improve the generalization of small-sample data. This

model aims to achieve segmentation and classification tasks for

wheat lodging degrees and lodging areas. The improved shift MLP

module structure is fused with the U-shaped structure by

controlling the parameter quality and refining the features to

develop the MLP_U-Net. Two tasks can add noise to each other

and minimize the logical mismatch between the lodging degree

and lodging area using a multitasking model. This study chose to

weigh the loss to control the noise level and adjusted the weights of

the two tasks at different training periods to prevent gradient

explosion. Our goal is to maintain the effect of noise on model

training by adding an appropriate amount of noise. We also

compared various single-task models. Our results indicate that

MLP_U-Net has high accuracy when UAV flight height is 30 m.

Moreover, the accuracies of winter wheat lodging degree and

lodging area grading are 96.1% and 92.2%, respectively, when

the UAV flight height is 50 m. Winter wheat lodging degree and
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lodging area grading accuracies were 84.1% and 84.7%,

respectively. By verifying lodging images of multiple wheat

varieties through different parameters, MLP_U-Net can

accurately and efficiently complete the task of lodging grading

for winter wheat, which can meet the demand of high-throughput

operation in the wheat field environment. These results can also

provide technical support for determining lodging damage degree

and damage assessment in the future. We aim to conduct grading

of wheat lodging in future research by adopting a more reasonable

grading model, combining lodging degree and lodging area to

define lodging grading instead of “one size fits all” through

thresholds. We also aim to construct a dataset with a large

sample to balance the samples.
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Kamilaris, A., and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A
survey. Comput. Electron. Agric. 147, 70–90. doi: 10.1016/j.compag.2018.02.016

Koh, J. C. O., Spangenberg, G., and Kant, S. (2021). Automated machine learning for
high-throughput image-based plant phenotyping. Remote Sens. 13 (5), 858.
doi: 10.3390/rs13050858

Liu, H. Y., Yang, G. J., and Zhu, H. C. (2014). The extraction of wheat lodging area in
UAV's image used spectral and texture features. Appl. Mechanics Materials 651-653,
2390–2393. doi: 10.4028/www.scientific.net/AMM.651-653

Liu, X., Zhao, D., Jia, W., Ji, W., and Sun, Y. (2019). A detection method for apple
fruits based on color and shape features. IEEE Access 7, 67923–67933. doi: 10.1109/
Access.6287639

Llya, T., Neil., H., Alexander, K., Lucas, B., Zhai, X. H., Thomas, U., et al. (2021).
MLP-Mixer: an all-MLP architecture for vision. arXiv. doi: 10.48550/arXiv.2105.01601

Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al. (2019). Ear density
estimation from high resolution RGB imagery using deep learning technique. Agric.
For. Meteorology. 264, 225–234. doi: 10.1016/j.agrformet.2018.10.013

Mao, W., Shi, H., Wang, G., and Liang, X. (2022). Unsupervised deep multitask
anomaly detection with robust alarm strategy for online evaluation of bearing early
fault occurrence. IEEE Trans. Instrumentation Measurement. 71, 1–13. doi: 10.1109/
TIM.2022.3200092

Ministry of Agriculture and Rural Affairs of the People’s Republic of China, N.T (2007).
Agricultural industry standard of the people's republic of China (Beijing: China Standards
Press).

Nguyen, T. T., Hoang, T. D., Pham, M. T., Vu, T. T., Nguyen, T. H., Huynh, Q.-T.,
et al. (2020). Monitoring agriculture areas with satellite images and deep learning. Appl.
Soft Computing 95, 106565. doi: 10.1016/j.asoc.2020.106565

Peng, D., Chen, X., Yin, Y., Lu, K., Yang, W., Tang, Y., et al. (2014). Lodging
resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related
enzymes activities due to the application of paclobutrazol or gibberellin acid. Field
Crops Res. 157, 1–7. doi: 10.1016/j.fcr.2013.11.015

Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Jesson, M. A., and Reynolds, M. P.
(2016). Avoiding lodging in irrigated spring wheat. I. Stem and root structural
requirements. Field Crops Res. 196, 325–336. doi: 10.1016/j.fcr.2016.06.009

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta
Numerica 8, 143–195. doi: 10.1017/S0962492900002919

Pinthus, M. J. (1974). Lodging in wheat, barley, and oats: the phenomenon, its causes, and
preventive measures. Adv. Agron. 25, 209–263. doi: 10.1016/S0065-2113(08)60782-8
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