
Ecology and Evolution. 2024;14:e11292.	 ﻿	  | 1 of 17
https://doi.org/10.1002/ece3.11292

www.ecolevol.org

Received: 16 October 2023  | Revised: 12 March 2024  | Accepted: 5 April 2024
DOI: 10.1002/ece3.11292

R E S E A R C H A R T I C L E

‘rtry’: An R package to support plant trait data preprocessing

Olee Hoi Ying Lam1,2  | Jens Kattge2,3  | Susanne Tautenhahn2  |
Gerhard Boenisch2 | Kyle R. Kovach1  | Philip A. Townsend1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2024 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Department of Forest and Wildlife
Ecology, University of Wisconsin-
Madison, Russell Laboratories, Madison,
Wisconsin, USA
2Max Planck Institute for Biogeochemistry,
Jena, Germany
3German Centre for Integrative
Biodiversity Research (iDiv) Halle-Jena-
Leipzig, Leipzig, Germany

Correspondence
Olee Hoi Ying Lam, Department of
Forest and Wildlife Ecology, University of
Wisconsin-Madison, Russell Laboratories,
1630 Linden Dr, Madison, WI 53705, USA.
Email: hlam9@wisc.edu

Funding information
NSF Macrosystems Biology and
NEON-Enabled Science (MSB-NES)
award, Grant/Award Number: DEB
1638720; UW-Madison USDA Hatch
award, Grant/Award Number: WIS03079;
NASA AIST grant, Grant/Award Number:
80NSSC20K0208; NSF ASCEND Biology
Integration Institute (BII) award, Grant/
Award Number: DBI 2021898; Max Planck
Institute for Biogeochemistry

Abstract
Plant trait data are used to quantify how plants respond to environmental factors and
can act as indicators of ecosystem function. Measured trait values are influenced by
genetics, trade-offs, competition, environmental conditions, and phenology. These
interacting effects on traits are poorly characterized across taxa, and for many traits,
measurement protocols are not standardized. As a result, ancillary information about
growth and measurement conditions can be highly variable, requiring a flexible data
structure. In 2007, the TRY initiative was founded as an integrated database of plant
trait data, including ancillary attributes relevant to understanding and interpreting
the trait values. The TRY database now integrates around 700 original and collec-
tive datasets and has become a central resource of plant trait data. These data are
provided in a generic long-table format, where a unique identifier links different trait
records and ancillary data measured on the same entity. Due to the high number of
trait records, plant taxa, and types of traits and ancillary data released from the TRY
database, data preprocessing is necessary but not straightforward. Here, we present
the ‘rtry’ R package, specifically designed to support plant trait data exploration and
filtering. By integrating a subset of existing R functions essential for preprocessing,
‘rtry’ avoids the need for users to navigate the extensive R ecosystem and provides
the functions under a consistent syntax. ‘rtry’ is therefore easy to use even for begin-
ners in R. Notably, ‘rtry’ does not support data retrieval or analysis; rather, it focuses
on the preprocessing tasks to optimize data quality. While ‘rtry’ primarily targets TRY
data, its utility extends to data from other sources, such as the National Ecological
Observatory Network (NEON). The ‘rtry’ package is available on the Comprehensive
R Archive Network (CRAN; https://​cran.​r-​proje​ct.​org/​packa​ge=​rtry) and the GitHub
Wiki (https://​github.​com/​MPI-​BGC-​Funct​ional​-​Bioge​ograp​hy/​rtry/​wiki) along with
comprehensive documentation and vignettes describing detailed data preprocessing
workflows.

K E Y W O R D S
biodiversity, data cleaning, data preprocessing, plant trait, R package, TRY database

https://doi.org/10.1002/ece3.11292
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-7731-3246
https://orcid.org/0000-0002-1022-8469
https://orcid.org/0000-0002-2753-3443
https://orcid.org/0000-0002-1498-6363
https://orcid.org/0000-0001-7003-8774
http://creativecommons.org/licenses/by/4.0/
mailto:hlam9@wisc.edu
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki

2 of 17  |     LAM et al.

1  |  INTRODUC TION

Traits are characterized as quantities of entities (Entity-Quality
Model; Garnier et al., 2017; Mungall et al., 2010), and plant traits
are defined as the morphological, anatomical, physiological, bio-
chemical, and phenological characteristics of plants measurable
at the individual plant level (Violle et al., 2007). Traits reflect the
outcome of evolutionary, genetic, and community assembly pro-
cesses responding to abiotic and biotic environmental constraints
and determine how individuals perform and respond to environ-
mental factors. Traits thus provide a link from species richness to
functional diversity, which influences ecosystem properties and
how they affect human beings. To prevent the loss of biodiversity
and degradation of ecosystems, studies are increasingly focusing
on the collection and analysis of plant traits, which, for example,
have been selected as key observations in the context of the US
National Science Foundation's National Ecological Observatory
Network (NSF's NEON; https://​www.​neons​cience.​org) and the
Australian land ecosystem observatory (Terrestrial Ecosystem
Research Network; https://​www.​tern.​org.​au). Due to improved
availability, plant traits now extend the range of earth observa-
tions to the level of individual organisms, providing a link from
biodiversity to ecosystem function and modeling in the context of
rapid global changes (Kattge et al., 2020).

1.1  |  A global database of plant traits—TRY

In 2007, the TRY initiative (https://​www.​try-​db.​org) was launched,
aiming at developing a global database of plant traits to support
biodiversity research, functional biogeography, and modeling of
vegetation dynamics. The TRY database initiative received strong
support from the ecological community, who contributed many orig-
inal and collective datasets and has led to multiple updates (Kattge,
Díaz, et al., 2011). The current version of the TRY database (version
6), released in October 2022, is based on 696 datasets and contains
15.4 million trait records, accompanied by 43 million ancillary data
records, for 2661 traits and 305,000 plant taxa, mostly at the spe-
cies level. About 6.7 million trait records are georeferenced from
about 48,000 measurement sites worldwide (Figure 1). In 2015,
some TRY datasets became public, and since 2019 the data are
open access under a Creative Commons (CC)-BY license by default
(Kattge et al., 2020). As of today, the TRY initiative has served more
than 30,000 data requests (Figure 1), releasing over 4.5 billion trait
records in combination with 40 billion ancillary data records. The
TRY database has thus become a central resource for the ecological
community, allowing users from around the globe to retrieve plant
trait data based on selected traits and species or request individual

datasets via the data portal on the TRY website. Step-by-step in-
structions on how to register and request data from the TRY data-
base can be found on the GitHub Wiki of ‘rtry’: https://​github.​com/​
MPI-​BGC-​Funct​ional​-​Bioge​ograp​hy/​rtry/​wiki/​The-​TRY-​datab​ase#​
reque​st_​rtry_​data.

Through the data request process, users can navigate the intel-
lectual property guidelines of the database, review the description
of the requested traits and species, and ascertain the number of
trait measurements before sending out the request. Once the re-
quest is approved, users have the option to retrieve the dataset
from the portal whenever necessary. The data release notes pro-
vided with each data request (https://​www.​try-​db.​org/​TryWeb/​
TRY_​Data_​Relea​se_​Notes.​pdf) offer information on the general-
ities, data structure, column headers (Table 1) of the requested
dataset, and the identifiers for some of the widely used ancillary
data (‘DataID’). Additionally, users can access descriptions and
corresponding identifiers of traits (‘TraitName’ and ‘TraitID’) and
species (‘AccSpeciesName’ and ‘AccSpeciesID’) on the TRY data
explorer (https://​www.​try-​db.​org/​de/​de.​php). This information,
particularly the identifiers, is invaluable for the data preprocess-
ing tasks.

1.2  |  Structure of datasets released from TRY

Plant traits provide essential information about plant growth
strategies and adaptations to their environment as constrained
by genetic characteristics. As a consequence, individual trait
values can be broadly explained by multiple interacting factors:
macro-level genetics in a phylogenetic context (i.e., evolutionary
adaptations), micro-level genetics (i.e., selection), trait–trait cor-
relations, competition, and the abiotic and biotic environmental
conditions at provenance (i.e., ontogeny), during growth, and at
the time of measurement including phenology (Díaz et al., 2016;
Garnier et al., 2017; Kattge, Díaz, et al., 2011; Kattge, Ogle,
et al., 2011; Mungall et al., 2010; Violle et al., 2007). Not all of
these dependencies are well studied, and their interacting ef-
fects on traits are, for most taxa, poorly characterized. For these
reasons, the most useful trait data include ancillary data describ-
ing the conditions, i.e., under which the plants had grown and
traits were measured. Thus, the data structure to represent trait
data must include the relevant dependencies and allow for differ-
ent types of ancillary data.

The structure of TRY data releases is based on the extensible
observation ontology (OBOE; Madin et al., 2007) schema, imple-
mented in a generic entity-attribute-value model (Kattge, Ogle,
et al., 2011). The TRY database features a long-table structure
of trait records and ancillary data, with 27 columns (version 6;

T A X O N O M Y C L A S S I F I C A T I O N
Agroecology, Applied ecology, Biodiversity ecology, Biogeochemistry, Ecosystem ecology,
Functional ecology

https://www.neonscience.org
https://www.tern.org.au
https://www.try-db.org
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki/The-TRY-database#request_rtry_data
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki/The-TRY-database#request_rtry_data
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki/The-TRY-database#request_rtry_data
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/de/de.php

    |  3 of 17LAM et al.

Table 1). Different trait records and ancillary data measured on
the same entity are linked by a unique identifier (‘ObservationID’;
Figure 2). The TRY data release notes (https://​www.​try-​db.​org/​
TryWeb/​TRY_​Data_​Relea​se_​Notes.​pdf), distributed with each re-
lease from the TRY database, provide a more detailed overview
of this data structure. Due to the size of the TRY database—15.4
million trait records and 43 million ancillary data—this can result in
data releases of up to 58 million rows of trait records and ancillary
data. In addition, different attributes within the released datasets
are relevant for trait data filtering, i.e., trait names, species names,
ancillary data, units, and identifiers for duplicates and outliers.
Therefore, the process to obtain all relevant information for fur-
ther analyses and discard all inconsistent data is not straightfor-
ward and there is a high risk that not all information provided for
data selection is used to optimize data quality for the downstream
analyses.

This paper provides an overview of the ‘rtry’ package and
demonstrates its utility from a user perspective, underscoring its
potential as a valuable resource for researchers grappling with the
complexities of preprocessing plant trait data. By facilitating more
efficient and reliable data preprocessing tasks, ‘rtry’ aims to enhance
the quality of plant trait datasets for scientific inquiry.

2  |  THE ‘RTRY ’ PACK AGE

To assist users in preparing the potentially huge and complex plant
trait data for further analyses, the ‘rtry’ package (developed with R
version 4.0) was published in 2022 by the Functional Biogeography
group at the Max-Planck-Institute for Biogeochemistry in Jena.
The stable version is available via CRAN (https://​cran.​r-​proje​ct.​
org/​packa​ge=​rtry) and the development version is available at the
GitHub repository (https://​github.​com/​MPI-​BGC-​Funct​ional​-​Bioge​
ograp​hy/​rtry/​wiki), fostering transparency, collaboration, and con-
tinuous improvement.

Before using the ‘rtry’ package, users must install the package and
load it into the R environment. The installation process automatically
installs all required dependencies. Below are the commands for in-
stalling and loading the ‘rtry’ package from both CRAN and GitHub:

The ‘rtry’ package provides a set of functions for data preprocess-
ing, focusing on data exploration, selection, and removal, with appli-
cability across user levels—from beginners in R and plant trait data to
experts. Leveraging the long-table structure of data released from TRY
and its accompanying features (including harmonized names for spe-
cies (see data release notes; https://​www.​try-​db.​org/​TryWeb/​TRY_​
Data_​Relea​se_​Notes.​pdf), harmonized names for traits and ancillary
data, standardized units, and indicators for duplicates and outliers),
the package is designed to empower researchers with accessible and
user-friendly functionalities that aim at streamlining a basic start-to-
finish data preprocessing workflow. To accomplish this, ‘rtry’ adopts
robust functions from the R packages ‘data.table’ (ver. 1.14.8; Barrett
et al., 2024), ‘dplyr’ (ver. 1.1.2; Wickham et al., 2023), ‘tidyr’ (ver. 1.3.0;
Wickham et al., 2024), and ‘utils’ (Bengtsson, 2023) in building func-
tional commands that seamlessly align into one concise package.

install the 'rtry' package from CRAN

install.packages('rtry')

install the 'rtry' package from GitHub

library(devtools)

devtools::install_github("MPI-BGC-

Functional-Biogeography/rtry")

load the 'rtry' package

library(rtry)

F I G U R E 1 (Left) Cumulative numbers of datasets and publications (left axis), and data requests (right axis); Gray vertical bars indicate
the calls for data contribution, while the orange bar indicates the date of opening TRY to the public. (Right) Geographic coverage of
measurement sites (blue points) in TRY version 6 in the Mollweide projection.

https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://cran.r-project.org/package=rtry
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf

4 of 17  |     LAM et al.

By integrating a subset of existing R functions into one consis-
tent syntax, ‘rtry’ ensures compatibility and consistency across its
functions, enabling users of various skill levels to perform all nec-
essary preprocessing procedures without the need to navigate the
extensive R package ecosystem or have knowledge of various pack-
age syntaxes. For experienced R users, ‘rtry’ is complemented by
comprehensive documentation, offering references for advanced
preprocessing tasks. The documentation and function descriptions
are part of the ‘rtry’ CRAN package, provided on the ‘rtry’ GitHub
and also in the form of package vignettes which can be obtained via
the R command:

To avoid potential conflicts with existing R functions, the ‘rtry’
package utilizes a naming convention where each function be-
gins with the prefix ‘rtry_’ followed by the description of what the
specific function does. Each function is designed to perform one
specific data preprocessing task commonly used in plant trait data
preparation. This structured approach enables users to perform a
wide range of preprocessing tasks with precision and efficiency. As
well, functions are kept separate to maintain feasibility for different
use cases, i.e., users can use a sequence of multiple functions to suit
their needs (Figures 3 and 5). The ‘rtry’ package version 1.1 consists
of 16 functions (Table 2) which can be classified into six data pre-
processing steps: (1) dataset import, (2) dataset exploration, (3) data
combination, (4) data filtering, (5) long- to wide-table transforma-
tion, and (6) dataset export, as well as the additional functionality of
geocoding and reverse geocoding. Users can access the description
of individual functions directly within the R environment:

get an overview of the 'rtry' package

and the corresponding documentation

help(package = 'rtry')

name of all vignettes available

vignette(package = 'rtry')

calling one vignette

vignette('rtry-introduction')

TA B L E 1 Column headers and descriptions for TRY version 6
released data.a

Column Description

1. ‘LastName’ Surname of data contributor

2. ‘FirstName’ First name of data
contributor

3. ‘DatasetID’ Unique identifier of
contributed dataset

4. ‘Dataset’ Name of contributed dataset

5. ‘SpeciesName’ Original name of species

6. ‘AccSpeciesID’ Unique identifier of
consolidated species
name

7. ‘AccSpeciesName’ Consolidated species name

8. ‘ObservationID’ Unique identifier for each
observation in TRY

9. ‘ObsDataID’ Unique identifier for each
row in the TRY data table,
either trait record or
ancillary data

10. ‘TraitID’ Unique identifier for traits
(only if the record is a
trait)

11. ‘TraitName’ Name of trait (only if the
record is a trait)

12. ‘DataID’ Unique identifier for each
‘DataName’ (either sub-
trait or ancillary data)

13. ‘DataName’ Name of sub-trait or ancillary
data

14. ‘OriglName’ Original name of sub-trait or
ancillary data

15. ‘OrigValueStr’ Original value of trait or
ancillary data

16. ‘OrigUnitStr’ Original unit of trait or
ancillary data

17. ‘ValueKindName’ Value kind (single
measurement, mean,
median, etc.)

18. ‘OrigUncertaintyStr’ Original uncertainty

19. ‘UncertaintyName’ Kind of uncertainty (standard
deviation, standard error,
etc.)

20. ‘Replicates’ Number of replicates

21. ‘StdValue’ Standardized trait value:
available for frequent
continuous traits

22. ‘UnitName’ Standard unit: available for
frequent continuous traits

23. ‘RelUncertaintyPercent’ Relative uncertainty in %

24. ‘OrigObsDataID’ Unique identifier for
duplicate trait records

25. ‘ErrorRisk’ Indication for outlier trait
values: distance to mean
in standard deviations

Column Description

26. ‘Reference’ Reference to be cited if trait
record is used in analysis

27. ‘Comment’ Explanation for the
‘OriglName’ in the
contributed dataset

aNote that sometimes R may show a column 28, which should be empty.
This column is an artifact due to the different interpretations of column
separator by MySQL and R.

TA B L E 1 (Continued)

    |  5 of 17LAM et al.

F I G U R E 2 (Top) Intuitive implementation of the OBOE schema in a two-dimensional (2D) table, with observations in rows, and traits
and ancillary data in columns. (Bottom) Demonstration of the long-table format used within TRY data releases. The second observation
(row) in the top panel is provided as an example. The data release provides the unique identifiers for each data record (‘ObsDataID’), and
the observation (‘ObservationID’), the taxon of the entity, and identifiers, names, values, and units of trait records and ancillary data. Empty
cells for ‘TraitID's indicate that the entry is an ancillary datum. For clarity, the number of columns has been reduced compared to TRY data
releases.

F I G U R E 3 An overview of the general preprocessing workflow for TRY dataset using ‘rtry’.

6 of 17  |     LAM et al.

Acknowledging the complexity of preprocessing plant trait data,
‘rtry’ offers an optional argument ‘showOverview’ for most func-
tions. This optional argument provides users with a summarized
dataset overview (i.e., dimension and/or column names) after each
preprocessing step to enhance the usability and clarity of the ‘rtry’
package. By default, ‘showOverview’ is preset to ‘TRUE’, meaning
that the dataset overview will be displayed as part of the function
output, even when the users do not explicitly specify this argument.
When ‘showOverview’ is set to ‘FALSE’, the overview display will

be suppressed, allowing users to streamline their output and focus
solely on relevant preprocessing information and tasks.

3  |  TRY DATA PREPROCESSING
WORKFLOW USING ‘RTRY ’

With functionalities ranging from importing and exploring the data
to manipulating data using user-defined criteria and finally exporting
the preprocessed data, ‘rtry’ seamlessly facilitates data preprocess-
ing tailored to users' specific needs across programming levels. We
have outlined a general workflow for plant trait data preprocessing
based on ‘rtry’ functions to assist users in understanding and apply-
ing the package's functionalities (Figure 3). The detailed workflow
is available as package vignette, on CRAN, and on the GitHub Wiki.
This section explains each element of this workflow and the ‘rtry’
functions involved, in the context of the generalized data preproc-
essing steps provided in Table 2.

access the function description for a

function, e.g., rtry_import

including the usage and arguments of the

function

?rtry_import

TA B L E 2 List of functions inside ‘rtry’ version 1.1.

Data preprocessing step Function Description

Dataset import ‘rtry_import()’ Imports a text file (.txt) exported from the TRY database or comma-separated
values file (.csv)

Data exploration ‘rtry_explore()’ Groups the data based on the specified column names and provides an
additional column to show the total count of each group

Data combination ‘rtry_bind_col()’ Takes a sequence of data and combines them by columns

‘rtry_bind_row()’ Takes a sequence of data and combines them by rows

‘rtry_join_left()’ Merges two data frames based on a specified common column and returns all
records from the left data frame together with the matched records from the
right data frame, all records (rows) on the right that do not exist on the left
will be discarded

‘rtry_join_outer()’ Merges two data frames based on a specified common column and returns all
rows from both data, returning a joint table that contains all records (rows)
from both data frames

Data filtering ‘rtry_select_col()’ Selects the specified columns from the data

‘rtry_remove_col()’ Removes the specified columns from the data

‘rtry_select_row()’ Selects rows based on the specified criteria and the corresponding
‘ObservationID’ from the data

‘rtry_exclude()’ Excludes all records (rows) with the same value in the attribute specified in the
argument ‘baseOn’ if the specified criteria for excluding are fulfilled for one
of those records

‘rtry_select_anc()’ Obtains a unique list of ‘ObservationID’ from the data along with the selected
ancillary data (specified by ‘DataID’)

‘rtry_remove_dup()’ Removes the duplicates from the input data using the duplicate identifier
‘OrigObsDataID’ provided within the TRY data

Long- to wide-table
transformation

‘rtry_trans_wider()’ Transforms the long-table data format into a wide-table format

Data export ‘rtry_export()’ Exports the data frame as comma-separated values to a .csv file

Geocoding ‘rtry_geocoding()’ Uses Nominatim, a search engine for OpenStreetMap (OSM) dataa, to perform
geocoding, i.e., converting an address into coordinates (latitudes, longitudes)

‘rtry_revgeocoding()’ Uses Nominatim, a search engine for OpenStreetMap (OSM) dataa, to perform
reverse geocoding, i.e., converting coordinates (latitudes, longitudes) into an
address

aThe data provided by OSM are free to use for any purpose, including commercial use, and are governed by the distribution license ODbL.

    |  7 of 17LAM et al.

3.1  |  Dataset import

The first step of the data preprocessing workflow is always the import
of a dataset into the R environment. The ‘rtry_import’ function accepts
five arguments—‘input’, ‘separator’, ‘encoding’, ‘quote’, and ‘showOver-
view’. By default, the function imports tab-delimited text file (.txt), as
exported from the TRY database. However, users have the option to
modify the arguments for the separator and encoding to accommodate
various file formats, such as comma-separated values (.csv).

The ‘rtry’ package contains two small datasets requested from
the TRY database (‘data_TRY_15160’ and ‘data_TRY_15161’). To fa-
miliarize themselves with the data structure, users can inspect them
directly in a spreadsheet-style data viewer in RStudio and sort by
‘ObservationID’.

With this, users can explore this dataset, for example:

•	 For ‘ObservationID’ 94068, there are two ‘ObsDataID’ 1021243
and 1021245, with the first one belonging to the ‘TraitID’ 3115
and the latter ancillary data. Looking deeper into the ‘DataID’
and ‘DataName’, users can see that these data “SLA: petiole ex-
cluded” are measured within “growth chambers” and could be
eliminated later, depending on the research question.

•	 For ‘ObservationID’ 158137, users can see ancillary data with the
‘DataID’ 59, 60, 61, and 413. Looking further into the ‘ErrorRisk’
of the data “SLA: petiole excluded”, which is roughly 2.5, meaning

the observation is 2.5 standard deviations away from the mean.
This is probably a “good” value that users would want to keep later.
As well, the ‘OrigObsDataID’ is ‘NA’, meaning that this observation
is not a duplicate. Also, the “Plant developmental status” (‘DataID’
413) could be an important information for further processing.

However, it is impossible to do so for larger datasets, which leads
to the next data preprocessing step—dataset exploration.

3.2  |  Dataset exploration

The second step of the data preprocessing workflow is the explora-
tion of the dataset. Even though the TRY data release notes (https://​
www.​try-​db.​org/​TryWeb/​TRY_​Data_​Relea​se_​Notes.​pdf) provide
an overview of the data structure and column headers (Table 1) of
the requested dataset, they do not include the informational content
of the trait records and ancillary data, which makes it challenging for
preprocessing. The dataset exploration facilitated by the ‘rtry_ex-
plore’ function allows users to gain insights into the inherent traits,
species, and ancillary data, enabling informed decisions and evalua-
tion of the outcomes during preprocessing. Exploring the datasets
proactively before and after each data combination or filtering step
is recommended. This practice promotes data integrity and helps
prevent the accidental exclusion of valuable data.

The ‘rtry_explore’ function takes four arguments—‘input’,
‘…’, ‘sortBy’, and ‘showOverview’—and organizes the input into a
grouped data table based on the specified column names (‘…’). A
column displaying the total count within each group is provided as
additional information to the exploration. By default, the output is
grouped by the first attribute when ‘sortBy’ is not specified.

The following implementation of the ‘rtry_explore’ function
explores the traits and ancillary data within the imported dataset
(‘TRYdata’) with the user's preferences to sort the results based on
‘TraitID’. The resulting exploration output (‘TRYdata_explore’) pres-
ents all traits followed by the ancillary data (identified by the miss-
ing value—‘NA’—in ‘TraitName’ and ‘TraitID’). The main purpose of
this exploration is to obtain an overview of traits, and of ancillary
data and sub-traits (indicated by different ‘DataID’ under the same
‘TraitID’) available for data filtering.

import dataset released from TRY (.txt)

TRYdata <− rtry_import(<path_to_TRY_txt>)

import dataset with comma-separated

values (.csv)

suppress the display of dimension and

the column names of the imported data

data <− rtry_import(<path_to_csv>,
separator = ',',
encoding = 'UTF-8',
quote = '\"',
showOverview = FALSE)

open a spreadsheet-style data viewer in

RStudio for sample dataset (e.g., data_

TRY_15160)

View(data_TRY_15160)

group the input data (TRYdata) based on

DataID, DataName, TraitID, and TraitName

and sort the output by TraitID using the

sortBy argument

not show dimension and the column names

of the exploration result

TRYdata_explore <− rtry_explore(TRYdata,
 DataID, DataName, TraitID, TraitName,

 sortBy = TraitID,
 showOverview = FALSE)

https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf
https://www.try-db.org/TryWeb/TRY_Data_Release_Notes.pdf

8 of 17  |     LAM et al.

Data exploration can also be used to obtain the species infor-
mation for which data are available by including the column head-
ers ‘AccSpeciesID’ and/or ‘AccSpeciesName’ within the argument
‘…’. However, users should be aware that an exploration on species,
traits, and sub-traits simultaneously may result in a long list of re-
sults due to the potentially diverse dataset.

3.3  |  Data combination

Given the diverse origins of plant trait data, users frequently en-
counter the need to manage multiple datasets during preprocess-
ing. To facilitate this, ‘rtry’ provides four data combination functions,
namely ‘rtry_bind_col()’, ‘rtry_bind_row()’, ‘rtry_join_left()’, and ‘rtry_
join_outer()’. The visual interpretation of these functions is shown
in Figure 4.

The ‘rtry_bind_col’ and ‘rtry_bind_row’ functions take a list of
data frames (‘…’), enabling users to combine data frames either by
columns or by rows. Since these two functions do not consider a
common attribute, users must ensure the proper ordering of col-
umns, respectively, rows, before binding.

In contrast, the ‘rtry_join_left’ and ‘rtry_join_outer’ functions merge
two data frames (‘x’ and ‘y’) based on a common attribute (‘baseOn’).
The ‘rtry_join_left’ function returns the left data (‘x’) with the matched
records from the right data frame (‘y’), while the ‘rtry_join_outer’ func-
tion returns all records from both data frames (‘x’ and ‘y’).

3.4  |  Data filtering

A major goal of data preprocessing is data filtering. This function-
ality is especially crucial for datasets retrieved from the TRY data-
base, as they often contain more information than necessary for
user objectives and trait data inconsistent with planned analyses.
To avoid incorporating substantial data filtering in their downstream
analyses—which is possible but prone to errors and reduces compu-
tational efficiency—it is essential to extract (select) relevant infor-
mation or remove (exclude) irrelevant information beforehand. ‘rtry’

combine multiple TRY datasets (TRYdata1,

TRYdata2, TRYdata3) already imported into

R by row

TRYdata_combine <− rtry_bind_row(TRYdata1,
TRYdata2, TRYdata3)

merge the georeferenced information

(georef) to the dataset (TRYdata)

based on the common identifier

ObservationID

output all records in TRYdata with

additional columns containing the

georeferenced information

suppress overview display

TRYdata_georef <− rtry_join_left(TRYdata,
georef, baseOn = ObservationID,
showOverview = FALSE)

merge two datasets containing

coordinates (coord) and locations (loc)

based on the common identifier

ObservationID

it does not matter if certain

ObservationID occurs only in one dataset

georef <− rtry_join_outer(coor, loc,
baseOn = ObservationID)

F I G U R E 4 Visual interpretation of the four data combination functions provided by ‘rtry’.

    |  9 of 17LAM et al.

offers six functions to facilitate this data filtering process: ‘rtry_se-
lect_col()’, ‘rtry_remove_col()’, ‘rtry_select_row()’, ‘rtry_exclude()’,
‘rtry_select_anc()’, and ‘rtry_remove_dup()’.

3.4.1  |  Filtering attributes (columns)
from the dataset

In TRY version 6, the output table has 27 columns (Table 1), encom-
passing trait or ancillary data measurements and informational con-
tent recognizing the data contributors and contributed datasets.
To select only the relevant columns from the imported datasets,
users can employ either the ‘rtry_select_col’ or ‘rtry_remove_col’
function. These two functions accept three arguments—an im-
ported data frame (‘input’), a list of column names to be selected
or removed (‘…’), and ‘showOverview’. While ‘rtry_select_col()’ al-
lows users to explicitly select a list of columns to retain, ‘rtry_re-
move_col()’ removes the specified columns. In general, it is more
convenient to use the ‘rtry_remove_col’ function for removing
only a small fraction of the data frame. It is important to note that
the column containing unique identifiers for each observation
(‘ObservationID’) and for duplicate trait records (‘OrigObsDataID’)
from the TRY dataset should not be removed to ensure the proper
functionality of the later preprocessing steps, such as data selec-
tion and duplicate removal.

3.4.2  |  Filtering records (rows) from the dataset

The ‘rtry_select_row’ and ‘rtry_exclude’ functions allow users to se-
lect or exclude records (rows) for further analyses based on their
relevance or consistency. While the TRY database provides the trait
names and corresponding identifiers on the data explorer (https://​
www.​try-​db.​org/​de/​de.​php), it does not offer a comprehensive list
of the sub-traits or the ancillary data. Therefore, conducting data ex-
ploration using ‘rtry_explore()’ (Section 3.2) is essential beforehand
to obtain the informational content, such as the traits, sub-traits, and
ancillary data available within the datasets.

The ‘rtry_select_row’ function accepts five arguments—a data
frame (‘input’), criteria for selection (‘…’), and three optional ar-
guments ‘getAncillary’, ‘rmDuplicates’, and ‘showOverview’. This
function keeps the rows that fulfill the specified criteria (‘…’) from
the data frame (‘input’). Users can keep all ancillary data that
share the same unique identifiers for each observation in TRY
(‘ObservationID’) of the retained rows by setting the argument ‘ge-
tAncillary’ to ‘TRUE’. Additionally, users have the option to remove
duplicates from the datasets by setting ‘rmDuplicates’ to ‘TRUE’,
invoking the ‘rtry_remove_dup’ function, which will be introduced
later in this section.

Among all functions within ‘rtry’, ‘rtry_exclude()’ is considered to
be the most valuable when preprocessing plant trait data because it
provides flexible arguments to filter trait measurements and respec-
tive ancillary data. The ‘rtry_exclude’ function accepts four argu-
ments—a data frame (‘input’), criteria for exclusion (‘…’), the attribute
on which exclusion is based (‘baseOn’), and the optional argument
‘showOverview’. This function removes data from the data frame
(‘input’) based on the specified criteria (‘…’). Users are required to
explicitly set the argument ‘baseOn’ to an identifier that they see
fit. For example, when set to ‘ObservationID’, ‘rtry_exclude()’ re-
moves all records of the respective entities (indicated by the same
‘ObservationID’) from a data frame if the specified criterion for ex-
clusion is fulfilled for any record. Accordingly, if ‘baseOn’ is set to the

remove six columns from the imported

data (TRYdata)

TRYdata_simplified <- rtry_remove_
col(TRYdata,

LastName, FirstName, DatasetID, Dataset,

Reference, Comment)

F I G U R E 5 An overview of the general preprocessing workflow for NEON dataset using ‘rtry’.

https://www.try-db.org/de/de.php
https://www.try-db.org/de/de.php

10 of 17  |     LAM et al.

unique identifier of the consolidated species name (‘AccSpeciesID’),
all records of the corresponding species will be excluded if the cri-
terion is met for any one record of that species. Alternatively, when
‘baseOn’ is set to ‘ObsDataID’, the unique identifier for each record
or row in the TRY dataset, the function will exclude only the individ-
ual records for which the specified criterion is fulfilled.

Below are three examples of data selection and exclusion.
Detailed explanations and implementations can be found in the
package vignettes, on CRAN, and the GitHub Wiki.

Example 1: Select relevant trait records and ancillary data
This example selects only data from the complex plant trait data-
set considered relevant for further analyses. Users can explore the
dataset first to obtain an overview of the available traits and ancil-
lary data within the dataset, then identify the criteria for selecting
the relevant trait records and ancillary data for further preprocessing
and analyses.

Example 2: Remove all observations on non-mature plants
This example removes all non-mature plant observations while
keeping those measured from the mature plants. Through the
dataset exploration in Example 1, users learn that ‘DataID’ 413
provides information on plant developmental status or maturity.
Here, the ‘DataID’ 413 is used to perform another dataset explo-
ration, and the obtained values (‘OrigValueStr’) for plant maturity
are used to identify criteria for filtering. While ‘rtry_exclude()’
removes all records of the whole observation measured from a

non-mature plant, it is worth noting that this example also keeps
the observations where the developmental state is explicitly un-
known or is not provided (no ‘DataID’ 413 for the given observa-
tion), with the assumption that the measurements followed the
recommended measurement protocol—measuring traits on ma-
ture plants.

Example 3: Remove outliers
To remove the outliers identified during data integration of the
TRY database, users can take advantage of the column ‘ErrorRisk’
provided inside the data released from the database. The
‘ErrorRisk’ quantifies the maximum distance of the trait record
from a respective mean at the species, genus, or family level in
terms of standard deviation (a modified z-transformation; Kattge,
Díaz, et al., 2011; Kattge et al., 2020). After exploring the dataset
for potential outliers, this example filters the data with ‘ErrorRisk’

explore the traits (TraitID > 0) and
ancillary data (TraitID == NA) inside the
dataset (TRYdata)

TRYdata_explore <- rtry_explore(TRYdata,
 DataID, DataName, TraitID, TraitName,

 sortBy = TraitID)
select trait records related to leaf

area per leaf dry mass, i.e., TraitIDs

3115, 3116, 3117

and simultaneously select relevant

ancillary data (specified by DataID):

59 Latitude; 60 Longitude; 61 Altitude;

6601 Sampling date; 327 Exposition

413 Plant developmental status / plant

age / maturity / plant life stage

1961 Health status of plants (vitality);

113 Reference / source

TRYdata_select <- rtry_select_row(TRYdata,
TraitID %in% c(3115, 3116, 3117) | DataID

%in% c(59, 60, 61, 6601, 327, 413, 1961,

113))

subset of dataset (TRYdata) with only

the rows containing plant developmental

status (DataID 413)

TRYdata_subset <- rtry_select_row(TRYdata,
DataID %in% 413)

explore the different plant development

states within the data subset (TRYdata_

subset)

sort the exploration by OrigValueStr

to obtain the developmental states in

alphabetical order

note: no StdValue available for DataID

413, since developmental status is not a

continuous trait

TRYdata_subset <- rtry_explore(TRYdata_
subset,

 DataID, DataName, OrigValueStr,

OrigUnitStr,

 sortBy = OrigValueStr)
remove all observations (ObservationID)

that are measured on non-mature plants

criteria:

1. DataID equals 413 - Plant

developmental status / plant age /

maturity / plant life stage

2. OrigValueStr equals "juvenile"

or "saplings" (identified in dataset

exploration)

TRYdata_exclude <- rtry_exclude(TRYdata,
 (DataID %in% 413) & (OrigValueStr %in%

c("juvenile", "saplings")),

 baseOn = ObservationID)

    |  11 of 17LAM et al.

larger than or equal to 3.0. Note that this time the argument
‘baseOn’ is set to ‘ObsDataID’, as we intend to exclude only the
outliers for individual trait records while keeping the rest of the
observation which might have other relevant trait measurements
or ancillary information.

3.4.3  |  Removing duplicates

As of October 2022, the TRY database comprised 696 data-
sets from 1108 data contributors (Boenisch & Kattge, 2023).
To keep track of potential duplicate entries, a unique identifier
‘OrigObsDataID’ was assigned when there was a high probability
that the same trait records had previously been contributed to TRY.
This determination is based on the criteria: (1) same ‘TraitName’,
‘AccSpeciesName’, and ‘UnitName’, (2) similar ‘StdValue’—ac-
counting for rounding effects, and (3) not different geographic
coordinates, which were assessed using standardized latitude and
longitude (Kattge et al., 2020).

Within ‘rtry’, we provide the ‘rtry_remove_dup’ function for
users to easily remove the duplicates within a data frame (‘input’)
based on the identifier ‘OrigObsDataID’. While the dimension of
the resulting data frame can be suppressed by setting ‘showOver-
view’ to ‘FALSE’, the number of duplicates removed will still be
shown. Users should be aware that if the original, not duplicate,
trait record was not requested from TRY (e.g., if only public data
or specific datasets were requested from TRY and the original trait
record was part of the restricted data or another dataset), the du-
plicates identified by TRY will still be removed by this function,
resulting in data loss.

3.5  |  Long-table to wide-table transformation

Trait datasets can be structured in either long- or wide-table for-
mats. The data released from TRY are given in a long-table format,
which allows a consistent structure as different traits or ancillary data
are stored in separated rows (i.e., simply add or remove rows when
needed, instead of having empty columns for missing information).
The long-table format keeps this type of data in a denser format and is
more flexible for data storage. Yet, a wide-table format is often more
convenient for analyses as a tabular view is more straightforward to
visually interpret and assess. Therefore, the ‘rtry’ package provides the
‘rtry_trans_wider’ function to transform the preprocessed trait data
from long- to wide-table format for further analyses. This function ac-
cepts five arguments—a data frame (‘input’), the columns from which
the output column names and values are to be obtained (‘names_from’
and ‘values_from’), the optional argument to define the function ap-
plied to the output values when necessary (‘values_fn’), and whether
to display the dimension of the resulting wide-table (‘showOverview’).

Several preprocessing steps are necessary before performing the
long- to wide-table transformation on the TRY dataset. The first step
is to select only traits with numerical values and relevant columns (else
the attribute in ‘values_fn’ might cause error). Next, users can obtain
a list of relevant ancillary data from the original dataset as needed,
e.g., georeferencing information like latitude and longitude indicated
by ‘DataID's 59 and 60, respectively. The ‘rtry’ package provides the
‘rtry_select_anc’ function to facilitate this step. The ‘rtry_select_anc’
function takes three arguments—an imported data frame (‘input’), a
list of ‘DataID's of the ancillary data to be selected (‘…’), and the op-
tional argument ‘showOverview’. This function returns a unique list of
‘ObservationID’ and the corresponding ancillary data of interest. When
the ancillary data (latitude and longitude in this case) are extracted,
they can be merged to the numerical traits using 'rtry_join_left()' to
include the ancillary data in the resulting wide-table.

Once the data are prepared, transformation can be performed using
the ‘rtry_trans_wider’ function, as demonstrated below. To ensure suc-
cessful transformation when dealing with the potential existence of
multiple records for a single trait under one ‘ObservationID’ (e.g., mul-
tiple measurements of specific leaf area of one observation entity), we
recommend defining the argument ‘values_fn’ either by mean (‘mean’)
or, if more appropriate, by maximum (‘max’) or minimum (‘min’). If this
argument is not specified, trait records (same ‘TraitID’) with different
‘DataID's under the same ‘OberservationID’ will be displayed within
the same cell as text, causing errors in numerical data analyses.

explore the input data (TRYdata) based

on DataID, DataName, TraitID, TraitName,

and ErrorRisk

sort the output by ErrorRisk

TRYdata_explore <- rtry_explore(TRYdata,
 DataID, DataName, TraitID, TraitName,

ErrorRisk,

 sortBy = ErrorRisk)
remove outliers: individual trait

records (ObsDataID) identified with

ErrorRisk >= 3
while keeping the rest of the

observations in the dataset (TRYdata)

TRYdata_exclude <- rtry_exclude(TRYdata,
 ErrorRisk >= 3,
 baseOn = ObsDataID)

remove the duplicates within the dataset

(TRYdata)

TRYdata_rm_dup <− rtry_remove_dup(TRYdata)

12 of 17  |     LAM et al.

3.6  |  Dataset export

The ‘rtry_export’ function can be used to save the preprocessed
data in their final structure (either in long- or wide-table format) as
comma-separated-values into a .csv file at a specified directory. This
function takes four arguments—the data to be saved (‘data’), the out-
put path (‘output’), and two optional arguments that by default insert
double quotes around any character or factor columns (‘quote’), and
sets the file to “UTF-8” encoding (‘encoding’).

4  |  ADDITIONAL USE C A SES USING
‘RTRY ’

While the TRY database serves as a central resource for plant trait
data, researchers often draw from diverse sources to enrich their
analyses. Building upon the foundational functionality of ‘rtry’ in
plant trait data preprocessing, we have provided additional ex-
ample workflows that encompass the geocoding and reverse ge-
ocoding procedures and the application of ‘rtry’ to data acquired
from sources other than the TRY database. The detailed exam-
ple workflow for (reverse) geocoding can be found as a package
vignette on CRAN, whereas the ‘rtry’ GitHub Wiki provides the
vignettes for geocoding and the preprocessing workflow for the
NEON plant trait data.

4.1  |  Geocoding and reverse geocoding

Georeferencing is necessary to assess the plausibility of location
information, filter data using a common coordinate system, esti-
mate geographic patterns, link to georeferenced—e.g., environ-
mental—data, and address the spatial autocorrelation of the plant
trait data.

There are two functions within ‘rtry’ to assist users with geoc-
oding (‘rtry_geocoding()’ derives latitude and longitude for a given
location name) and reverse geocoding (‘rtry_revgeocoding()’ de-
rives the location name from provided latitude and longitude)
for a list of locations or coordinates in the WGS84 Coordinate
System. These functions rely on Nominatim, a search engine for
OpenStreetMap (OSM) data. The data provided by the OSM are
freely available for any purpose, including commercial use, and
are governed by the Open Database License (ODbL; https://​wiki.​

export the preprocessed data (TRYdata)

to a specific directory (e.g., in the

temporary directory)

rtry_export(TRYdata, file.path(tempdir(),

"TRYdata_preprocessed.csv"))

provide the standardized trait values per

observation, together with species names

and the georeferences of the sampling

site (59: Latitude and 60: Longitude), if

available,

in a wide table format; several steps are

necessary:

1. select only the trait records that

have standardized numeric values from the

dataset (TRYdata)

the complete.cases() is used to ensure

the cases are complete, i.e. have no

missing values

num_traits <- rtry_select_row(TRYdata,
complete.cases(TraitID) & complete.

cases(StdValue))

2. select the relevant columns for

transformation, while suppress the data

overview display

num_traits <- rtry_select_col(num_traits,
ObservationID, AccSpeciesID,

AccSpeciesName, TraitID, TraitName,

StdValue, UnitName,

showOverview = FALSE)
3. extract latitude (DataID 59) and

longitude (DataID 60) of each observation

within TRYdata

while suppress the data overview display

georef <- rtry_select_anc(TRYdata,
 59, 60,

 showOverview = FALSE)
4. merge the relevant data frames based

on the ObservationID using rtry_join_left()

num_traits_georef <- rtry_join_left(num_
traits, georef, baseOn = ObservationID)
5. perform wide table transformation of

TraitID, TraitName, and UnitName based on

ObservationID, AccSpeciesID, and

AccSpeciesName with cell values from StdValue

if several records with StdValue were

provided for one trait with the same

ObservationID, AccSpeciesID, and

AccSpeciesName, calculate their mean

num_traits_georef_wider <- rtry_trans_
wider(num_traits_georef,

 names_from = c(TraitID, TraitName,
UnitName),

 values_from = c(StdValue),
 values_fn = list(StdValue = mean))

https://wiki.osmfoundation.org/wiki/Licence

    |  13 of 17LAM et al.

osmfo​undat​ion.​org/​wiki/​Licence). Users should note that an abso-
lute maximum of one request per second (no heavy usage) and a
valid email address to identify the request are required when using
the OSM service as part of the Nominatim Usage Policy (details
can be found on: https://​opera​tions.​osmfo​undat​ion.​org/​polic​ies/​
nomin​atim/​).

While the example workflow provides the script for obtaining
the coordinates or locations from a list of corresponding infor-
mation, these two functions can also be applied to individual en-
tries—‘rtry_geocoding()’ requires a string of an address (‘address’)
and ‘rtry_revgeocoding()’ requires a data frame containing latitude
and longitude (‘lat_lon’).

4.2  |  Preprocessing NEON plant foliar trait data

The National Ecological Observatory Network (NEON) program is
a research platform funded by the United States National Science
Foundation (NSF) that provides free and long-term data across bi-
omes comprising the continental U.S. and Hawaii on key ecological
metrics as a basis to discover and understand the impacts of cli-
mate change (NEON, 2023). We have chosen the plant foliar traits
dataset (product ID: DP1.10026.001) from the NEON data portal

(NEON, 2016) to demonstrate a use case of the ‘rtry’ package out-
side of plant trait data from TRY. The NEON plant foliar traits dataset
contains trait measurements (leaf mass per area, leaf water content,
chlorophyll, carbon and nitrogen concentrations and stable isotopes,
major and minor elements, and lignin) of sun-lit canopy foliage at
either individual (woody plants) or community (herbaceous plants)
levels (NEON, 2016).

While the detailed example is available on the GitHub Wiki,
this section provides an overview of the preprocessing steps using
‘rtry’ for NEON data (Figure 5). The objective is to demonstrate the
versatility of the ‘rtry’ package beyond the TRY database and illus-
trate how users can seamlessly chain together various functions
within the package to suit the needs of cross-cutting and integra-
tive analyses.

4.2.1  |  Dataset import

Upon downloading the NEON dataset, users receive multiple .csv
files, each representing a different data table. Information about
each data table can be found in the user guide (https://​data.​neons​
cience.​org/​data-​produ​cts/​DP1.​10026.​001#​docum​entation). Users
can employ the ‘rtry_import’ function to import the NEON dataset
into the R workspace.

4.2.2  |  Data filtering and combination

Similar to the TRY data, the NEON plant trait data also contain more
information than necessary for data preprocessing. For demonstra-
tion purposes, the script below utilizes the ‘rtry_select_col’ function

convert the address of MPI-BGC ("Hans-

Knoell-Strasse 10, 07745 Jena, Germany")

into coordinates in latitudes and

longitudes

note: please change to your own email

address when executing this function

rtry_geocoding("Hans-Knoell-Strasse 10,

07745 Jena, Germany",

 email = "john.doe@example.com")

convert the coordinates (must be a data

frame) of MPI-BGC (50.9101, 11.56674) into

an address

note: please change to your own email

address when executing this function

rtry_revgeocoding(data.frame(50.9101,

11.56674),

 email = "john.doe@example.com")

for the list of NEON data within the

NEON_output/stackedFiles directory

read the .csv files and assign them to a

corresponding variable

for (i in list.files(path = paste0(NEON_
output, "/stackedFiles") -> ipath,
pattern = "vst|cfc")){
assign(file_path_sans_ext(i),

rtry_import(paste0(ipath, "/", i),

separator = ",",
encoding = "UTF-8",
quote = "\"",
showOverview = FALSE))
}

https://wiki.osmfoundation.org/wiki/Licence
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://data.neonscience.org/data-products/DP1.10026.001#documentation
https://data.neonscience.org/data-products/DP1.10026.001#documentation
mailto:john.doe@example.com
mailto:john.doe@example.com

14 of 17  |     LAM et al.

to obtain the data columns relevant to the field collection of fo-
liar samples (‘cfc_fieldData’), the location information of individual
stems (‘vst_mappingandtagging’), and the leaf mass per area (LMA)
measurement of the foliar samples (‘cfc_LMA’).

Next, the ‘rtry_join_left’ function is used to merge the mapping
and tagging information and the trait information (e.g., LMA) with the
field data, using the unique identifiers ‘individualID’ and ‘sampleID’
within the NEON data tables. Information regarding which identifier
to use for merging can also be found in the user guide provided by
NEON. It is important to note that duplicates may be present within
the ‘vst_mappingandtagging’ table due to certain individuals being
remapped occasionally to address geolocation issues. To address
this, the ‘unique’ function is introduced to the mapping and tagging
information during merging.

4.2.3  |  Dataset exploration and data filtering

At this point, users have obtained a single table that contains all
traits and georeferenced information necessary to proceed. Users
can then use the ‘rtry_explore’ function to review the dataset to
identify criteria for excluding observations, non-representative
data, or outliers. The identified criteria can be used to select and
exclude any observations accordingly using the ‘rtry_select_row’
or ‘rtry_exclude’ functions. It is highly recommended to use the
‘rtry_explore’ function again after each filtering step to verify that
only the intended unnecessary data were removed and that all
desired useful data remain. This iterative approach to data explo-
ration and filtering ensures the integrity of the dataset and the
reliability of subsequent analyses. Here, we provide two examples
for this preprocessing task.

Example 1: Filtering data with geolocation information
The first example is to obtain data that have geolocation informa-
tion, indicated with the identifier for a point location (‘pointID’),
the horizontal distance from stem to the ‘pointID’ location (‘stem-
Distance’), and the azimuth relative to True North between stem
and ‘pointID’ location (‘stemAzimuth’). Within the NEON data,
each record has a plot-level location which may be sufficient for
some applications. For more precise locations of individual stems,
precise coordinates must be calculated using the mapping and tag-
ging information. To do so, users can begin by assessing how many
records lack the required mapping and tagging information using
the ‘rtry_explore’ function. The column ‘siteID’ is also used for
a better understanding of the datasets during this data explora-
tion, in addition to the three geolocation location columns that are

select the necessary columns from the

corresponding data table

1. field data

fieldData <− rtry_select_col(cfc_
fieldData,

individualID, sampleID, namedLocation,

domainID, siteID, plotID,

subplotID, geodeticDatum, decimalLatitude,

decimalLongitude,

elevation, sampleType, taxonID,

scientificName, plantStatus)

2. geolocation information for finding

the stem locations of woody sampled plants

mappingAndTagging <− rtry_select_col(vst_
mappingandtagging,

individualID, pointID, stemDistance,

stemAzimuth)

3. leaf mass per area (LMA) of foliar

samples

lma <- rtry_select_col(cfc_LMA,
sampleID, lmaSampleID, lmaSampleCode,

dryMass, scannedLeafNumber,

leafArea, leafMassPerArea,

dryMassFraction)

join field data with the mapping

and tagging information based on the

identifier (individualID)

fullTable <− rtry_join_left(fieldData,
unique(mappingAndTagging),

baseOn = individualID)
join the merged data with the trait

records, i.e., lma, sample on the sampleID

fullTable <− rtry_join_left(fullTable,
lma, baseOn = sampleID)

    |  15 of 17LAM et al.

required for calculating the precise location of an individual stem.
Once the existence of missing geolocation information is con-
firmed, users can either use ‘rtry_select_row()’ to select only the
data with geolocation information, or they can use ‘rtry_exclude()’
to exclude the data without geolocation information. Afterward,
data exploration is used to verify the datasets—ensure all neces-
sary information is retained and all unnecessary information is
removed.

Example 2: Filtering data from healthy individuals
The second example involves filtering the dataset to obtain only
healthy individuals based on the ‘plantStatus’ column within the
NEON plant trait dataset. Again, data exploration with ‘rtry_ex-
plore()’ is essential to identify the criteria for data filtering. This time,
exploration focuses on the columns ‘siteID’, ‘plotID’, ‘subplotID’,

‘scientificName’, and ‘plantStatus’, allowing users to gain insights into
the different plant physical statuses, and the physical status distribu-
tion among sites and species. Sorting the exploration results by sci-
entific names enhances clarity. By inspecting the exploration result,
users have an overview of the different plant physical statuses (e.g.,
“OK”, “Disease damaged”, and “Insect damaged”) associated with
each species within the datasets. These serve as keywords for filter-
ing healthy plant records through the ‘rtry_select_row’ and ‘rtry_ex-
clude’ functions. Another data exploration is recommended after
data filtering to ensure all the damaged individuals were successfully
removed, and only healthy ones are retained in the dataset.

4.2.4  |  Dataset export

Once the data preprocessing is completed, the ‘rtry_export’ func-
tion can be used to export the preprocessed NEON trait data into
comma-separated values (.csv) file.

explore the location information in the

full table to identify filtering criteria

df_explore_before <− rtry_
explore(fullTable,

siteID, pointID, stemDistance,

stemAzimuth,

sortBy = pointID)
method 1: selecting only the data with

geolocation information

criteria: none of the three geolocation

columns has "NA" value

fullTable_geoloc <− rtry_select_
row(fullTable,

(!is.na(pointID) & !is.na(stemDistance) &

!is.na(stemAzimuth)))

method 2: excluding the data without

geolocation information

criteria: either one of the three

geolocation columns has "NA" value

fullTable_geoloc <− rtry_
exclude(fullTable,

(is.na(pointID) | is.na(stemDistance) |

is.na(stemAzimuth)),

baseOn = sampleID)
explore the location information in the

full table again

df_explore_after <- rtry_
explore(fullTable_geoloc,

siteID, pointID, stemDistance,

stemAzimuth,

sortBy = pointID)

explore the relevant columns in the full

table to identify filtering criteria

df_explore_before <− rtry_
explore(fullTable_geoloc,

siteID, plotID, subplotID, scientificName,

plantStatus,

sortBy = scientificName)
method 1: selecting only the healthy

individuals

criteria: plantStatus equals to OK

fullTable_geoloc_healthy <− rtry_select_
row(fullTable_geoloc,

(plantStatus == "OK"))
method 2: excluding the damaged

individuals

criteria: plantStatus equals either

Disease damaged or Insect damaged

fullTable_geoloc_healthy <− rtry_
exclude(fullTable_geoloc,

(plantStatus %in% c("Disease damaged",

"Insect damaged")),

baseOn = sampleID)
explore the relevant columns in the full

table

df_explore_after <− rtry_
explore(fullTable_geoloc_healthy,

siteID, plotID, subplotID, scientificName,

plantStatus,

sortBy = scientificName)

16 of 17  |     LAM et al.

5  |  CONCLUSION

This paper introduces the open-source R package ‘rtry’ from a
user perspective. By offering a curated selection of functions es-
sential to data preprocessing tasks, ‘rtry’ empowers users of all
skill levels in R and plant traits to efficiently explore, filter, and
reformat trait records based on their needs without delving into
the complex ecosystem of R packages. The accessible and com-
prehensive package documentation and example workflows on
various platforms ensure that even users unfamiliar with R or the
inherent data structure of trait data can easily navigate and uti-
lize its functionalities to streamline the preprocessing workflow
of plant trait data.

We demonstrate the versatility of ‘rtry’ extends beyond the
TRY database, showcasing its applicability in preprocessing plant
trait datasets acquired from other platforms such as the NEON
program. This illustrates the adaptability and utility of ‘rtry’ across
diverse datasets, reinforcing its role in ecological research and
data analysis.

In conclusion, ‘rtry’ offers researchers a robust and user-friendly
solution within a single package for preprocessing plant trait data.
Its accessibility, functionality, and versatility make it a useful tool
for researchers aiming to harness the potential of their plant trait
datasets.

AUTHOR CONTRIBUTIONS
Olee Hoi Ying Lam: Conceptualization (equal); data curation (equal);
methodology (equal); project administration (supporting); soft-
ware (lead); validation (lead); visualization (lead); writing – origi-
nal draft (lead); writing – review and editing (lead). Jens Kattge:
Conceptualization (equal); data curation (equal); funding acquisi-
tion (equal); methodology (equal); project administration (lead); re-
sources (equal); software (supporting); supervision (lead); validation
(supporting); visualization (supporting); writing – original draft (sup-
porting); writing – review and editing (equal). Susanne Tautenhahn:
Methodology (supporting); software (supporting); validation (sup-
porting); writing – review and editing (equal). Gerhard Boenisch:
Data curation (equal); methodology (supporting); resources (equal);
validation (supporting); writing – review and editing (equal). Kyle
R. Kovach: Methodology (supporting); software (supporting); vali-
dation (supporting); writing – review and editing (equal). Philip A.
Townsend: Funding acquisition (equal); writing – review and editing
(equal).

ACKNOWLEDG MENTS
J.K. and P.A.T. gratefully acknowledge the German Centre for
Integrative Biodiversity Research (iDiv) synthesis project sTRAITS
for its intellectual contribution to this work. The authors express
their gratitude to the editor and two anonymous reviewers whose
insightful comments and constructive criticism greatly contributed
to the improvement of this manuscript.

FUNDING INFORMATION
P.A.T. and K.R.K. acknowledge funding support from NSF Macrosystems
Biology and NEON-Enabled Science (MSB-NES) award DEB 1638720
and NSF ASCEND Biology Integration Institute (BII) award DBI
2021898. Additional support for O.H.Y.L. and P.A.T. was provided by
UW-Madison USDA Hatch award WIS03079 and NASA AIST grant
80NSSC20K0208. O.H.Y.L. was funded by the Max Planck Institute for
Biogeochemistry (MPI-BGC) for part of the development process.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The R package ‘rtry’ is available from CRAN (https://​cran.​r-​proje​ct.​
org/​packa​ge=​rtry) and the development version can be accessed
at the GitHub repository (https://​github.​com/​MPI-​BGC-​Funct​ional​
-​Bioge​ograp​hy/​rtry). Comprehensive package documentation and
vignettes describing detailed data preprocessing workflows can be
accessed from CRAN (https://​cran.​r-​proje​ct.​org/​packa​ge=​rtry) and
the GitHub Wiki (https://​github.​com/​MPI-​BGC-​Funct​ional​-​Bioge​
ograp​hy/​rtry/​wiki). The data in example workflows are provided
within the ‘rtry’ package and the NEON data portal (https://​data.​
neons​cience.​org/​data-​produ​cts/​DP1.​10026.​001).

DATA LICENSE
The ‘rtry’ package is distributed under the CC BY 4.0 license (https://​
creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/​), with a remark that
the (reverse) geocoding functions provided within the package used
the Nominatim developed with OpenStreetMap (OSM). Although
the OSM API and the data provided are free to use for any purpose,
including commercial use, they are governed by the Open Database
License (ODbL; https://​wiki.​osmfo​undat​ion.​org/​wiki/​Licence).

ORCID
Olee Hoi Ying Lam https://orcid.org/0000-0002-7731-3246
Jens Kattge https://orcid.org/0000-0002-1022-8469
Susanne Tautenhahn https://orcid.org/0000-0002-2753-3443
Kyle R. Kovach https://orcid.org/0000-0002-1498-6363
Philip A. Townsend https://orcid.org/0000-0001-7003-8774

R E FE R E N C E S
Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Hocking,

T., Stetsenko, P., Short, T., Lianoglou, S., Antonyan, E., Bonsch, M.,
Parsonage, H., Ritchie, S., Ren, K., Tan, X., Saporta, R., Seiskari, O.,

export the preprocessed NEON data into a

.csv file

output_file <− file.path(NEON_output,
paste0(basename(NEON_output), ".csv"))

rtry_export(fullTable_geoloc_healthy,

output_file)

https://cran.r-project.org/package=rtry
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry
https://cran.r-project.org/package=rtry
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki
https://data.neonscience.org/data-products/DP1.10026.001
https://data.neonscience.org/data-products/DP1.10026.001
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://wiki.osmfoundation.org/wiki/Licence
https://orcid.org/0000-0002-7731-3246
https://orcid.org/0000-0002-7731-3246
https://orcid.org/0000-0002-1022-8469
https://orcid.org/0000-0002-1022-8469
https://orcid.org/0000-0002-2753-3443
https://orcid.org/0000-0002-2753-3443
https://orcid.org/0000-0002-1498-6363
https://orcid.org/0000-0002-1498-6363
https://orcid.org/0000-0001-7003-8774
https://orcid.org/0000-0001-7003-8774

    |  17 of 17LAM et al.

Dong, X., Lang, M., … Czekanski, M. (2024). data.table: Extension
of “data.frame” (1.15.0) [Computer software]. https://​cran.​r-​proje​
ct.​org/​web/​packa​ges/​data.​table​/

Bengtsson, H. (2023). R.utils: Various Programming Utilities (2.12.3)
[Computer software]. https://​cran.​r-​proje​ct.​org/​web/​packa​ges/R.​
utils/​​index.​html

Boenisch, G., & Kattge, J. (2023). TRY Plant Trait Database Website.
https://​www.​try-​db.​org/

Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S.,
Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch,
G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J.,
Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spec-
trum of plant form and function. Nature, 529(7585), 7585. https://​
doi.​org/​10.​1038/​natur​e16489

Garnier, E., Stahl, U., Laporte, M.-A., Kattge, J., Mougenot, I., Kühn,
I., Laporte, B., Amiaud, B., Ahrestani, F. S., Bönisch, G., Bunker,
D. E., Cornelissen, J. H. C., Díaz, S., Enquist, B. J., Gachet, S.,
Jaureguiberry, P., Kleyer, M., Lavorel, S., Maicher, L., … Klotz, S.
(2017). Towards a thesaurus of plant characteristics: An ecological
contribution. Journal of Ecology, 105(2), 298–309. https://​doi.​org/​
10.​1111/​1365-​2745.​12698​

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P.,
Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T.
R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara,
J. M., Alcázar, C., Aleixo, I., Ali, H., … Wirth, C. (2020). TRY plant
trait database—Enhanced coverage and open access. Global Change
Biology, 26(1), 119–188. https://​doi.​org/​10.​1111/​gcb.​14904​

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G.,
Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J.
H. C., Violle, C., Harrison, S. P., van Bodegom, P. M., Reichstein,
M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M.,
… Wirth, C. (2011). TRY—A global database of plant traits. Global
Change Biology, 17(9), 2905–2935. https://​doi.​org/​10.​1111/j.​1365-​
2486.​2011.​02451.​x

Kattge, J., Ogle, K., Bönisch, G., Díaz, S., Lavorel, S., Madin, J., Nadrowski,
K., Nöllert, S., Sartor, K., & Wirth, C. (2011). A generic structure for

plant trait databases. Methods in Ecology and Evolution, 2(2), 202–
213. https://​doi.​org/​10.​1111/j.​2041-​210X.​2010.​00067.​x

Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., & Villa,
F. (2007). An ontology for describing and synthesizing ecological
observation data. Ecological Informatics, 2(3), 279–296. https://​doi.​
org/​10.​1016/j.​ecoinf.​2007.​05.​004

Mungall, C. J., Gkoutos, G. V., Smith, C. L., Haendel, M. A., Lewis, S. E.,
& Ashburner, M. (2010). Integrating phenotype ontologies across
multiple species. Genome Biology, 11(1), R2. https://​doi.​org/​10.​
1186/​gb-​2010-​11-​1-​r2

NEON. (2016). NEON (National Ecological Observatory Network) Plant
foliar traits (DP1.10026.001). https://​data.​neons​cience.​org/​data-​
produ​cts/​DP1.​10026.​001

NEON. (2023). NEON Data Portal. https://​data.​neons​cience.​org/
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I.,

& Garnier, E. (2007). Let the concept of trait be functional! Oikos,
116(5), 882–892. https://​doi.​org/​10.​1111/j.​0030-​1299.​2007.​
15559.​x

Wickham, H., François, R., Henry, L., Müller, K., Vaughan, D., Software,
P., & PBC. (2023). dplyr: A Grammar of Data Manipulation (1.1.4)
[Computer software]. https://​cran.​r-​proje​ct.​org/​web/​packa​ges/​
dplyr​/

Wickham, H., Vaughan, D., Girlich, M., Ushey, K., Software, P., & PBC.
(2024). tidyr: Tidy Messy Data (1.3.1) [Computer software]. https://​
cran.​r-​proje​ct.​org/​web/​packa​ges/​tidyr​/

How to cite this article: Lam, O. H. Y., Kattge, J., Tautenhahn,
S., Boenisch, G., Kovach, K. R., & Townsend, P. A. (2024).
‘rtry’: An R package to support plant trait data preprocessing.
Ecology and Evolution, 14, e11292. https://doi.org/10.1002/
ece3.11292

https://cran.r-project.org/web/packages/data.table/
https://cran.r-project.org/web/packages/data.table/
https://cran.r-project.org/web/packages/R.utils/index.html
https://cran.r-project.org/web/packages/R.utils/index.html
https://www.try-db.org/
https://doi.org/10.1038/nature16489
https://doi.org/10.1038/nature16489
https://doi.org/10.1111/1365-2745.12698
https://doi.org/10.1111/1365-2745.12698
https://doi.org/10.1111/gcb.14904
https://doi.org/10.1111/j.1365-2486.2011.02451.x
https://doi.org/10.1111/j.1365-2486.2011.02451.x
https://doi.org/10.1111/j.2041-210X.2010.00067.x
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1186/gb-2010-11-1-r2
https://doi.org/10.1186/gb-2010-11-1-r2
https://data.neonscience.org/data-products/DP1.10026.001
https://data.neonscience.org/data-products/DP1.10026.001
https://data.neonscience.org/
https://doi.org/10.1111/j.0030-1299.2007.15559.x
https://doi.org/10.1111/j.0030-1299.2007.15559.x
https://cran.r-project.org/web/packages/dplyr/
https://cran.r-project.org/web/packages/dplyr/
https://cran.r-project.org/web/packages/tidyr/
https://cran.r-project.org/web/packages/tidyr/
https://doi.org/10.1002/ece3.11292
https://doi.org/10.1002/ece3.11292

	‘rtry’: An R package to support plant trait data preprocessing
	Abstract
	1|INTRODUCTION
	1.1|A global database of plant traits—TRY
	1.2|Structure of datasets released from TRY

	2|THE ‘RTRY’ PACKAGE
	3|TRY DATA PREPROCESSING WORKFLOW USING ‘RTRY’
	3.1|Dataset import
	3.2|Dataset exploration
	3.3|Data combination
	3.4|Data filtering
	3.4.1|Filtering attributes (columns) from the dataset
	3.4.2|Filtering records (rows) from the dataset
	Example 1: Select relevant trait records and ancillary data
	Example 2: Remove all observations on non-­mature plants
	Example 3: Remove outliers

	3.4.3|Removing duplicates

	3.5|Long-­table to wide-­table transformation
	3.6|Dataset export

	4|ADDITIONAL USE CASES USING ‘RTRY’
	4.1|Geocoding and reverse geocoding
	4.2|Preprocessing NEON plant foliar trait data
	4.2.1|Dataset import
	4.2.2|Data filtering and combination
	4.2.3|Dataset exploration and data filtering
	Example 1: Filtering data with geolocation information
	Example 2: Filtering data from healthy individuals

	4.2.4|Dataset export

	5|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	DATA LICENSE
	REFERENCES

