
Ecology and Evolution. 2024;14:e11292.	 		 	 | 1 of 17
https://doi.org/10.1002/ece3.11292

www.ecolevol.org

Received:	16	October	2023  | Revised:	12	March	2024  | Accepted:	5	April	2024
DOI: 10.1002/ece3.11292

R E S E A R C H A R T I C L E

‘rtry’: An R package to support plant trait data preprocessing

Olee Hoi Ying Lam1,2  | Jens Kattge2,3  | Susanne Tautenhahn2  |
Gerhard Boenisch2 | Kyle R. Kovach1  | Philip A. Townsend1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2024	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Department	of	Forest	and	Wildlife	
Ecology,	University	of	Wisconsin-	
Madison,	Russell	Laboratories,	Madison,	
Wisconsin,	USA
2Max	Planck	Institute	for	Biogeochemistry,	
Jena,	Germany
3German	Centre	for	Integrative	
Biodiversity	Research	(iDiv)	Halle-	Jena-	
Leipzig,	Leipzig,	Germany

Correspondence
Olee	Hoi	Ying	Lam,	Department	of	
Forest	and	Wildlife	Ecology,	University	of	
Wisconsin-	Madison,	Russell	Laboratories,	
1630	Linden	Dr,	Madison,	WI	53705,	USA.
Email:	hlam9@wisc.edu

Funding information
NSF	Macrosystems	Biology	and	
NEON-	Enabled	Science	(MSB-	NES)	
award,	Grant/Award	Number:	DEB	
1638720;	UW-	Madison	USDA	Hatch	
award,	Grant/Award	Number:	WIS03079;	
NASA	AIST	grant,	Grant/Award	Number:	
80NSSC20K0208;	NSF	ASCEND	Biology	
Integration	Institute	(BII)	award,	Grant/
Award	Number:	DBI	2021898;	Max	Planck	
Institute	for	Biogeochemistry

Abstract
Plant	trait	data	are	used	to	quantify	how	plants	respond	to	environmental	factors	and	
can	act	as	indicators	of	ecosystem	function.	Measured	trait	values	are	influenced	by	
genetics,	 trade-	offs,	 competition,	 environmental	 conditions,	 and	 phenology.	 These	
interacting	effects	on	traits	are	poorly	characterized	across	taxa,	and	for	many	traits,	
measurement	protocols	are	not	standardized.	As	a	result,	ancillary	information	about	
growth	and	measurement	conditions	can	be	highly	variable,	requiring	a	flexible	data	
structure.	In	2007,	the	TRY	initiative	was	founded	as	an	integrated	database	of	plant	
trait	 data,	 including	 ancillary	 attributes	 relevant	 to	 understanding	 and	 interpreting	
the	 trait	 values.	The	TRY	database	now	 integrates	 around	700	original	 and	 collec-
tive	datasets	and	has	become	a	central	resource	of	plant	trait	data.	These	data	are	
provided	in	a	generic	long-	table	format,	where	a	unique	identifier	links	different	trait	
records	and	ancillary	data	measured	on	the	same	entity.	Due	to	the	high	number	of	
trait	records,	plant	taxa,	and	types	of	traits	and	ancillary	data	released	from	the	TRY	
database,	data	preprocessing	is	necessary	but	not	straightforward.	Here,	we	present	
the	‘rtry’	R	package,	specifically	designed	to	support	plant	trait	data	exploration	and	
filtering.	By	integrating	a	subset	of	existing	R	functions	essential	for	preprocessing,	
‘rtry’	avoids	the	need	for	users	to	navigate	the	extensive	R	ecosystem	and	provides	
the	functions	under	a	consistent	syntax.	‘rtry’	is	therefore	easy	to	use	even	for	begin-
ners	in	R.	Notably,	‘rtry’	does	not	support	data	retrieval	or	analysis;	rather,	it	focuses	
on	the	preprocessing	tasks	to	optimize	data	quality.	While	‘rtry’	primarily	targets	TRY	
data,	 its	utility	extends	to	data	from	other	sources,	such	as	the	National	Ecological	
Observatory	Network	(NEON).	The	‘rtry’	package	is	available	on	the	Comprehensive	
R	Archive	Network	(CRAN;	https://	cran.	r-		proje	ct.	org/	packa	ge=	rtry)	and	the	GitHub	
Wiki	 (https://	github.	com/	MPI-		BGC-		Funct	ional	-		Bioge	ograp	hy/	rtry/	wiki)	 along	 with	
comprehensive	documentation	and	vignettes	describing	detailed	data	preprocessing	
workflows.

K E Y W O R D S
biodiversity,	data	cleaning,	data	preprocessing,	plant	trait,	R	package,	TRY	database

https://doi.org/10.1002/ece3.11292
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-7731-3246
https://orcid.org/0000-0002-1022-8469
https://orcid.org/0000-0002-2753-3443
https://orcid.org/0000-0002-1498-6363
https://orcid.org/0000-0001-7003-8774
http://creativecommons.org/licenses/by/4.0/
mailto:hlam9@wisc.edu
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki

2 of 17  |     LAM et al.

1  |  INTRODUC TION

Traits	 are	 characterized	 as	 quantities	 of	 entities	 (Entity-	Quality	
Model;	Garnier	et	al.,	2017;	Mungall	et	al.,	2010),	and	plant	traits	
are	defined	as	 the	morphological,	 anatomical,	physiological,	bio-
chemical,	 and	 phenological	 characteristics	 of	 plants	 measurable	
at	the	individual	plant	level	(Violle	et	al.,	2007).	Traits	reflect	the	
outcome	of	evolutionary,	genetic,	and	community	assembly	pro-
cesses	responding	to	abiotic	and	biotic	environmental	constraints	
and	determine	how	 individuals	perform	and	respond	to	environ-
mental	factors.	Traits	thus	provide	a	link	from	species	richness	to	
functional	 diversity,	 which	 influences	 ecosystem	 properties	 and	
how	they	affect	human	beings.	To	prevent	the	loss	of	biodiversity	
and	degradation	of	ecosystems,	studies	are	increasingly	focusing	
on	the	collection	and	analysis	of	plant	traits,	which,	for	example,	
have	been	selected	as	key	observations	in	the	context	of	the	US	
National	 Science	 Foundation's	 National	 Ecological	 Observatory	
Network	 (NSF's	 NEON;	 https://	www.	neons	cience.	org)	 and	 the	
Australian	 land	 ecosystem	 observatory	 (Terrestrial	 Ecosystem	
Research	 Network;	 https://	www.	tern.	org.	au).	 Due	 to	 improved	
availability,	 plant	 traits	 now	extend	 the	 range	 of	 earth	 observa-
tions	 to	 the	 level	 of	 individual	 organisms,	 providing	 a	 link	 from	
biodiversity	to	ecosystem	function	and	modeling	in	the	context	of	
rapid	global	changes	(Kattge	et	al.,	2020).

1.1  |  A global database of plant traits—TRY

In	2007,	 the	TRY	 initiative	 (https://	www.	try-		db.	org)	was	 launched,	
aiming	 at	 developing	 a	 global	 database	 of	 plant	 traits	 to	 support	
biodiversity	 research,	 functional	 biogeography,	 and	 modeling	 of	
vegetation	 dynamics.	 The	 TRY	 database	 initiative	 received	 strong	
support	from	the	ecological	community,	who	contributed	many	orig-
inal	and	collective	datasets	and	has	led	to	multiple	updates	(Kattge,	
Díaz,	et	al.,	2011).	The	current	version	of	the	TRY	database	(version	
6),	released	in	October	2022,	is	based	on	696	datasets	and	contains	
15.4	million	trait	records,	accompanied	by	43	million	ancillary	data	
records,	for	2661	traits	and	305,000	plant	taxa,	mostly	at	the	spe-
cies	 level.	 About	 6.7	million	 trait	 records	 are	 georeferenced	 from	
about	 48,000	 measurement	 sites	 worldwide	 (Figure 1).	 In	 2015,	
some	 TRY	 datasets	 became	 public,	 and	 since	 2019	 the	 data	 are	
open	access	under	a	Creative	Commons	(CC)-	BY	license	by	default	
(Kattge	et	al.,	2020).	As	of	today,	the	TRY	initiative	has	served	more	
than	30,000	data	requests	(Figure 1),	releasing	over	4.5	billion	trait	
records	 in	 combination	with	 40	 billion	 ancillary	 data	 records.	 The	
TRY	database	has	thus	become	a	central	resource	for	the	ecological	
community,	allowing	users	from	around	the	globe	to	retrieve	plant	
trait	data	based	on	selected	traits	and	species	or	request	individual	

datasets	 via	 the	data	 portal	 on	 the	TRY	website.	 Step-	by-	step	 in-
structions	on	how	to	register	and	request	data	from	the	TRY	data-
base	can	be	found	on	the	GitHub	Wiki	of	‘rtry’:	https://	github.	com/	
MPI-		BGC-		Funct	ional	-		Bioge	ograp	hy/	rtry/	wiki/	The-		TRY-		datab	ase#	
reque	st_	rtry_	data.

Through	the	data	request	process,	users	can	navigate	the	intel-
lectual	property	guidelines	of	the	database,	review	the	description	
of	the	requested	traits	and	species,	and	ascertain	the	number	of	
trait	measurements	before	sending	out	the	request.	Once	the	re-
quest	 is	approved,	users	have	 the	option	 to	 retrieve	 the	dataset	
from	the	portal	whenever	necessary.	The	data	release	notes	pro-
vided	with	 each	 data	 request	 (https://	www.	try-		db.	org/	TryWeb/	
TRY_	Data_	Relea	se_	Notes.	pdf)	 offer	 information	 on	 the	 general-
ities,	 data	 structure,	 column	 headers	 (Table 1)	 of	 the	 requested	
dataset,	and	the	identifiers	for	some	of	the	widely	used	ancillary	
data	 (‘DataID’).	 Additionally,	 users	 can	 access	 descriptions	 and	
corresponding	 identifiers	of	 traits	 (‘TraitName’	and	 ‘TraitID’)	and	
species	 (‘AccSpeciesName’	 and	 ‘AccSpeciesID’)	 on	 the	 TRY	 data	
explorer	 (https://	www.	try-		db.	org/	de/	de.	php).	 This	 information,	
particularly	the	 identifiers,	 is	 invaluable	for	the	data	preprocess-
ing	tasks.

1.2  |  Structure of datasets released from TRY

Plant	 traits	 provide	 essential	 information	 about	 plant	 growth	
strategies	 and	 adaptations	 to	 their	 environment	 as	 constrained	
by	 genetic	 characteristics.	 As	 a	 consequence,	 individual	 trait	
values	can	be	broadly	explained	by	multiple	 interacting	factors:	
macro-	level	genetics	in	a	phylogenetic	context	(i.e.,	evolutionary	
adaptations),	micro-	level	genetics	(i.e.,	selection),	trait–trait	cor-
relations,	competition,	and	the	abiotic	and	biotic	environmental	
conditions	at	provenance	 (i.e.,	ontogeny),	during	growth,	and	at	
the	time	of	measurement	including	phenology	(Díaz	et	al.,	2016;
Garnier	 et	 al.,	 2017;	 Kattge,	 Díaz,	 et	 al.,	 2011;	 Kattge,	 Ogle,	
et	al.,	2011;	Mungall	et	al.,	2010;	Violle	et	al.,	2007).	Not	all	of	
these	 dependencies	 are	 well	 studied,	 and	 their	 interacting	 ef-
fects	on	traits	are,	for	most	taxa,	poorly	characterized.	For	these	
reasons,	the	most	useful	trait	data	include	ancillary	data	describ-
ing	 the	 conditions,	 i.e.,	 under	which	 the	 plants	 had	 grown	 and	
traits	were	measured.	Thus,	the	data	structure	to	represent	trait	
data	must	include	the	relevant	dependencies	and	allow	for	differ-
ent	types	of	ancillary	data.

The	structure	of	TRY	data	releases	is	based	on	the	extensible	
observation	ontology	(OBOE;	Madin	et	al.,	2007)	schema,	imple-
mented	 in	 a	 generic	 entity-	attribute-	value	 model	 (Kattge,	 Ogle,	
et	 al.,	 2011).	 The	 TRY	 database	 features	 a	 long-	table	 structure	
of	 trait	 records	 and	 ancillary	 data,	 with	 27	 columns	 (version	 6;	

T A X O N O M Y C L A S S I F I C A T I O N
Agroecology,	Applied	ecology,	Biodiversity	ecology,	Biogeochemistry,	Ecosystem	ecology,	
Functional	ecology

https://www.neonscience.org
https://www.tern.org.au
https://www.try-db.org
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki/The-TRY-database#request_rtry_data
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki/The-TRY-database#request_rtry_data
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki/The-TRY-database#request_rtry_data
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/de/de.php

    |  3 of 17LAM et al.

Table 1).	 Different	 trait	 records	 and	 ancillary	 data	measured	 on	
the	same	entity	are	linked	by	a	unique	identifier	(‘ObservationID’;	
Figure 2).	 The	 TRY	 data	 release	 notes	 (https://	www.	try-		db.	org/	
TryWeb/	TRY_	Data_	Relea	se_	Notes.	pdf),	distributed	with	each	re-
lease	 from	 the	TRY	database,	 provide	 a	more	detailed	overview	
of	this	data	structure.	Due	to	the	size	of	the	TRY	database—15.4	
million	trait	records	and	43	million	ancillary	data—this	can	result	in	
data	releases	of	up	to	58	million	rows	of	trait	records	and	ancillary	
data.	In	addition,	different	attributes	within	the	released	datasets	
are	relevant	for	trait	data	filtering,	i.e.,	trait	names,	species	names,	
ancillary	 data,	 units,	 and	 identifiers	 for	 duplicates	 and	 outliers.	
Therefore,	 the	process	to	obtain	all	 relevant	 information	for	 fur-
ther	analyses	and	discard	all	 inconsistent	data	 is	not	straightfor-
ward	and	there	is	a	high	risk	that	not	all	information	provided	for	
data	selection	is	used	to	optimize	data	quality	for	the	downstream	
analyses.

This	 paper	 provides	 an	 overview	 of	 the	 ‘rtry’	 package	 and	
demonstrates	 its	 utility	 from	 a	 user	 perspective,	 underscoring	 its	
potential	as	a	valuable	resource	for	researchers	grappling	with	the	
complexities	of	preprocessing	plant	 trait	data.	By	facilitating	more	
efficient	and	reliable	data	preprocessing	tasks,	‘rtry’	aims	to	enhance	
the	quality	of	plant	trait	datasets	for	scientific	inquiry.

2  |  THE ‘RTRY ’ PACK AGE

To	assist	users	in	preparing	the	potentially	huge	and	complex	plant	
trait	data	for	further	analyses,	the	‘rtry’	package	(developed	with	R	
version	4.0)	was	published	in	2022	by	the	Functional	Biogeography	
group	 at	 the	 Max-	Planck-	Institute	 for	 Biogeochemistry	 in	 Jena.	
The	 stable	 version	 is	 available	 via	 CRAN	 (https://	cran.	r-		proje	ct.	
org/	packa	ge=	rtry)	and	the	development	version	 is	available	at	the	
GitHub	 repository	 (https://	github.	com/	MPI-		BGC-		Funct	ional	-		Bioge	
ograp	hy/	rtry/	wiki),	 fostering	 transparency,	 collaboration,	 and	 con-
tinuous	improvement.

Before	using	the	‘rtry’	package,	users	must	install	the	package	and	
load	it	into	the	R	environment.	The	installation	process	automatically	
installs	 all	 required	dependencies.	Below	are	 the	commands	 for	 in-
stalling	and	loading	the	‘rtry’	package	from	both	CRAN	and	GitHub:

The	‘rtry’	package	provides	a	set	of	functions	for	data	preprocess-
ing,	focusing	on	data	exploration,	selection,	and	removal,	with	appli-
cability	across	user	levels—from	beginners	in	R	and	plant	trait	data	to	
experts.	Leveraging	the	long-	table	structure	of	data	released	from	TRY	
and	its	accompanying	features	(including	harmonized	names	for	spe-
cies	 (see	 data	 release	 notes;	 https://	www.	try-		db.	org/	TryWeb/	TRY_	
Data_	Relea	se_	Notes.	pdf),	harmonized	names	 for	 traits	and	ancillary	
data,	 standardized	units,	 and	 indicators	 for	 duplicates	 and	outliers),	
the	package	is	designed	to	empower	researchers	with	accessible	and	
user-	friendly	functionalities	that	aim	at	streamlining	a	basic	start-	to-	
finish	data	preprocessing	workflow.	To	accomplish	this,	 ‘rtry’	adopts	
robust	functions	from	the	R	packages	‘data.table’	(ver.	1.14.8;	Barrett	
et	al.,	2024),	‘dplyr’	(ver.	1.1.2;	Wickham	et	al.,	2023),	‘tidyr’	(ver.	1.3.0;	
Wickham	et	al.,	2024),	and	‘utils’	(Bengtsson,	2023)	 in	building	func-
tional	commands	that	seamlessly	align	into	one	concise	package.

install the 'rtry' package from CRAN

install.packages('rtry')

install the 'rtry' package from GitHub

library(devtools)

devtools::install_github("MPI-BGC-

Functional-Biogeography/rtry")

load the 'rtry' package

library(rtry)

F I G U R E 1 (Left)	Cumulative	numbers	of	datasets	and	publications	(left	axis),	and	data	requests	(right	axis);	Gray	vertical	bars	indicate	
the	calls	for	data	contribution,	while	the	orange	bar	indicates	the	date	of	opening	TRY	to	the	public.	(Right)	Geographic	coverage	of	
measurement	sites	(blue	points)	in	TRY	version	6	in	the	Mollweide	projection.

https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://cran.r-project.org/package=rtry
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf

4 of 17  |     LAM et al.

By	 integrating	a	subset	of	existing	R	functions	 into	one	consis-
tent	 syntax,	 ‘rtry’	 ensures	 compatibility	 and	 consistency	 across	 its	
functions,	 enabling	users	of	 various	 skill	 levels	 to	perform	all	 nec-
essary	preprocessing	procedures	without	the	need	to	navigate	the	
extensive	R	package	ecosystem	or	have	knowledge	of	various	pack-
age	 syntaxes.	 For	 experienced	 R	 users,	 ‘rtry’	 is	 complemented	 by	
comprehensive	 documentation,	 offering	 references	 for	 advanced	
preprocessing	 tasks.	The	documentation	and	 function	descriptions	
are	part	of	the	 ‘rtry’	CRAN	package,	provided	on	the	 ‘rtry’	GitHub	
and	also	in	the	form	of	package	vignettes	which	can	be	obtained	via	
the	R	command:

To	avoid	potential	conflicts	with	existing	R	functions,	the	‘rtry’	
package	 utilizes	 a	 naming	 convention	 where	 each	 function	 be-
gins	with	the	prefix	‘rtry_’	followed	by	the	description	of	what	the	
specific	 function	does.	Each	 function	 is	designed	 to	perform	one	
specific	data	preprocessing	task	commonly	used	in	plant	trait	data	
preparation.	This	structured	approach	enables	users	to	perform	a	
wide	range	of	preprocessing	tasks	with	precision	and	efficiency.	As	
well,	functions	are	kept	separate	to	maintain	feasibility	for	different	
use	cases,	i.e.,	users	can	use	a	sequence	of	multiple	functions	to	suit	
their	needs	(Figures 3	and	5).	The	‘rtry’	package	version	1.1	consists	
of	16	functions	(Table 2)	which	can	be	classified	into	six	data	pre-
processing	steps:	(1)	dataset	import,	(2)	dataset	exploration,	(3)	data	
combination,	 (4)	data	 filtering,	 (5)	 long-		 to	wide-	table	 transforma-
tion,	and	(6)	dataset	export,	as	well	as	the	additional	functionality	of	
geocoding	and	reverse	geocoding.	Users	can	access	the	description	
of	individual	functions	directly	within	the	R	environment:

get an overview of the 'rtry' package

and the corresponding documentation

help(package = 'rtry')

name of all vignettes available

vignette(package = 'rtry')

calling one vignette

vignette('rtry-introduction')

TA B L E 1 Column	headers	and	descriptions	for	TRY	version	6	
released	data.a

Column Description

1. ‘LastName’ Surname	of	data	contributor

2. ‘FirstName’ First	name	of	data	
contributor

3. ‘DatasetID’ Unique	identifier	of	
contributed	dataset

4. ‘Dataset’ Name	of	contributed	dataset

5. ‘SpeciesName’ Original	name	of	species

6. ‘AccSpeciesID’ Unique	identifier	of	
consolidated	species	
name

7. ‘AccSpeciesName’ Consolidated	species	name

8. ‘ObservationID’ Unique	identifier	for	each	
observation	in	TRY

9. ‘ObsDataID’ Unique	identifier	for	each	
row	in	the	TRY	data	table,	
either	trait	record	or	
ancillary	data

10. ‘TraitID’ Unique	identifier	for	traits	
(only	if	the	record	is	a	
trait)

11. ‘TraitName’ Name	of	trait	(only	if	the	
record	is	a	trait)

12. ‘DataID’ Unique	identifier	for	each	
‘DataName’	(either	sub-	
trait	or	ancillary	data)

13. ‘DataName’ Name	of	sub-	trait	or	ancillary	
data

14. ‘OriglName’ Original	name	of	sub-	trait	or	
ancillary	data

15. ‘OrigValueStr’ Original	value	of	trait	or	
ancillary	data

16. ‘OrigUnitStr’ Original	unit	of	trait	or	
ancillary	data

17. ‘ValueKindName’ Value	kind	(single	
measurement,	mean,	
median,	etc.)

18. ‘OrigUncertaintyStr’ Original	uncertainty

19. ‘UncertaintyName’ Kind	of	uncertainty	(standard	
deviation,	standard	error,	
etc.)

20. ‘Replicates’ Number	of	replicates

21. ‘StdValue’ Standardized	trait	value:	
available	for	frequent	
continuous	traits

22. ‘UnitName’ Standard	unit:	available	for	
frequent	continuous	traits

23. ‘RelUncertaintyPercent’ Relative	uncertainty	in	%

24. ‘OrigObsDataID’ Unique	identifier	for	
duplicate	trait	records

25. ‘ErrorRisk’ Indication	for	outlier	trait	
values:	distance	to	mean	
in	standard	deviations

Column Description

26. ‘Reference’ Reference	to	be	cited	if	trait	
record	is	used	in	analysis

27. ‘Comment’ Explanation	for	the	
‘OriglName’	in	the	
contributed	dataset

aNote	that	sometimes	R	may	show	a	column	28,	which	should	be	empty.	
This	column	is	an	artifact	due	to	the	different	interpretations	of	column	
separator	by	MySQL	and	R.

TA B L E 1 (Continued)

    |  5 of 17LAM et al.

F I G U R E 2 (Top)	Intuitive	implementation	of	the	OBOE	schema	in	a	two-	dimensional	(2D)	table,	with	observations	in	rows,	and	traits	
and	ancillary	data	in	columns.	(Bottom)	Demonstration	of	the	long-	table	format	used	within	TRY	data	releases.	The	second	observation	
(row)	in	the	top	panel	is	provided	as	an	example.	The	data	release	provides	the	unique	identifiers	for	each	data	record	(‘ObsDataID’),	and	
the	observation	(‘ObservationID’),	the	taxon	of	the	entity,	and	identifiers,	names,	values,	and	units	of	trait	records	and	ancillary	data.	Empty	
cells	for	‘TraitID's	indicate	that	the	entry	is	an	ancillary	datum.	For	clarity,	the	number	of	columns	has	been	reduced	compared	to	TRY	data	
releases.

F I G U R E 3 An	overview	of	the	general	preprocessing	workflow	for	TRY	dataset	using	‘rtry’.

6 of 17  |     LAM et al.

Acknowledging	the	complexity	of	preprocessing	plant	trait	data,	
‘rtry’	 offers	 an	 optional	 argument	 ‘showOverview’	 for	most	 func-
tions.	 This	 optional	 argument	 provides	 users	 with	 a	 summarized	
dataset	overview	(i.e.,	dimension	and/or	column	names)	after	each	
preprocessing	step	to	enhance	the	usability	and	clarity	of	the	‘rtry’	
package.	By	default,	 ‘showOverview’	 is	 preset	 to	 ‘TRUE’,	meaning	
that	the	dataset	overview	will	be	displayed	as	part	of	the	function	
output,	even	when	the	users	do	not	explicitly	specify	this	argument.	
When	 ‘showOverview’	 is	 set	 to	 ‘FALSE’,	 the	 overview	display	will	

be	suppressed,	allowing	users	to	streamline	their	output	and	focus	
solely	on	relevant	preprocessing	information	and	tasks.

3  |  TRY DATA PREPROCESSING
WORKFLOW USING ‘RTRY ’

With	functionalities	ranging	from	importing	and	exploring	the	data	
to	manipulating	data	using	user-	defined	criteria	and	finally	exporting	
the	preprocessed	data,	‘rtry’	seamlessly	facilitates	data	preprocess-
ing	tailored	to	users'	specific	needs	across	programming	levels.	We	
have	outlined	a	general	workflow	for	plant	trait	data	preprocessing	
based	on	‘rtry’	functions	to	assist	users	in	understanding	and	apply-
ing	 the	package's	 functionalities	 (Figure 3).	The	detailed	workflow	
is	available	as	package	vignette,	on	CRAN,	and	on	the	GitHub	Wiki.	
This	 section	explains	each	element	of	 this	workflow	and	 the	 ‘rtry’	
functions	involved,	in	the	context	of	the	generalized	data	preproc-
essing	steps	provided	in	Table 2.

access the function description for a

function, e.g., rtry_import

including the usage and arguments of the

function

?rtry_import

TA B L E 2 List	of	functions	inside	‘rtry’	version	1.1.

Data preprocessing step Function Description

Dataset	import ‘rtry_import()’ Imports	a	text	file	(.txt)	exported	from	the	TRY	database	or	comma-	separated	
values	file	(.csv)

Data	exploration ‘rtry_explore()’ Groups	the	data	based	on	the	specified	column	names	and	provides	an	
additional	column	to	show	the	total	count	of	each	group

Data	combination ‘rtry_bind_col()’ Takes	a	sequence	of	data	and	combines	them	by	columns

‘rtry_bind_row()’ Takes	a	sequence	of	data	and	combines	them	by	rows

‘rtry_join_left()’ Merges	two	data	frames	based	on	a	specified	common	column	and	returns	all	
records	from	the	left	data	frame	together	with	the	matched	records	from	the	
right	data	frame,	all	records	(rows)	on	the	right	that	do	not	exist	on	the	left	
will	be	discarded

‘rtry_join_outer()’ Merges	two	data	frames	based	on	a	specified	common	column	and	returns	all	
rows	from	both	data,	returning	a	joint	table	that	contains	all	records	(rows)	
from	both	data	frames

Data	filtering ‘rtry_select_col()’ Selects	the	specified	columns	from	the	data

‘rtry_remove_col()’ Removes	the	specified	columns	from	the	data

‘rtry_select_row()’ Selects	rows	based	on	the	specified	criteria	and	the	corresponding	
‘ObservationID’	from	the	data

‘rtry_exclude()’ Excludes	all	records	(rows)	with	the	same	value	in	the	attribute	specified	in	the	
argument	‘baseOn’	if	the	specified	criteria	for	excluding	are	fulfilled	for	one	
of	those	records

‘rtry_select_anc()’ Obtains	a	unique	list	of	‘ObservationID’	from	the	data	along	with	the	selected	
ancillary	data	(specified	by	‘DataID’)

‘rtry_remove_dup()’ Removes	the	duplicates	from	the	input	data	using	the	duplicate	identifier	
‘OrigObsDataID’	provided	within	the	TRY	data

Long-		to	wide-	table	
transformation

‘rtry_trans_wider()’ Transforms	the	long-	table	data	format	into	a	wide-	table	format

Data	export ‘rtry_export()’ Exports	the	data	frame	as	comma-	separated	values	to	a	.csv	file

Geocoding ‘rtry_geocoding()’ Uses	Nominatim,	a	search	engine	for	OpenStreetMap	(OSM)	dataa,	to	perform	
geocoding,	i.e.,	converting	an	address	into	coordinates	(latitudes,	longitudes)

‘rtry_revgeocoding()’ Uses	Nominatim,	a	search	engine	for	OpenStreetMap	(OSM)	dataa,	to	perform	
reverse	geocoding,	i.e.,	converting	coordinates	(latitudes,	longitudes)	into	an	
address

aThe	data	provided	by	OSM	are	free	to	use	for	any	purpose,	including	commercial	use,	and	are	governed	by	the	distribution	license	ODbL.

    |  7 of 17LAM et al.

3.1  |  Dataset import

The	first	step	of	the	data	preprocessing	workflow	is	always	the	import	
of	a	dataset	into	the	R	environment.	The	‘rtry_import’	function	accepts	
five	arguments—‘input’,	‘separator’,	‘encoding’,	‘quote’,	and	‘showOver-
view’.	By	default,	the	function	imports	tab-	delimited	text	file	(.txt),	as	
exported	from	the	TRY	database.	However,	users	have	the	option	to	
modify	the	arguments	for	the	separator	and	encoding	to	accommodate	
various	file	formats,	such	as	comma-	separated	values	(.csv).

The	 ‘rtry’	package	contains	two	small	datasets	requested	from	
the	TRY	database	(‘data_TRY_15160’	and	 ‘data_TRY_15161’).	To	fa-
miliarize	themselves	with	the	data	structure,	users	can	inspect	them	
directly	 in	a	 spreadsheet-	style	data	viewer	 in	RStudio	and	 sort	by	
‘ObservationID’.

With	this,	users	can	explore	this	dataset,	for	example:

•	 For	‘ObservationID’	94068,	there	are	two	‘ObsDataID’	1021243	
and	1021245,	with	the	first	one	belonging	to	the	‘TraitID’	3115	
and	 the	 latter	ancillary	data.	Looking	deeper	 into	 the	 ‘DataID’	
and	‘DataName’,	users	can	see	that	these	data	“SLA:	petiole	ex-
cluded”	 are	measured	within	 “growth	chambers”	 and	could	be	
eliminated	later,	depending	on	the	research	question.

•	 For	‘ObservationID’	158137,	users	can	see	ancillary	data	with	the	
‘DataID’	59,	60,	61,	and	413.	Looking	further	into	the	‘ErrorRisk’	
of	the	data	“SLA:	petiole	excluded”,	which	is	roughly	2.5,	meaning	

the	observation	 is	2.5	standard	deviations	away	from	the	mean.	
This	is	probably	a	“good”	value	that	users	would	want	to	keep	later.	
As	well,	the	‘OrigObsDataID’	is	‘NA’,	meaning	that	this	observation	
is	not	a	duplicate.	Also,	the	“Plant	developmental	status”	(‘DataID’	
413)	could	be	an	important	information	for	further	processing.

However,	it	is	impossible	to	do	so	for	larger	datasets,	which	leads	
to	the	next	data	preprocessing	step—dataset	exploration.

3.2  |  Dataset exploration

The	second	step	of	the	data	preprocessing	workflow	is	the	explora-
tion	of	the	dataset.	Even	though	the	TRY	data	release	notes	(https://
www.	try-		db.	org/	TryWeb/	TRY_	Data_	Relea	se_	Notes.	pdf)	 provide	
an	overview	of	the	data	structure	and	column	headers	(Table 1)	of	
the	requested	dataset,	they	do	not	include	the	informational	content	
of	the	trait	records	and	ancillary	data,	which	makes	it	challenging	for	
preprocessing.	 The	 dataset	 exploration	 facilitated	 by	 the	 ‘rtry_ex-
plore’	function	allows	users	to	gain	insights	into	the	inherent	traits,	
species,	and	ancillary	data,	enabling	informed	decisions	and	evalua-
tion	of	the	outcomes	during	preprocessing.	Exploring	the	datasets	
proactively	before	and	after	each	data	combination	or	filtering	step	
is	 recommended.	 This	 practice	 promotes	 data	 integrity	 and	 helps	
prevent	the	accidental	exclusion	of	valuable	data.

The	 ‘rtry_explore’	 function	 takes	 four	 arguments—‘input’,	
‘…’,	 ‘sortBy’,	 and	 ‘showOverview’—and	 organizes	 the	 input	 into	 a	
grouped	 data	 table	 based	 on	 the	 specified	 column	 names	 (‘…’).	 A	
column	displaying	the	total	count	within	each	group	is	provided	as	
additional	 information	to	the	exploration.	By	default,	the	output	is	
grouped	by	the	first	attribute	when	‘sortBy’	is	not	specified.

The	 following	 implementation	 of	 the	 ‘rtry_explore’	 function	
explores	 the	 traits	 and	 ancillary	 data	within	 the	 imported	 dataset	
(‘TRYdata’)	with	the	user's	preferences	to	sort	the	results	based	on	
‘TraitID’.	The	resulting	exploration	output	(‘TRYdata_explore’)	pres-
ents	all	traits	followed	by	the	ancillary	data	(identified	by	the	miss-
ing	value—‘NA’—in	 ‘TraitName’	 and	 ‘TraitID’).	The	main	purpose	of	
this	exploration	 is	 to	obtain	an	overview	of	 traits,	and	of	ancillary	
data	and	sub-	traits	(indicated	by	different	‘DataID’	under	the	same	
‘TraitID’)	available	for	data	filtering.

import dataset released from TRY (.txt)

TRYdata <− rtry_import(<path_to_TRY_txt>)

import dataset with comma-separated

values (.csv)

suppress the display of dimension and

the column names of the imported data

data <− rtry_import(<path_to_csv>,
separator = ',',
encoding = 'UTF-8',
quote = '\"',
showOverview = FALSE)

open a spreadsheet-style data viewer in

RStudio for sample dataset (e.g., data_

TRY_15160)

View(data_TRY_15160)

group the input data (TRYdata) based on

DataID, DataName, TraitID, and TraitName

and sort the output by TraitID using the

sortBy argument

not show dimension and the column names

of the exploration result

TRYdata_explore <− rtry_explore(TRYdata,
 DataID, DataName, TraitID, TraitName,

 sortBy = TraitID,
 showOverview = FALSE)

https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf

8 of 17  |     LAM et al.

Data	exploration	 can	also	be	used	 to	obtain	 the	 species	 infor-
mation	for	which	data	are	available	by	 including	the	column	head-
ers	 ‘AccSpeciesID’	 and/or	 ‘AccSpeciesName’	 within	 the	 argument	
‘…’.	However,	users	should	be	aware	that	an	exploration	on	species,	
traits,	and	sub-	traits	simultaneously	may	result	 in	a	 long	 list	of	re-
sults	due	to	the	potentially	diverse	dataset.

3.3  |  Data combination

Given	 the	 diverse	 origins	 of	 plant	 trait	 data,	 users	 frequently	 en-
counter	 the	need	 to	manage	multiple	 datasets	 during	preprocess-
ing.	To	facilitate	this,	‘rtry’	provides	four	data	combination	functions,	
namely	‘rtry_bind_col()’,	‘rtry_bind_row()’,	‘rtry_join_left()’,	and	‘rtry_
join_outer()’.	The	visual	 interpretation	of	 these	 functions	 is	 shown	
in	Figure 4.

The	 ‘rtry_bind_col’	 and	 ‘rtry_bind_row’	 functions	 take	 a	 list	 of	
data	 frames	 (‘…’),	enabling	users	 to	combine	data	 frames	either	by	
columns	or	 by	 rows.	 Since	 these	 two	 functions	 do	not	 consider	 a	
common	 attribute,	 users	must	 ensure	 the	 proper	 ordering	 of	 col-
umns,	respectively,	rows,	before	binding.

In	contrast,	the	‘rtry_join_left’	and	‘rtry_join_outer’	functions	merge	
two	data	frames	(‘x’	and	‘y’)	based	on	a	common	attribute	(‘baseOn’).	
The	‘rtry_join_left’	function	returns	the	left	data	(‘x’)	with	the	matched	
records	from	the	right	data	frame	(‘y’),	while	the	‘rtry_join_outer’	func-
tion	returns	all	records	from	both	data	frames	(‘x’	and	‘y’).

3.4  |  Data filtering

A	major	goal	of	data	preprocessing	 is	data	 filtering.	This	 function-
ality	 is	especially	crucial	for	datasets	retrieved	from	the	TRY	data-
base,	 as	 they	 often	 contain	 more	 information	 than	 necessary	 for	
user	 objectives	 and	 trait	 data	 inconsistent	with	 planned	 analyses.	
To	avoid	incorporating	substantial	data	filtering	in	their	downstream	
analyses—which	is	possible	but	prone	to	errors	and	reduces	compu-
tational	efficiency—it	 is	essential	 to	extract	 (select)	 relevant	 infor-
mation	or	remove	(exclude)	irrelevant	information	beforehand.	‘rtry’	

combine multiple TRY datasets (TRYdata1,

TRYdata2, TRYdata3) already imported into

R by row

TRYdata_combine <− rtry_bind_row(TRYdata1,
TRYdata2, TRYdata3)

merge the georeferenced information

(georef) to the dataset (TRYdata)

based on the common identifier

ObservationID

output all records in TRYdata with

additional columns containing the

georeferenced information

suppress overview display

TRYdata_georef <− rtry_join_left(TRYdata,
georef, baseOn = ObservationID,
showOverview = FALSE)

merge two datasets containing

coordinates (coord) and locations (loc)

based on the common identifier

ObservationID

it does not matter if certain

ObservationID occurs only in one dataset

georef <− rtry_join_outer(coor, loc,
baseOn = ObservationID)

F I G U R E 4 Visual	interpretation	of	the	four	data	combination	functions	provided	by	‘rtry’.

    |  9 of 17LAM et al.

offers	six	functions	to	facilitate	this	data	filtering	process:	‘rtry_se-
lect_col()’,	 ‘rtry_remove_col()’,	 ‘rtry_select_row()’,	 ‘rtry_exclude()’,	
‘rtry_select_anc()’,	and	‘rtry_remove_dup()’.

3.4.1  |  Filtering	attributes	(columns)	
from	the	dataset

In	TRY	version	6,	the	output	table	has	27	columns	(Table 1),	encom-
passing	trait	or	ancillary	data	measurements	and	informational	con-
tent	 recognizing	 the	 data	 contributors	 and	 contributed	 datasets.	
To	 select	 only	 the	 relevant	 columns	 from	 the	 imported	datasets,	
users	 can	employ	either	 the	 ‘rtry_select_col’	 or	 ‘rtry_remove_col’	
function.	 These	 two	 functions	 accept	 three	 arguments—an	 im-
ported	data	frame	(‘input’),	a	 list	of	column	names	to	be	selected	
or	 removed	 (‘…’),	and	 ‘showOverview’.	While	 ‘rtry_select_col()’	al-
lows	users	to	explicitly	select	a	 list	of	columns	to	retain,	 ‘rtry_re-
move_col()’	 removes	 the	 specified	 columns.	 In	general,	 it	 is	more	
convenient	 to	 use	 the	 ‘rtry_remove_col’	 function	 for	 removing	
only	a	small	fraction	of	the	data	frame.	It	is	important	to	note	that	
the	 column	 containing	 unique	 identifiers	 for	 each	 observation	
(‘ObservationID’)	and	for	duplicate	trait	records	(‘OrigObsDataID’)	
from	the	TRY	dataset	should	not	be	removed	to	ensure	the	proper	
functionality	of	the	 later	preprocessing	steps,	such	as	data	selec-
tion	and	duplicate	removal.

3.4.2  |  Filtering	records	(rows)	from	the	dataset

The	‘rtry_select_row’	and	‘rtry_exclude’	functions	allow	users	to	se-
lect	 or	 exclude	 records	 (rows)	 for	 further	 analyses	 based	 on	 their	
relevance	or	consistency.	While	the	TRY	database	provides	the	trait	
names	and	corresponding	identifiers	on	the	data	explorer	(https://
www.	try-		db.	org/	de/	de.	php),	 it	does	not	offer	a	comprehensive	 list	
of	the	sub-	traits	or	the	ancillary	data.	Therefore,	conducting	data	ex-
ploration	using	‘rtry_explore()’	(Section	3.2)	is	essential	beforehand	
to	obtain	the	informational	content,	such	as	the	traits,	sub-	traits,	and	
ancillary	data	available	within	the	datasets.

The	‘rtry_select_row’	function	accepts	five	arguments—a	data	
frame	 (‘input’),	 criteria	 for	 selection	 (‘…’),	 and	 three	 optional	 ar-
guments	 ‘getAncillary’,	 ‘rmDuplicates’,	 and	 ‘showOverview’.	 This	
function	keeps	the	rows	that	fulfill	the	specified	criteria	(‘…’)	from	
the	 data	 frame	 (‘input’).	 Users	 can	 keep	 all	 ancillary	 data	 that	
share	 the	 same	 unique	 identifiers	 for	 each	 observation	 in	 TRY	
(‘ObservationID’)	of	the	retained	rows	by	setting	the	argument	‘ge-
tAncillary’	to	‘TRUE’.	Additionally,	users	have	the	option	to	remove	
duplicates	 from	the	datasets	by	setting	 ‘rmDuplicates’	 to	 ‘TRUE’,	
invoking	the	‘rtry_remove_dup’	function,	which	will	be	introduced	
later	in	this	section.

Among	all	functions	within	‘rtry’,	‘rtry_exclude()’	is	considered	to	
be	the	most	valuable	when	preprocessing	plant	trait	data	because	it	
provides	flexible	arguments	to	filter	trait	measurements	and	respec-
tive	 ancillary	 data.	 The	 ‘rtry_exclude’	 function	 accepts	 four	 argu-
ments—a	data	frame	(‘input’),	criteria	for	exclusion	(‘…’),	the	attribute	
on	which	exclusion	 is	based	 (‘baseOn’),	and	the	optional	argument	
‘showOverview’.	 This	 function	 removes	 data	 from	 the	 data	 frame	
(‘input’)	 based	on	 the	 specified	 criteria	 (‘…’).	Users	 are	 required	 to	
explicitly	 set	 the	 argument	 ‘baseOn’	 to	 an	 identifier	 that	 they	 see	
fit.	 For	 example,	 when	 set	 to	 ‘ObservationID’,	 ‘rtry_exclude()’	 re-
moves	all	records	of	the	respective	entities	(indicated	by	the	same	
‘ObservationID’)	from	a	data	frame	if	the	specified	criterion	for	ex-
clusion	is	fulfilled	for	any	record.	Accordingly,	if	‘baseOn’	is	set	to	the	

remove six columns from the imported

data (TRYdata)

TRYdata_simplified <- rtry_remove_
col(TRYdata,

LastName, FirstName, DatasetID, Dataset,

Reference, Comment)

F I G U R E 5 An	overview	of	the	general	preprocessing	workflow	for	NEON	dataset	using	‘rtry’.

https://www.try-db.org/de/de.php
https://www.try-db.org/de/de.php

10 of 17  |     LAM et al.

unique	identifier	of	the	consolidated	species	name	(‘AccSpeciesID’),	
all	records	of	the	corresponding	species	will	be	excluded	if	the	cri-
terion	is	met	for	any	one	record	of	that	species.	Alternatively,	when	
‘baseOn’	is	set	to	‘ObsDataID’,	the	unique	identifier	for	each	record	
or	row	in	the	TRY	dataset,	the	function	will	exclude	only	the	individ-
ual	records	for	which	the	specified	criterion	is	fulfilled.

Below	 are	 three	 examples	 of	 data	 selection	 and	 exclusion.	
Detailed	 explanations	 and	 implementations	 can	 be	 found	 in	 the	
package	vignettes,	on	CRAN,	and	the	GitHub	Wiki.

Example 1: Select relevant trait records and ancillary data
This	 example	 selects	 only	 data	 from	 the	 complex	 plant	 trait	 data-
set	considered	relevant	for	further	analyses.	Users	can	explore	the	
dataset	first	to	obtain	an	overview	of	the	available	traits	and	ancil-
lary	data	within	the	dataset,	then	 identify	the	criteria	for	selecting	
the	relevant	trait	records	and	ancillary	data	for	further	preprocessing	
and	analyses.

Example 2: Remove all observations on non- mature plants
This	 example	 removes	 all	 non-	mature	 plant	 observations	 while	
keeping	 those	 measured	 from	 the	 mature	 plants.	 Through	 the	
dataset	 exploration	 in	Example	1,	 users	 learn	 that	 ‘DataID’	413	
provides	information	on	plant	developmental	status	or	maturity.	
Here,	the	‘DataID’	413	is	used	to	perform	another	dataset	explo-
ration,	and	the	obtained	values	(‘OrigValueStr’)	for	plant	maturity	
are	 used	 to	 identify	 criteria	 for	 filtering.	 While	 ‘rtry_exclude()’	
removes	 all	 records	 of	 the	whole	 observation	measured	 from	 a	

non-	mature	plant,	it	is	worth	noting	that	this	example	also	keeps	
the	observations	where	the	developmental	state	is	explicitly	un-
known	or	is	not	provided	(no	‘DataID’	413	for	the	given	observa-
tion),	with	 the	 assumption	 that	 the	measurements	 followed	 the	
recommended	 measurement	 protocol—measuring	 traits	 on	 ma-
ture	plants.

Example 3: Remove outliers
To	 remove	 the	 outliers	 identified	 during	 data	 integration	 of	 the	
TRY	database,	users	can	take	advantage	of	the	column	‘ErrorRisk’	
provided	 inside	 the	 data	 released	 from	 the	 database.	 The	
‘ErrorRisk’	 quantifies	 the	 maximum	 distance	 of	 the	 trait	 record	
from	 a	 respective	mean	 at	 the	 species,	 genus,	 or	 family	 level	 in	
terms	of	standard	deviation	(a	modified	z-	transformation;	Kattge,	
Díaz,	et	al.,	2011;	Kattge	et	al.,	2020).	After	exploring	the	dataset	
for	potential	outliers,	this	example	filters	the	data	with	‘ErrorRisk’	

explore the traits (TraitID > 0) and
ancillary data (TraitID == NA) inside the
dataset (TRYdata)

TRYdata_explore <- rtry_explore(TRYdata,
 DataID, DataName, TraitID, TraitName,

 sortBy = TraitID)
select trait records related to leaf

area per leaf dry mass, i.e., TraitIDs

3115, 3116, 3117

and simultaneously select relevant

ancillary data (specified by DataID):

59 Latitude; 60 Longitude; 61 Altitude;

6601 Sampling date; 327 Exposition

413 Plant developmental status / plant

age / maturity / plant life stage

1961 Health status of plants (vitality);

113 Reference / source

TRYdata_select <- rtry_select_row(TRYdata,
TraitID %in% c(3115, 3116, 3117) | DataID

%in% c(59, 60, 61, 6601, 327, 413, 1961,

113))

subset of dataset (TRYdata) with only

the rows containing plant developmental

status (DataID 413)

TRYdata_subset <- rtry_select_row(TRYdata,
DataID %in% 413)

explore the different plant development

states within the data subset (TRYdata_

subset)

sort the exploration by OrigValueStr

to obtain the developmental states in

alphabetical order

note: no StdValue available for DataID

413, since developmental status is not a

continuous trait

TRYdata_subset <- rtry_explore(TRYdata_
subset,

 DataID, DataName, OrigValueStr,

OrigUnitStr,

 sortBy = OrigValueStr)
remove all observations (ObservationID)

that are measured on non-mature plants

criteria:

1. DataID equals 413 - Plant

developmental status / plant age /

maturity / plant life stage

2. OrigValueStr equals "juvenile"

or "saplings" (identified in dataset

exploration)

TRYdata_exclude <- rtry_exclude(TRYdata,
 (DataID %in% 413) & (OrigValueStr %in%

c("juvenile", "saplings")),

 baseOn = ObservationID)

    |  11 of 17LAM et al.

larger	 than	 or	 equal	 to	 3.0.	 Note	 that	 this	 time	 the	 argument	
‘baseOn’	 is	 set	 to	 ‘ObsDataID’,	 as	we	 intend	 to	exclude	only	 the	
outliers	 for	 individual	 trait	 records	while	keeping	 the	 rest	of	 the	
observation	which	might	have	other	relevant	trait	measurements	
or	ancillary	information.

3.4.3  |  Removing	duplicates

As	 of	 October	 2022,	 the	 TRY	 database	 comprised	 696	 data-
sets	 from	 1108	 data	 contributors	 (Boenisch	 &	 Kattge,	 2023).	
To	 keep	 track	 of	 potential	 duplicate	 entries,	 a	 unique	 identifier	
‘OrigObsDataID’	was	assigned	when	there	was	a	high	probability	
that	the	same	trait	records	had	previously	been	contributed	to	TRY.	
This	determination	 is	based	on	the	criteria:	 (1)	same	 ‘TraitName’,	
‘AccSpeciesName’,	 and	 ‘UnitName’,	 (2)	 similar	 ‘StdValue’—ac-
counting	 for	 rounding	 effects,	 and	 (3)	 not	 different	 geographic	
coordinates,	which	were	assessed	using	standardized	latitude	and	
longitude	(Kattge	et	al.,	2020).

Within	 ‘rtry’,	 we	 provide	 the	 ‘rtry_remove_dup’	 function	 for	
users	to	easily	remove	the	duplicates	within	a	data	frame	(‘input’)	
based	on	the	 identifier	 ‘OrigObsDataID’.	While	the	dimension	of	
the	resulting	data	frame	can	be	suppressed	by	setting	‘showOver-
view’	 to	 ‘FALSE’,	 the	 number	 of	 duplicates	 removed	will	 still	 be	
shown.	Users	should	be	aware	that	 if	 the	original,	not	duplicate,	
trait	record	was	not	requested	from	TRY	(e.g.,	 if	only	public	data	
or	specific	datasets	were	requested	from	TRY	and	the	original	trait	
record	was	part	of	the	restricted	data	or	another	dataset),	the	du-
plicates	 identified	 by	TRY	will	 still	 be	 removed	by	 this	 function,	
resulting	in	data	loss.

3.5  |  Long- table to wide- table transformation

Trait	 datasets	 can	 be	 structured	 in	 either	 long-		 or	 wide-	table	 for-
mats.	 The	data	 released	 from	TRY	 are	 given	 in	 a	 long-	table	 format,	
which	allows	a	consistent	structure	as	different	traits	or	ancillary	data	
are	 stored	 in	 separated	 rows	 (i.e.,	 simply	add	or	 remove	 rows	when	
needed,	 instead	 of	 having	 empty	 columns	 for	 missing	 information).	
The	long-	table	format	keeps	this	type	of	data	in	a	denser	format	and	is	
more	flexible	for	data	storage.	Yet,	a	wide-	table	format	is	often	more	
convenient	for	analyses	as	a	tabular	view	is	more	straightforward	to	
visually	interpret	and	assess.	Therefore,	the	‘rtry’	package	provides	the	
‘rtry_trans_wider’	 function	 to	 transform	 the	 preprocessed	 trait	 data	
from	long-		to	wide-	table	format	for	further	analyses.	This	function	ac-
cepts	five	arguments—a	data	frame	(‘input’),	the	columns	from	which	
the	output	column	names	and	values	are	to	be	obtained	(‘names_from’	
and	 ‘values_from’),	 the	optional	argument	to	define	the	function	ap-
plied	to	the	output	values	when	necessary	(‘values_fn’),	and	whether	
to	display	the	dimension	of	the	resulting	wide-	table	(‘showOverview’).

Several	preprocessing	steps	are	necessary	before	performing	the	
long-		to	wide-	table	transformation	on	the	TRY	dataset.	The	first	step	
is	to	select	only	traits	with	numerical	values	and	relevant	columns	(else	
the	attribute	in	‘values_fn’	might	cause	error).	Next,	users	can	obtain	
a	 list	 of	 relevant	 ancillary	data	 from	 the	original	 dataset	 as	 needed,	
e.g.,	georeferencing	 information	 like	 latitude	and	 longitude	 indicated	
by	‘DataID's	59	and	60,	respectively.	The	‘rtry’	package	provides	the	
‘rtry_select_anc’	 function	to	 facilitate	 this	step.	The	 ‘rtry_select_anc’	
function	 takes	 three	 arguments—an	 imported	 data	 frame	 (‘input’),	 a	
list	of	 ‘DataID's	of	the	ancillary	data	to	be	selected	(‘…’),	and	the	op-
tional	argument	‘showOverview’.	This	function	returns	a	unique	list	of	
‘ObservationID’	and	the	corresponding	ancillary	data	of	interest.	When	
the	ancillary	data	 (latitude	and	 longitude	 in	 this	 case)	are	extracted,	
they	can	be	merged	 to	 the	numerical	 traits	using	 'rtry_join_left()'	 to	
include	the	ancillary	data	in	the	resulting	wide-	table.

Once	the	data	are	prepared,	transformation	can	be	performed	using	
the	‘rtry_trans_wider’	function,	as	demonstrated	below.	To	ensure	suc-
cessful	 transformation	when	 dealing	with	 the	 potential	 existence	 of	
multiple	records	for	a	single	trait	under	one	‘ObservationID’	(e.g.,	mul-
tiple	measurements	of	specific	leaf	area	of	one	observation	entity),	we	
recommend	defining	the	argument	‘values_fn’	either	by	mean	(‘mean’)	
or,	if	more	appropriate,	by	maximum	(‘max’)	or	minimum	(‘min’).	If	this	
argument	is	not	specified,	trait	records	(same	‘TraitID’)	with	different	
‘DataID's	 under	 the	 same	 ‘OberservationID’	will	 be	displayed	within	
the	same	cell	as	text,	causing	errors	in	numerical	data	analyses.

explore the input data (TRYdata) based

on DataID, DataName, TraitID, TraitName,

and ErrorRisk

sort the output by ErrorRisk

TRYdata_explore <- rtry_explore(TRYdata,
 DataID, DataName, TraitID, TraitName,

ErrorRisk,

 sortBy = ErrorRisk)
remove outliers: individual trait

records (ObsDataID) identified with

ErrorRisk >= 3
while keeping the rest of the

observations in the dataset (TRYdata)

TRYdata_exclude <- rtry_exclude(TRYdata,
 ErrorRisk >= 3,
 baseOn = ObsDataID)

remove the duplicates within the dataset

(TRYdata)

TRYdata_rm_dup <− rtry_remove_dup(TRYdata)

12 of 17  |     LAM et al.

3.6  |  Dataset export

The	 ‘rtry_export’	 function	 can	 be	 used	 to	 save	 the	 preprocessed	
data	in	their	final	structure	(either	in	long-		or	wide-	table	format)	as	
comma-	separated-	values	into	a	.csv	file	at	a	specified	directory.	This	
function	takes	four	arguments—the	data	to	be	saved	(‘data’),	the	out-
put	path	(‘output’),	and	two	optional	arguments	that	by	default	insert	
double	quotes	around	any	character	or	factor	columns	(‘quote’),	and	
sets	the	file	to	“UTF-	8”	encoding	(‘encoding’).

4  |  ADDITIONAL USE C A SES USING
‘RTRY ’

While	the	TRY	database	serves	as	a	central	resource	for	plant	trait	
data,	researchers	often	draw	from	diverse	sources	to	enrich	their	
analyses.	Building	upon	the	foundational	functionality	of	‘rtry’	in	
plant	 trait	 data	 preprocessing,	 we	 have	 provided	 additional	 ex-
ample	workflows	that	encompass	the	geocoding	and	reverse	ge-
ocoding	procedures	and	the	application	of	‘rtry’	to	data	acquired	
from	 sources	 other	 than	 the	 TRY	 database.	 The	 detailed	 exam-
ple	workflow	for	 (reverse)	geocoding	can	be	found	as	a	package	
vignette	on	CRAN,	whereas	 the	 ‘rtry’	GitHub	Wiki	provides	 the	
vignettes	for	geocoding	and	the	preprocessing	workflow	for	the	
NEON	plant	trait	data.

4.1  |  Geocoding and reverse geocoding

Georeferencing	is	necessary	to	assess	the	plausibility	of	location	
information,	 filter	data	using	a	common	coordinate	system,	esti-
mate	 geographic	 patterns,	 link	 to	 georeferenced—e.g.,	 environ-
mental—data,	and	address	the	spatial	autocorrelation	of	the	plant	
trait	data.

There	are	two	functions	within	‘rtry’	to	assist	users	with	geoc-
oding	(‘rtry_geocoding()’	derives	latitude	and	longitude	for	a	given	
location	 name)	 and	 reverse	 geocoding	 (‘rtry_revgeocoding()’	 de-
rives	 the	 location	 name	 from	 provided	 latitude	 and	 longitude)	
for	 a	 list	 of	 locations	 or	 coordinates	 in	 the	WGS84	 Coordinate	
System.	These	 functions	 rely	on	Nominatim,	a	search	engine	 for	
OpenStreetMap	 (OSM)	data.	The	data	provided	by	 the	OSM	are	
freely	 available	 for	 any	 purpose,	 including	 commercial	 use,	 and	
are	governed	by	the	Open	Database	License	(ODbL;	https://	wiki.	

export the preprocessed data (TRYdata)

to a specific directory (e.g., in the

temporary directory)

rtry_export(TRYdata, file.path(tempdir(),

"TRYdata_preprocessed.csv"))

provide the standardized trait values per

observation, together with species names

and the georeferences of the sampling

site (59: Latitude and 60: Longitude), if

available,

in a wide table format; several steps are

necessary:

1. select only the trait records that

have standardized numeric values from the

dataset (TRYdata)

the complete.cases() is used to ensure

the cases are complete, i.e. have no

missing values

num_traits <- rtry_select_row(TRYdata,
complete.cases(TraitID) & complete.

cases(StdValue))

2. select the relevant columns for

transformation, while suppress the data

overview display

num_traits <- rtry_select_col(num_traits,
ObservationID, AccSpeciesID,

AccSpeciesName, TraitID, TraitName,

StdValue, UnitName,

showOverview = FALSE)
3. extract latitude (DataID 59) and

longitude (DataID 60) of each observation

within TRYdata

while suppress the data overview display

georef <- rtry_select_anc(TRYdata,
 59, 60,

 showOverview = FALSE)
4. merge the relevant data frames based

on the ObservationID using rtry_join_left()

num_traits_georef <- rtry_join_left(num_
traits, georef, baseOn = ObservationID)
5. perform wide table transformation of

TraitID, TraitName, and UnitName based on

ObservationID, AccSpeciesID, and

AccSpeciesName with cell values from StdValue

if several records with StdValue were

provided for one trait with the same

ObservationID, AccSpeciesID, and

AccSpeciesName, calculate their mean

num_traits_georef_wider <- rtry_trans_
wider(num_traits_georef,

 names_from = c(TraitID, TraitName,
UnitName),

 values_from = c(StdValue),
 values_fn = list(StdValue = mean))

https://wiki.osmfoundation.org/wiki/Licence

    |  13 of 17LAM et al.

osmfo	undat	ion.	org/	wiki/	Licence).	Users	should	note	that	an	abso-
lute	maximum	of	one	request	per	second	(no	heavy	usage)	and	a	
valid	email	address	to	identify	the	request	are	required	when	using	
the	OSM	service	as	part	of	 the	Nominatim	Usage	Policy	 (details	
can	be	 found	on:	https://	opera	tions.	osmfo	undat	ion.	org/	polic	ies/	
nomin	atim/).

While	the	example	workflow	provides	the	script	for	obtaining	
the	 coordinates	 or	 locations	 from	 a	 list	 of	 corresponding	 infor-
mation,	these	two	functions	can	also	be	applied	to	individual	en-
tries—‘rtry_geocoding()’	requires	a	string	of	an	address	(‘address’)	
and	‘rtry_revgeocoding()’	requires	a	data	frame	containing	latitude	
and	longitude	(‘lat_lon’).

4.2  |  Preprocessing NEON plant foliar trait data

The	National	Ecological	Observatory	Network	 (NEON)	program	 is	
a	 research	platform	funded	by	 the	United	States	National	Science	
Foundation	 (NSF)	 that	provides	free	and	 long-	term	data	across	bi-
omes	comprising	the	continental	U.S.	and	Hawaii	on	key	ecological	
metrics	 as	 a	 basis	 to	 discover	 and	 understand	 the	 impacts	 of	 cli-
mate	change	(NEON,	2023).	We	have	chosen	the	plant	foliar	traits	
dataset	 (product	 ID:	DP1.10026.001)	 from	 the	NEON	data	 portal	

(NEON,	2016)	to	demonstrate	a	use	case	of	the	‘rtry’	package	out-
side	of	plant	trait	data	from	TRY.	The	NEON	plant	foliar	traits	dataset	
contains	trait	measurements	(leaf	mass	per	area,	leaf	water	content,	
chlorophyll,	carbon	and	nitrogen	concentrations	and	stable	isotopes,	
major	 and	minor	 elements,	 and	 lignin)	 of	 sun-	lit	 canopy	 foliage	 at	
either	 individual	 (woody	plants)	or	community	 (herbaceous	plants)	
levels	(NEON,	2016).

While	 the	 detailed	 example	 is	 available	 on	 the	 GitHub	Wiki,	
this	section	provides	an	overview	of	the	preprocessing	steps	using	
‘rtry’	for	NEON	data	(Figure 5).	The	objective	is	to	demonstrate	the	
versatility	of	the	‘rtry’	package	beyond	the	TRY	database	and	illus-
trate	how	users	 can	 seamlessly	 chain	 together	 various	 functions	
within	the	package	to	suit	the	needs	of	cross-	cutting	and	integra-
tive	analyses.

4.2.1  |  Dataset	import

Upon	downloading	 the	NEON	dataset,	 users	 receive	multiple	 .csv	
files,	 each	 representing	 a	 different	 data	 table.	 Information	 about	
each	data	table	can	be	found	in	the	user	guide	(https://	data.	neons	
cience.	org/	data-		produ	cts/	DP1.	10026.	001#	docum	entation).	 Users	
can	employ	the	‘rtry_import’	function	to	import	the	NEON	dataset	
into	the	R	workspace.

4.2.2  |  Data	filtering	and	combination

Similar	to	the	TRY	data,	the	NEON	plant	trait	data	also	contain	more	
information	than	necessary	for	data	preprocessing.	For	demonstra-
tion	purposes,	the	script	below	utilizes	the	‘rtry_select_col’	function	

convert the address of MPI-BGC ("Hans-

Knoell-Strasse 10, 07745 Jena, Germany")

into coordinates in latitudes and

longitudes

note: please change to your own email

address when executing this function

rtry_geocoding("Hans-Knoell-Strasse 10,

07745 Jena, Germany",

 email = "john.doe@example.com")

convert the coordinates (must be a data

frame) of MPI-BGC (50.9101, 11.56674) into

an address

note: please change to your own email

address when executing this function

rtry_revgeocoding(data.frame(50.9101,

11.56674),

 email = "john.doe@example.com")

for the list of NEON data within the

NEON_output/stackedFiles directory

read the .csv files and assign them to a

corresponding variable

for (i in list.files(path = paste0(NEON_
output, "/stackedFiles") -> ipath,
pattern = "vst|cfc")){
assign(file_path_sans_ext(i),

rtry_import(paste0(ipath, "/", i),

separator = ",",
encoding = "UTF-8",
quote = "\"",
showOverview = FALSE))
}

https://wiki.osmfoundation.org/wiki/Licence
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://data.neonscience.org/data-products/DP1.10026.001#documentation
https://data.neonscience.org/data-products/DP1.10026.001#documentation
mailto:john.doe@example.com
mailto:john.doe@example.com

14 of 17  |     LAM et al.

to	 obtain	 the	 data	 columns	 relevant	 to	 the	 field	 collection	 of	 fo-
liar	 samples	 (‘cfc_fieldData’),	 the	 location	 information	of	 individual	
stems	(‘vst_mappingandtagging’),	and	the	leaf	mass	per	area	(LMA)	
measurement	of	the	foliar	samples	(‘cfc_LMA’).

Next,	the	‘rtry_join_left’	function	is	used	to	merge	the	mapping	
and	tagging	information	and	the	trait	information	(e.g.,	LMA)	with	the	
field	data,	using	the	unique	identifiers	‘individualID’	and	‘sampleID’	
within	the	NEON	data	tables.	Information	regarding	which	identifier	
to	use	for	merging	can	also	be	found	in	the	user	guide	provided	by	
NEON.	It	is	important	to	note	that	duplicates	may	be	present	within	
the	 ‘vst_mappingandtagging’	table	due	to	certain	 individuals	being	
remapped	 occasionally	 to	 address	 geolocation	 issues.	 To	 address	
this,	the	‘unique’	function	is	introduced	to	the	mapping	and	tagging	
information	during	merging.

4.2.3  |  Dataset	exploration	and	data	filtering

At	 this	point,	users	have	obtained	a	single	 table	 that	contains	all	
traits	and	georeferenced	information	necessary	to	proceed.	Users	
can	then	use	the	 ‘rtry_explore’	 function	to	review	the	dataset	 to	
identify	 criteria	 for	 excluding	 observations,	 non-	representative	
data,	or	outliers.	The	identified	criteria	can	be	used	to	select	and	
exclude	 any	observations	 accordingly	 using	 the	 ‘rtry_select_row’	
or	 ‘rtry_exclude’	 functions.	 It	 is	 highly	 recommended	 to	 use	 the	
‘rtry_explore’	function	again	after	each	filtering	step	to	verify	that	
only	 the	 intended	 unnecessary	 data	 were	 removed	 and	 that	 all	
desired	useful	data	remain.	This	iterative	approach	to	data	explo-
ration	 and	 filtering	 ensures	 the	 integrity	 of	 the	 dataset	 and	 the	
reliability	of	subsequent	analyses.	Here,	we	provide	two	examples	
for	this	preprocessing	task.

Example 1: Filtering data with geolocation information
The	first	example	is	to	obtain	data	that	have	geolocation	informa-
tion,	 indicated	with	 the	 identifier	 for	a	point	 location	 (‘pointID’),	
the	horizontal	distance	from	stem	to	the	‘pointID’	location	(‘stem-
Distance’),	and	the	azimuth	relative	to	True	North	between	stem	
and	 ‘pointID’	 location	 (‘stemAzimuth’).	 Within	 the	 NEON	 data,	
each	record	has	a	plot-	level	 location	which	may	be	sufficient	for	
some	applications.	For	more	precise	locations	of	individual	stems,	
precise	coordinates	must	be	calculated	using	the	mapping	and	tag-
ging	information.	To	do	so,	users	can	begin	by	assessing	how	many	
records	lack	the	required	mapping	and	tagging	information	using	
the	 ‘rtry_explore’	 function.	 The	 column	 ‘siteID’	 is	 also	 used	 for	
a	better	understanding	of	 the	datasets	during	 this	data	explora-
tion,	in	addition	to	the	three	geolocation	location	columns	that	are	

select the necessary columns from the

corresponding data table

1. field data

fieldData <− rtry_select_col(cfc_
fieldData,

individualID, sampleID, namedLocation,

domainID, siteID, plotID,

subplotID, geodeticDatum, decimalLatitude,

decimalLongitude,

elevation, sampleType, taxonID,

scientificName, plantStatus)

2. geolocation information for finding

the stem locations of woody sampled plants

mappingAndTagging <− rtry_select_col(vst_
mappingandtagging,

individualID, pointID, stemDistance,

stemAzimuth)

3. leaf mass per area (LMA) of foliar

samples

lma <- rtry_select_col(cfc_LMA,
sampleID, lmaSampleID, lmaSampleCode,

dryMass, scannedLeafNumber,

leafArea, leafMassPerArea,

dryMassFraction)

join field data with the mapping

and tagging information based on the

identifier (individualID)

fullTable <− rtry_join_left(fieldData,
unique(mappingAndTagging),

baseOn = individualID)
join the merged data with the trait

records, i.e., lma, sample on the sampleID

fullTable <− rtry_join_left(fullTable,
lma, baseOn = sampleID)

    |  15 of 17LAM et al.

required	for	calculating	the	precise	location	of	an	individual	stem.	
Once	 the	 existence	 of	 missing	 geolocation	 information	 is	 con-
firmed,	users	can	either	use	‘rtry_select_row()’	to	select	only	the	
data	with	geolocation	information,	or	they	can	use	‘rtry_exclude()’	
to	exclude	the	data	without	geolocation	 information.	Afterward,	
data	exploration	is	used	to	verify	the	datasets—ensure	all	neces-
sary	 information	 is	 retained	 and	 all	 unnecessary	 information	 is	
removed.

Example 2: Filtering data from healthy individuals
The	 second	 example	 involves	 filtering	 the	 dataset	 to	 obtain	 only	
healthy	 individuals	 based	 on	 the	 ‘plantStatus’	 column	 within	 the	
NEON	 plant	 trait	 dataset.	 Again,	 data	 exploration	 with	 ‘rtry_ex-
plore()’	is	essential	to	identify	the	criteria	for	data	filtering.	This	time,	
exploration	 focuses	 on	 the	 columns	 ‘siteID’,	 ‘plotID’,	 ‘subplotID’,	

‘scientificName’,	and	‘plantStatus’,	allowing	users	to	gain	insights	into	
the	different	plant	physical	statuses,	and	the	physical	status	distribu-
tion	among	sites	and	species.	Sorting	the	exploration	results	by	sci-
entific	names	enhances	clarity.	By	inspecting	the	exploration	result,	
users	have	an	overview	of	the	different	plant	physical	statuses	(e.g.,	
“OK”,	 “Disease	 damaged”,	 and	 “Insect	 damaged”)	 associated	 with	
each	species	within	the	datasets.	These	serve	as	keywords	for	filter-
ing	healthy	plant	records	through	the	‘rtry_select_row’	and	‘rtry_ex-
clude’	 functions.	 Another	 data	 exploration	 is	 recommended	 after	
data	filtering	to	ensure	all	the	damaged	individuals	were	successfully	
removed,	and	only	healthy	ones	are	retained	in	the	dataset.

4.2.4  |  Dataset	export

Once	 the	data	preprocessing	 is	 completed,	 the	 ‘rtry_export’	 func-
tion	can	be	used	to	export	the	preprocessed	NEON	trait	data	 into	
comma-	separated	values	(.csv)	file.

explore the location information in the

full table to identify filtering criteria

df_explore_before <− rtry_
explore(fullTable,

siteID, pointID, stemDistance,

stemAzimuth,

sortBy = pointID)
method 1: selecting only the data with

geolocation information

criteria: none of the three geolocation

columns has "NA" value

fullTable_geoloc <− rtry_select_
row(fullTable,

(!is.na(pointID) & !is.na(stemDistance) &

!is.na(stemAzimuth)))

method 2: excluding the data without

geolocation information

criteria: either one of the three

geolocation columns has "NA" value

fullTable_geoloc <− rtry_
exclude(fullTable,

(is.na(pointID) | is.na(stemDistance) |

is.na(stemAzimuth)),

baseOn = sampleID)
explore the location information in the

full table again

df_explore_after <- rtry_
explore(fullTable_geoloc,

siteID, pointID, stemDistance,

stemAzimuth,

sortBy = pointID)

explore the relevant columns in the full

table to identify filtering criteria

df_explore_before <− rtry_
explore(fullTable_geoloc,

siteID, plotID, subplotID, scientificName,

plantStatus,

sortBy = scientificName)
method 1: selecting only the healthy

individuals

criteria: plantStatus equals to OK

fullTable_geoloc_healthy <− rtry_select_
row(fullTable_geoloc,

(plantStatus == "OK"))
method 2: excluding the damaged

individuals

criteria: plantStatus equals either

Disease damaged or Insect damaged

fullTable_geoloc_healthy <− rtry_
exclude(fullTable_geoloc,

(plantStatus %in% c("Disease damaged",

"Insect damaged")),

baseOn = sampleID)
explore the relevant columns in the full

table

df_explore_after <− rtry_
explore(fullTable_geoloc_healthy,

siteID, plotID, subplotID, scientificName,

plantStatus,

sortBy = scientificName)

16 of 17  |     LAM et al.

5  |  CONCLUSION

This	 paper	 introduces	 the	 open-	source	 R	 package	 ‘rtry’	 from	 a	
user	perspective.	By	offering	a	curated	selection	of	functions	es-
sential	 to	 data	 preprocessing	 tasks,	 ‘rtry’	 empowers	 users	 of	 all	
skill	 levels	 in	 R	 and	 plant	 traits	 to	 efficiently	 explore,	 filter,	 and	
reformat	 trait	 records	based	on	their	needs	without	delving	 into	
the	 complex	ecosystem	of	R	packages.	 The	 accessible	 and	 com-
prehensive	 package	 documentation	 and	 example	 workflows	 on	
various	platforms	ensure	that	even	users	unfamiliar	with	R	or	the	
inherent	data	 structure	of	 trait	data	can	easily	navigate	and	uti-
lize	 its	 functionalities	 to	 streamline	 the	 preprocessing	workflow	
of	plant	trait	data.

We	 demonstrate	 the	 versatility	 of	 ‘rtry’	 extends	 beyond	 the	
TRY	database,	showcasing	its	applicability	in	preprocessing	plant	
trait	 datasets	 acquired	 from	 other	 platforms	 such	 as	 the	NEON	
program.	This	illustrates	the	adaptability	and	utility	of	‘rtry’	across	
diverse	 datasets,	 reinforcing	 its	 role	 in	 ecological	 research	 and	
data	analysis.

In	conclusion,	‘rtry’	offers	researchers	a	robust	and	user-	friendly	
solution	within	a	single	package	for	preprocessing	plant	trait	data.	
Its	 accessibility,	 functionality,	 and	 versatility	make	 it	 a	 useful	 tool	
for	 researchers	 aiming	 to	harness	 the	potential	of	 their	plant	 trait	
datasets.

AUTHOR CONTRIBUTIONS
Olee Hoi Ying Lam:	Conceptualization	(equal);	data	curation	(equal);	
methodology	 (equal);	 project	 administration	 (supporting);	 soft-
ware	 (lead);	 validation	 (lead);	 visualization	 (lead);	 writing	 –	 origi-
nal	 draft	 (lead);	 writing	 –	 review	 and	 editing	 (lead).	 Jens Kattge:
Conceptualization	 (equal);	 data	 curation	 (equal);	 funding	 acquisi-
tion	(equal);	methodology	(equal);	project	administration	(lead);	re-
sources	(equal);	software	(supporting);	supervision	(lead);	validation	
(supporting);	visualization	(supporting);	writing	–	original	draft	(sup-
porting);	writing	–	review	and	editing	(equal).	Susanne Tautenhahn:
Methodology	 (supporting);	 software	 (supporting);	 validation	 (sup-
porting);	 writing	 –	 review	 and	 editing	 (equal).	Gerhard Boenisch:
Data	curation	(equal);	methodology	(supporting);	resources	(equal);	
validation	 (supporting);	 writing	 –	 review	 and	 editing	 (equal).	Kyle
R. Kovach:	Methodology	 (supporting);	 software	 (supporting);	 vali-
dation	 (supporting);	writing	–	 review	 and	 editing	 (equal).	Philip A.
Townsend:	Funding	acquisition	(equal);	writing	–	review	and	editing	
(equal).

ACKNOWLEDG MENTS
J.K.	 and	 P.A.T.	 gratefully	 acknowledge	 the	 German	 Centre	 for	
Integrative	 Biodiversity	 Research	 (iDiv)	 synthesis	 project	 sTRAITS	
for	 its	 intellectual	 contribution	 to	 this	work.	 The	 authors	 express	
their	gratitude	to	the	editor	and	two	anonymous	reviewers	whose	
insightful	comments	and	constructive	criticism	greatly	contributed	
to	the	improvement	of	this	manuscript.

FUNDING INFORMATION
P.A.T.	and	K.R.K.	acknowledge	funding	support	from	NSF	Macrosystems	
Biology	and	NEON-	Enabled	Science	(MSB-	NES)	award	DEB	1638720	
and	 NSF	 ASCEND	 Biology	 Integration	 Institute	 (BII)	 award	 DBI	
2021898.	Additional	support	for	O.H.Y.L.	and	P.A.T.	was	provided	by	
UW-	Madison	 USDA	Hatch	 award	WIS03079	 and	NASA	 AIST	 grant	
80NSSC20K0208.	O.H.Y.L.	was	funded	by	the	Max	Planck	Institute	for	
Biogeochemistry	(MPI-	BGC)	for	part	of	the	development	process.

CONFLIC T OF INTERE S T S TATEMENT
The	authors	declare	no	conflict	of	interest.

DATA AVAIL ABILIT Y S TATEMENT
The	R	package	‘rtry’	is	available	from	CRAN	(https://	cran.	r-		proje	ct.	
org/	packa	ge=	rtry)	 and	 the	 development	 version	 can	 be	 accessed	
at	 the	GitHub	 repository	 (https://	github.	com/	MPI-		BGC-		Funct	ional	
-		Bioge	ograp	hy/	rtry).	 Comprehensive	 package	 documentation	 and	
vignettes	describing	detailed	data	preprocessing	workflows	can	be	
accessed	from	CRAN	(https://	cran.	r-		proje	ct.	org/	packa	ge=	rtry)	and	
the	 GitHub	 Wiki	 (https://	github.	com/	MPI-		BGC-		Funct	ional	-		Bioge	
ograp	hy/	rtry/	wiki).	 The	 data	 in	 example	 workflows	 are	 provided	
within	 the	 ‘rtry’	 package	 and	 the	NEON	data	 portal	 (https://	data.	
neons	cience.	org/	data-		produ	cts/	DP1.	10026.	001).

DATA LICENSE
The	‘rtry’	package	is	distributed	under	the	CC	BY	4.0	license	(https://
creat	iveco	mmons.	org/	licen	ses/	by-		nc-		nd/4.	0/),	 with	 a	 remark	 that	
the	(reverse)	geocoding	functions	provided	within	the	package	used	
the	 Nominatim	 developed	 with	 OpenStreetMap	 (OSM).	 Although	
the	OSM	API	and	the	data	provided	are	free	to	use	for	any	purpose,	
including	commercial	use,	they	are	governed	by	the	Open	Database	
License	(ODbL;	https://	wiki.	osmfo	undat	ion.	org/	wiki/	Licence).

ORCID
Olee Hoi Ying Lam https://orcid.org/0000-0002-7731-3246
Jens Kattge https://orcid.org/0000-0002-1022-8469
Susanne Tautenhahn https://orcid.org/0000-0002-2753-3443
Kyle R. Kovach https://orcid.org/0000-0002-1498-6363
Philip A. Townsend https://orcid.org/0000-0001-7003-8774

R E FE R E N C E S
Barrett,	T.,	Dowle,	M.,	Srinivasan,	A.,	Gorecki,	 J.,	Chirico,	M.,	Hocking,	

T.,	Stetsenko,	P.,	Short,	T.,	Lianoglou,	S.,	Antonyan,	E.,	Bonsch,	M.,	
Parsonage,	H.,	Ritchie,	S.,	Ren,	K.,	Tan,	X.,	Saporta,	R.,	Seiskari,	O.,	

export the preprocessed NEON data into a

.csv file

output_file <− file.path(NEON_output,
paste0(basename(NEON_output), ".csv"))

rtry_export(fullTable_geoloc_healthy,

output_file)

https://cran.r-project.org/package=rtry
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://data.neonscience.org/data-products/DP1.10026.001
https://data.neonscience.org/data-products/DP1.10026.001
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://wiki.osmfoundation.org/wiki/Licence
https://orcid.org/0000-0002-7731-3246
https://orcid.org/0000-0002-7731-3246
https://orcid.org/0000-0002-1022-8469
https://orcid.org/0000-0002-1022-8469
https://orcid.org/0000-0002-2753-3443
https://orcid.org/0000-0002-2753-3443
https://orcid.org/0000-0002-1498-6363
https://orcid.org/0000-0002-1498-6363
https://orcid.org/0000-0001-7003-8774
https://orcid.org/0000-0001-7003-8774

    |  17 of 17LAM et al.

Dong,	X.,	Lang,	M.,	…	Czekanski,	M.	 (2024).	data.table:	Extension	
of	 “data.frame”	 (1.15.0)	 [Computer	 software].	 https://	cran.	r-		proje	
ct.	org/	web/	packa	ges/	data.	table	/

Bengtsson,	 H.	 (2023).	 R.utils:	 Various	 Programming	 Utilities	 (2.12.3)	
[Computer	 software].	 https://	cran.	r-		proje	ct.	org/	web/	packa	ges/R.	
utils/		index.	html

Boenisch,	 G.,	 &	 Kattge,	 J.	 (2023).	 TRY	 Plant	 Trait	 Database	Website.	
https://	www.	try-		db.	org/

Díaz,	S.,	Kattge,	J.,	Cornelissen,	J.	H.	C.,	Wright,	I.	J.,	Lavorel,	S.,	Dray,	S.,	
Reu,	B.,	Kleyer,	M.,	Wirth,	C.,	Colin	Prentice,	I.,	Garnier,	E.,	Bönisch,	
G.,	Westoby,	M.,	Poorter,	H.,	Reich,	P.	B.,	Moles,	A.	T.,	Dickie,	 J.,	
Gillison,	A.	N.,	Zanne,	A.	E.,	…	Gorné,	L.	D.	(2016).	The	global	spec-
trum	of	plant	form	and	function.	Nature,	529(7585),	7585.	https://
doi.	org/	10.	1038/	natur	e16489

Garnier,	 E.,	 Stahl,	 U.,	 Laporte,	 M.-	A.,	 Kattge,	 J.,	 Mougenot,	 I.,	 Kühn,	
I.,	 Laporte,	 B.,	 Amiaud,	 B.,	 Ahrestani,	 F.	 S.,	 Bönisch,	 G.,	 Bunker,	
D.	 E.,	 Cornelissen,	 J.	 H.	 C.,	 Díaz,	 S.,	 Enquist,	 B.	 J.,	 Gachet,	 S.,	
Jaureguiberry,	 P.,	 Kleyer,	M.,	 Lavorel,	 S.,	Maicher,	 L.,	 …	 Klotz,	 S.	
(2017).	Towards	a	thesaurus	of	plant	characteristics:	An	ecological	
contribution.	 Journal of Ecology,	105(2),	 298–309.	https:// doi. org/
10.	1111/	1365-		2745.	12698	

Kattge,	 J.,	 Bönisch,	G.,	Díaz,	 S.,	 Lavorel,	 S.,	 Prentice,	 I.	 C.,	 Leadley,	 P.,	
Tautenhahn,	S.,	Werner,	G.	D.	A.,	Aakala,	T.,	Abedi,	M.,	Acosta,	A.	T.	
R.,	Adamidis,	G.	C.,	Adamson,	K.,	Aiba,	M.,	Albert,	C.	H.,	Alcántara,	
J.	M.,	Alcázar,	C.,	Aleixo,	 I.,	Ali,	H.,	…	Wirth,	C.	 (2020).	TRY	plant	
trait	database—Enhanced	coverage	and	open	access.	Global Change
Biology,	26(1),	119–188.	https:// doi. org/ 10. 1111/ gcb. 14904

Kattge,	 J.,	Díaz,	 S.,	 Lavorel,	 S.,	 Prentice,	 I.	 C.,	 Leadley,	 P.,	 Bönisch,	G.,	
Garnier,	E.,	Westoby,	M.,	Reich,	P.	B.,	Wright,	 I.	 J.,	Cornelissen,	J.	
H.	 C.,	 Violle,	 C.,	Harrison,	 S.	 P.,	 van	Bodegom,	 P.	M.,	 Reichstein,	
M.,	Enquist,	B.	J.,	Soudzilovskaia,	N.	A.,	Ackerly,	D.	D.,	Anand,	M.,	
…	Wirth,	C.	 (2011).	TRY—A	global	database	of	plant	 traits.	Global
Change Biology,	17(9),	2905–2935.	https://	doi.	org/	10.	1111/j.	1365-		
2486.	2011.	02451.	x

Kattge,	J.,	Ogle,	K.,	Bönisch,	G.,	Díaz,	S.,	Lavorel,	S.,	Madin,	J.,	Nadrowski,	
K.,	Nöllert,	S.,	Sartor,	K.,	&	Wirth,	C.	(2011).	A	generic	structure	for	

plant	trait	databases.	Methods in Ecology and Evolution,	2(2),	202–
213. https://	doi.	org/	10.	1111/j.	2041-		210X.	2010.	00067.	x

Madin,	J.,	Bowers,	S.,	Schildhauer,	M.,	Krivov,	S.,	Pennington,	D.,	&	Villa,	
F.	 (2007).	An	ontology	 for	describing	 and	 synthesizing	ecological	
observation	data.	Ecological Informatics,	2(3),	279–296.	https:// doi.
org/	10.	1016/j.	ecoinf.	2007.	05.	004

Mungall,	C.	J.,	Gkoutos,	G.	V.,	Smith,	C.	L.,	Haendel,	M.	A.,	Lewis,	S.	E.,	
&	Ashburner,	M.	 (2010).	 Integrating	phenotype	ontologies	across	
multiple	 species.	 Genome Biology,	 11(1),	 R2.	 https:// doi. org/ 10.
1186/	gb-		2010-		11-		1-		r2

NEON.	(2016).	NEON	(National	Ecological	Observatory	Network)	Plant	
foliar	 traits	 (DP1.10026.001).	 https://	data.	neons	cience.	org/	data-		
produ	cts/	DP1.	10026.	001

NEON.	(2023).	NEON	Data	Portal.	https://	data.	neons	cience.	org/
Violle,	C.,	Navas,	M.-	L.,	Vile,	D.,	Kazakou,	E.,	 Fortunel,	C.,	Hummel,	 I.,	

&	Garnier,	E.	(2007).	Let	the	concept	of	trait	be	functional!	Oikos,	
116(5),	 882–892.	 https://	doi.	org/	10.	1111/j.	0030-		1299.	2007.	
15559.	x

Wickham,	H.,	François,	R.,	Henry,	L.,	Müller,	K.,	Vaughan,	D.,	Software,	
P.,	&	PBC.	 (2023).	dplyr:	A	Grammar	of	Data	Manipulation	 (1.1.4)	
[Computer	 software].	 https://	cran.	r-		proje	ct.	org/	web/	packa	ges/	
dplyr	/

Wickham,	H.,	Vaughan,	D.,	Girlich,	M.,	Ushey,	K.,	Software,	P.,	&	PBC.	
(2024).	tidyr:	Tidy	Messy	Data	(1.3.1)	[Computer	software].	https://
cran.	r-		proje	ct.	org/	web/	packa	ges/	tidyr	/

How to cite this article: Lam,	O.	H.	Y.,	Kattge,	J.,	Tautenhahn,	
S.,	Boenisch,	G.,	Kovach,	K.	R.,	&	Townsend,	P.	A.	(2024).	
‘rtry’:	An	R	package	to	support	plant	trait	data	preprocessing.	
Ecology and Evolution,	14,	e11292.	https://doi.org/10.1002/
ece3.11292

https://cran.r-project.org/web/packages/data.table/
https://cran.r-project.org/web/packages/data.table/
https://cran.r-project.org/web/packages/R.utils/index.html
https://cran.r-project.org/web/packages/R.utils/index.html
https://www.try-db.org/
https://doi.org/10.1038/nature16489
https://doi.org/10.1038/nature16489
https://doi.org/10.1111/1365-2745.12698
https://doi.org/10.1111/1365-2745.12698
https://doi.org/10.1111/gcb.14904
https://doi.org/10.1111/j.1365-2486.2011.02451.x
https://doi.org/10.1111/j.1365-2486.2011.02451.x
https://doi.org/10.1111/j.2041-210X.2010.00067.x
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1186/gb-2010-11-1-r2
https://doi.org/10.1186/gb-2010-11-1-r2
https://data.neonscience.org/data-products/DP1.10026.001
https://data.neonscience.org/data-products/DP1.10026.001
https://data.neonscience.org/
https://doi.org/10.1111/j.0030-1299.2007.15559.x
https://doi.org/10.1111/j.0030-1299.2007.15559.x
https://cran.r-project.org/web/packages/dplyr/
https://cran.r-project.org/web/packages/dplyr/
https://cran.r-project.org/web/packages/tidyr/
https://cran.r-project.org/web/packages/tidyr/
https://doi.org/10.1002/ece3.11292
https://doi.org/10.1002/ece3.11292

	‘rtry’: An R package to support plant trait data preprocessing
	Abstract
	1|INTRODUCTION
	1.1|A global database of plant traits—TRY
	1.2|Structure of datasets released from TRY

	2|THE ‘RTRY’ PACKAGE
	3|TRY DATA PREPROCESSING WORKFLOW USING ‘RTRY’
	3.1|Dataset import
	3.2|Dataset exploration
	3.3|Data combination
	3.4|Data filtering
	3.4.1|Filtering attributes (columns) from the dataset
	3.4.2|Filtering records (rows) from the dataset
	Example 1: Select relevant trait records and ancillary data
	Example 2: Remove all observations on non-mature plants
	Example 3: Remove outliers

	3.4.3|Removing duplicates

	3.5|Long-table to wide-table transformation
	3.6|Dataset export

	4|ADDITIONAL USE CASES USING ‘RTRY’
	4.1|Geocoding and reverse geocoding
	4.2|Preprocessing NEON plant foliar trait data
	4.2.1|Dataset import
	4.2.2|Data filtering and combination
	4.2.3|Dataset exploration and data filtering
	Example 1: Filtering data with geolocation information
	Example 2: Filtering data from healthy individuals

	4.2.4|Dataset export

	5|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	DATA LICENSE
	REFERENCES

