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Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain.
However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in
hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings
in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in
the auditory thalamus—the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which
are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or
by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced informa-
tion-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity,
suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the
primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a
fundamental role in sensory processing within the brain.
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Significance Statement

Temporal coordination of neuronal activity has been widely observed in various cortical areas and has been shown to be
important for signal processing and information transmission in the brain. However, it remains unclear whether neuronal
coordination is exclusive to cortical local networks or if it also holds significance in subcortical regions. We conducted single-
unit recordings to investigate coordinated neuronal ensembles (cNEs), which are groups of neurons with synchronous firing,
in both the auditory thalamus and cortex. We demonstrated the existence of cNEs in the auditory thalamus, which have sim-
ilar properties to cNEs in the auditory cortex. This provides evidence that subcortical neuronal coordination can serve as a
fundamental mechanism for organizing and processing neural signals.

Introduction
The function of coordinated neuronal activity in cognitive pro-
cesses has long been a subject of interest in systems neuroscience
(Konorski, 1948; Hebb, 1949). Initially, such activity was difficult
to observe experimentally. However, recent technological
advancements in large-scale recording, such as two-photon
imaging and high-density multichannel probes, have facilitated

extensive investigations into the properties and functions of
coordinated neuronal firing, primarily within the hippocampus
and neocortex (Laubach et al., 2000; Baeg et al., 2003; Harris
et al., 2003; Bizley et al., 2010; Buzsáki, 2010; Bathellier et al.,
2012; Oberto et al., 2022; Boucly et al., 2022; Domanski et al.,
2023). These studies have revealed temporal coordination among
neurons in several brain areas, shedding light on their potential
roles in various cognitive processes, such as perception, memory
formation, and decision-making. Indeed, neuronal ensembles
have been proposed as the fundamental units for information
processing and transmission (Buzsáki, 2010; Yuste, 2015).

In sensory systems in particular, temporal coordination among
neurons has been proposed as a mechanism to enhance informa-
tion processing (Kreiter and Singer, 1996; Dan et al., 1998; See
et al., 2018, 2021) and facilitate communication within and
between brain regions (Zandvakili and Kohn, 2015; Oberto
et al., 2022). Neuronal coordination allows more reliable and
specific representation of stimuli (See et al., 2018, 2021; Yoshida
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and Ohki, 2020; Ebrahimi et al., 2022), and considering neuronal
coordination allows identification of emergent stimulus-encoding
properties (deCharms and Merzenich, 1996; Shahidi et al., 2019).
Additionally, elevated coordination in neuronal activity in an out-
put or sender area often precedes activity in a target or receiver area
(Zandvakili and Kohn, 2015). Thus, it is crucial to investigate the
expression of coordinated neuronal ensemble (cNE) structure and
function at various stages along the sensory pathway.

In the auditory system, A1 contains pairs of neurons with cor-
related activity (Brosch and Schreiner, 1999; Eggermont, 2000;
Atencio and Schreiner, 2013) as well as larger groups of neurons
with correlated firing. These groups contribute to the representa-
tion of auditory stimuli (Kreiter and Singer, 1996; Miller and
Recanzone, 2009; Ince et al., 2013; See et al., 2018). While the
characteristics of coordinated activity within the cortex have
recently been studied (Bathellier et al., 2012; Chamberland
et al., 2017; See et al., 2018, 2021), our understanding of the orga-
nization and functional significance of neuronal ensembles in
subcortical regions, such as the thalamus, remains unknown.
The thalamus is of particular interest since it is the gateway
and a direct intermediary between the peripheral sensory system
and the cortex (Winer et al., 2005; Smith et al., 2012; Bartlett,
2013). The auditory thalamus, medial geniculate body (MGB),
and A1 are highly interconnected, with structured connections
linking neurons which share similar spectral and temporal
response properties (Miller et al., 2002; Bartlett and Wang,
2007). Considering the strong connections between the thalamus
and cortex, investigating the shared characteristics of neuronal
ensembles in both regions will help us better understand the
role these ensembles may play in auditory information process-
ing and transmission and sensory processing in general.

In this study, we aimed to identify and characterize cNEs in the
MGB. We reliably detected cNEs, defined as groups of neurons
exhibiting temporally highly coordinated activity, in the MGB.
The applied detection method showed robustness, consistently
identifying cNEs across different time bin sizes. Importantly, we
observed a high degree of similarity between cNEs derived from
spontaneous and evoked activity, suggesting that these ensembles
represent functional networks that can operate, to a substantial
degree, independently of specific sensory stimuli. Furthermore,
cNEs in the MGB and A1 shared key characteristics. In both struc-
tures, spikes associated with cNEs reflect auditory information
more reliably than random spikes from the same neurons. These
findings support the hypothesis that cNEs serve as a ubiquitous
mechanism for organizing local networks and function as funda-
mental units for sensory processing in the brain.

Materials and Methods
Animals. All experimental procedures were approved by the

Institutional Animal Care and Use Committee at the University of
California, San Francisco and followed the guidelines of the National
Institutes of Health for the care and use of laboratory animals.
Twenty-four female Sprague Dawley rats (wild type, 250–350 g,
2–4 months; RRID:MGI:5651135), sourced from Charles River
Laboratories, were used in this study.

Surgery. The detailed procedures were as described in previous stud-
ies (See et al., 2018; Homma et al., 2020). Briefly, anesthesia was induced
with a combination of ketamine (100 mg/kg, Ketathesia, Henry Schein)
and xylazine (3.33 mg/kg, AnaSed, Akorn), along with atropine
(0.54 mg/kg, AtroJectSA, Henry Schein), dexamethasone (4 mg/kg,
Dexium-SP, Bimeda), and meloxicam (2 mg/kg, Eloxiject, Henry
Schein). Additional doses of ketamine (10–50 mg/kg) and xylazine
(0–20 mg/kg) were given as needed to maintain anesthesia. Local

anesthesia was provided using lidocaine (Lidoject, 2%, Henry Schein)
prior to making incisions. The respiratory rate, heart rate, and depth
of anesthesia were continuously monitored, and anesthesia was adjusted
as needed. The body temperature was monitored andmaintained at 37°C
using a homeothermic blanket system (Harvard Apparatus 55-7020).
Lubricant ophthalmic ointment (Artificial Tears, Henry Schein) was
applied to protect the eyes. A tracheotomy was performed to ensure sta-
ble breathing during recording. To access the brain, we removed the skin,
muscle, skull, and dura over the right temporal lobe, and we applied sili-
cone oil (Sigma-Aldrich) to cover the cortex. A bone rongeur was used to
widen the craniotomy window and provide dorsal access to the MGB. A
cisternal drain was performed to prevent brain swelling.

Electrophysiology. The frequency organization of auditory cortex was
first mapped using tungsten electrodes. A1 was identified as the area with
a high- to low-frequency preference gradient on the rostral–caudal axis
and short-latency response to pure tones (Polley et al., 2007). Then, elec-
trophysiological recordings were performed using a linear silicon probe
with 64 channels (H3, 20 µm channel distance, Cambridge NeuroTech)
in theMGB and a two-shank probe with 64 channels (H2, 25 µm channel
distance, Cambridge NeuroTech) in A1. The ventral division of the MGB
is characterized by a low- to high-frequency gradient on the dorsal–ven-
tral axis (Morel et al., 1987; Anderson and Linden, 2011). The probes
were inserted using microdrives (David Kopf Instruments) at a rate of
25 µm/s to a depth of 4,500 to 6,000 µm from the surface of the cortex
to reach MGB (Fig. 1A) and 900 to 1,300 µm in A1 along the columnar
structure (Fig. 7A), respectively. Extracellular voltage traces were
recorded at a sampling rate of 20 kHz with an Intan RHD2132
Amplifier system (Intan Technologies). Multiunit (MU) activities
(Figs. 1A, 7A) were defined as negative peaks crossing four standard devi-
ations from the mean in the extracellular voltage trace filtered between
300 and 6,000 Hz. Single-unit activities were obtained by spike sorting
using Kilosort 2.5 (Steinmetz et al., 2021; Pachitariu et al., 2023), followed
by manual curation using Phy (https://github.com/cortex-lab/phy). In
the manual curation process, we visually evaluated individual clusters
by examining autocorrelograms, spike waveforms, the stability of spike
amplitude over time, the persistence of activity over time, the cluster’s
separation from noise in the feature space, and other visual aids provided
by Phy2 for distinguishing single-unit (SU) clusters from MU or noise
clusters. Subsequently, the identified units underwent filtering based
on specific criteria: interspike interval (ISI) violation within 2 ms
<1.5%. The majority of SUs exhibited an ISI violation <0.25%; peak
signal-to-noise ratios (SNRs) of the waveform >1.5 (median peak SNR,
MGB, 4.52; A1, 3.77); and firing rates >0.1 Hz to eliminate potential
MUs. To assess the reliability of activity of the SUs across the entire
recording duration, we obtained the presence ratio. This is the ratio of
the number of blocks where the unit showed the activity and the total
number of blocks in a recording session. To calculate the presence ratio,
we divided the entire recording into 100 equal time blocks. The majority
of the obtained SUs were active in >95% of the time blocks. This sorting
resulted in SUs that exhibit low ISI violations, high peak SNR, firing rates
with a log-normal distribution, and a more consistent presence during
recording when compared with all clusters generated by Kilosort. To
identify oscillatory response in MGB or A1, SUs on the same electrode
were combined to form MUs (Fig. 8).

Stimuli. To measure frequency tuning, we presented pure tones with
frequencies ranging from 0.5 to 32 kHz in 0.13 octave steps and sound
levels from 0 to 70 dB in 5 dB steps (50 ms, 5 ms ramps). Each fre-
quency–sound level combination was presented once in a pseudorandom
order, with an interstimulus interval of 250 ms. To assess the spectrotem-
poral receptive fields (STRFs), we used a 15 min dynamic moving ripple
(DMR; Escabí and Schreiner, 2002). The DMR consisted of 40 sinusoidal
carrier frequencies per octave in the range of 0.5–40 kHz, each with a
random phase. The carriers were slowly modulated (maximum rate of
change ≤3 Hz) by a spectrotemporal envelope with a maximum spectral
modulation rate of 4 cycles/octave, a maximum temporal modulation
rate of 40 cycles/s, and a maximum modulation depth of 40 dB. The
mean intensity of the DMR was set at 70 dB sound pressure level. We
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selected DMR as the stimulus for analyzing cNEs’ response to sound sti-
muli, as overt onset response effects for the 15 min continuous stimulus
are negligible. Additionally, DMR has been observed to reduce oscilla-
tory states in the neural population (Miller and Schreiner, 2000). All
auditory stimuli were generated using MATLAB (MathWorks) and cal-
ibrated using a 0.5 in pressure-field microphone (Type 4192, Bruel and
Kjær). The stimuli were delivered contralaterally from the recording
site using a closed-field electrostatic speaker (EC1, Tucker-Davis
Technologies) at a sampling rate of 96 kHz.

Detecting cNEs. To identify groups of neurons that exhibit synchro-
nized coactivation, referred to as “cNEs,” we used a method combining
principal component analysis (PCA) and independent component anal-
ysis (ICA; Lopes-dos-Santos et al., 2013; See et al., 2018). We selected a
bin size of 10 ms as a standard synchronization span because it repre-
sents the most appropriate time window to capture the synaptic integra-
tion window of most cortical neurons (Léger et al., 2005; D’amour and
Froemke, 2015). First, the individual spike trains of simultaneously
recorded neurons were binned and z-scored. Next, the z-scored spike
matrix underwent PCA to obtain the eigenvalues of the spike train cor-
relation matrix. To determine the number of cNEs, we took eigenvalues
to be significant if their value exceeded the 99.5th percentile of the
Marchenko–Pastur distribution, which describes the probability density
function of eigenvalues of large rectangular random matrices
(Marchenko and Pastur, 1967; See et al., 2018; Fig. 2A-ii). We then per-
formed ICA (FastICA) on the subspace spanned by the eigenvectors cor-
responding to the significant eigenvalues. The resulting independent
components (ICs) represent groups of neurons with shared spiking
events. The weight of each neuron on an IC indicates the neuron’s con-
tributions to the cNE (Fig. 2A-iii). As the signs of IC weights were arbi-
trary, for each IC, the direction with the largest absolute weight was
rendered positive. The length of each IC was normalized to one, making
an IC with equal contribution from all neurons have weights of 1 /√N,
where N was the number of neurons in the recording. Neurons with
weights over 1 /√N were referred to as “cNE members” (Oberto et al.,
2022; Fig. 2A-iv).

The strength of the cNE activation at each time point was measured
by the similarity between the activity of cNE members and the cNE pat-
tern, that is, which neurons in a penetration were cNE members. The
similarity can be measured as the square of the weighted sum of the
z-scored spike counts, s = zTwwTz = zTPz, where z is the z-scored
spike counts of cNE members at each time point, w is the IC weights
of cNE members, and the projection matrix P is the outer product of
w. To consider only the coactivation of multiple cNE members, we set
the diagonal of the projection matrix to zero and obtained the modified
projection matrix P*. cNE activity strength was calculated as s = zTP∗z.
A null distribution of cNE activity was obtained by projecting a circularly
shifted spike matrix, where the temporal relationship of neurons was dis-
rupted, to the template matrix (See et al., 2018). This process was iterated
50 times, and the threshold of cNE activation was defined as the 99.5th
percentile of the null distribution (Fig. 2A-v). The spikes of the cNE
members within the selected time bin where the cNE was active were
referred to as “cNE spikes.”

Matching cNEs across different bin sizes. We used the correlation
between IC weights of all neurons in a penetration to assess the similarity
of cNE patterns across different synchronization windows (i.e., time bin
width, 2, 5, 10, 20, 40, 80, and 160 ms). To visualize the similarity of cNEs
identified using 10 ms bins to those identified using other bin sizes, we
calculated the cNEs for the same recording using other bin sizes. We dis-
played the cNEs whose IC weights were best correlated with the 10 ms
cNE (Fig. 3A). To measure the variability of cNE identities across bin
sizes (Fig. 3B,C), we matched each cNE to the most similar cNE calcu-
lated using reference bins (i.e., when using 10 ms as the reference bin
size to the 10 ms cNE which had the best-correlated IC weights). The
proportion of shared members with a reference cNE was then calculated
by dividing the number of members in a cNE that were also identified as
members in its matching reference cNE by the total number of unique
members in both cNEs combined.

The significance of the match was determined based on the null dis-
tribution of IC weight correlations between matched cNEs. For example,
to determine the significance of the correlation between the IC weights of
a 10 ms cNE with its most correlated 160 ms cNE, we first generated a
null distribution of IC weight correlations.We circularly shifted the spike
trains and then applied PCA/ICA to identify sham cNEs using the
shuffled spike matrices binned at 160 ms, maintaining the same number
of cNEs as the original 160 ms cNEs. Then we identified the most corre-
lated sham 160 ms cNE for the 10 ms cNE. This process was repeated
1,000 times to generate the null distribution of correlation values. The
significance threshold was set at p < 0.01.

Assessing stability of cNEs. To assess the stability of cNEs during and
across spontaneous and stimulus-driven activity, we compared the cNEs
from adjacent recording segments (Fig. 4A). To match the IC weights of
cNEs identified from the different recording segments, we used an iter-
ative process that involved selecting the cNE pairs from the two segments
with the highest correlations (Spearman’s r; Oberto et al., 2022). First, we
computed the correlations between all possible pairs of cNEs that were
generated from the two segments. Then, the pair with the highest corre-
lation was set aside, and the same process was repeated with the remain-
ing cNEs until all cNEs were paired. If there were any remaining cNEs
that did not have a match due to a difference in the number of cNEs
between the two segments, they were left unmatched.

To generate a null distribution of IC weight correlations between
matched cNEs from two recording segments (Fig. 4D), we circularly
shifted spike trains within each activity block. We then applied PCA/
ICA to identify sham cNEs using the resulting shuffled spike matrices.
As the shuffling disrupted correlations between neurons, very few eigen-
values exceeded the upper bounds of the Marchenko–Pastur distribution.
To address this, we maintained the number of sham cNEs in the shuffled
data equivalent to the number of significant eigenvalues obtained from the
original spike matrix. The sham cNEs from adjacent activity blocks were
then matched following the procedure described above. This iterative pro-
cess was repeated 1,000 times to establish a null distribution of IC weight
correlations for the matched cNEs. The 99.5th percentile of each null dis-
tribution was set as the significance threshold.

False-positive detection of cNEs. To assess the potential for false-
positive cNE detection, we applied the cNE detection algorithm to
shuffled data, using the same criteria as those applied to the real dataset.
This process was repeated 10 times, resulting in an average count of false-
positive cNEs across the circularly shifted data (Fig. 4F). Despite con-
ducting 10 iterations, false-positive cNEs were not consistently identified
in the neighboring blocks. In cases where a false-positive cNE was
detected (i.e., when an eigenvalue computed from shuffled data exceeded
the Marchenko–Pastur distribution), we evaluated its stability by mea-
suring the highest correlation of its IC weights with those of real cNEs
in the adjacent block (Fig. 4E). The significance of false-positive cNE
IC weight correlations was determined using the same threshold estab-
lished for real cNEs.

STRF analysis. For analysis, we downsampled DMR to a resolution
of 0.1 octaves in frequency and 5 ms in time. We used the reverse cor-
relation method to obtain the STRFs of the units (Theunissen et al.,
2000; Escabí and Schreiner, 2002). To derive the STRFs, we averaged
the spectrotemporal envelopes of the stimulus over a period of
100 ms preceding spikes (Figs. 1B, 6A). Positive (red) values on a
STRF indicate that the sound energy at that frequency and time tends
to increase the firing rate of the unit, while negative (blue) values indi-
cate where the stimulus tends to decrease the firing rate of the unit. The
frequency corresponding to the highest absolute value of the STRF is
considered the best frequency (BF) of the unit (Miller et al., 2002).
We also determined the peak-to-trough difference (PTD) as a measure
of STRF strength.

A STRF was considered significant if it reliably described a neuron’s
response to DMR sound. To assess the reliability of a STRF, we divided a
neuron’s spikes into two equal halves and generated two corresponding
STRFs (STRF A and B) using each half (Qiu et al., 2003). The similarity
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between STRF A and B was computed using Pearson’s correlation. This
process was reiterated 1,000 times, and the average STRF similarity
across these iterations was used as the measure of reliability. To deter-
mine the statistical significance of a STRF’s reliability, we constructed
a null distribution by reversing the neuron’s spike train, thus disrupting
the temporal correlation of neural responses to the stimulus. We consid-
ered STRFs with a reliability surpassing a z-score of 2.58 to be significant.

We used mutual information (MI) as the metric to quantify the
amount of information we can obtain about the stimulus by observing
spikes of neurons or cNEs (Atencio and Schreiner, 2008; See et al.,
2018). The stimulus segment s preceding each spike was projected
onto the STRF via the inner product z = s× STRF.The projection
values were then binned to get the probability distribution P(z|spike).
The a priori distribution of stimulus projection values, P(z), was calcu-
lated by projecting all stimulus segments of DMR onto the STRF,
regardless of spike occurrence. Both distributions P(z) and P(z|spike)
were normalized relative to the mean m and standard deviation s of
P(z), by x = ((z − m)/s), resulting in P(x) and P(x|spike). The
MI between STRF projection values and single spikes was computed
according to the following:

I =
∫
dxP(x|spike)log2

P(x|spike)
P(x)

.

STRF comparisons between cNEs and non-cNE groups of neurons. To
control the potential influence of population synchrony on a cNE due to
independent neuron activity, we compared STRFs derived from cNEs
and non-cNE groups of neurons. If less than half of the members had
significant STRFs, the cNE was excluded from analysis.

First, we compared the group STRFs of cNEs and non-cNE groups of
neurons (Fig. 6B-ii,C-ii; See et al., 2018). The group STRF was calculated
using all spikes from neurons within a group. To generate non-cNE
groups of neurons relative to a cNE, we first selected one neuron from
the cNE and then sampled from the remaining neurons with significant
STRFs within a penetration, forming a group with the same number of
neurons as the cNE for comparison. This process excluded othermember
neurons of the cNE. This procedure was repeated for all members of the
cNE, generating all possible combinations of neurons, each including
exactly one member neuron from the cNE under examination.
Combinations of neurons that included more than one neuron from
any other cNEs in the same recording were then also excluded. For
each cNE/non-cNE group comparison, we subsampled the spikes in
the cNE and the non-cNE groups to the same number. Subsequently,
STRF PTD and MI of the cNE group were compared with the median
values of the non-cNE groups.

We also compared the STRFs of cNE spikes with those of coincident
spikes from a single neuron (Fig. 6B-iii,C-iii) to assess the influence of
random coincidence on stimulus preference. To obtain coincident spikes
from a specific neuron, we first sampled neurons from the recorded pop-
ulation that do not share membership with the neuron under examina-
tion in any cNE to create a non-cNE group. We kept the number of
neurons in the non-cNE group the same as the cNE to which the neuron
being examined belongs. This sampling process was restricted to neurons
exhibiting significant STRFs. The coincident spikes of the cNE member
refer to spikes within 10 ms of spikes from other neurons within the
non-cNE group. We repeated this procedure to generate all possible
combinations of non-cNE groups, each containing the cNE member
and excluding any neuron that shares membership with the neuron
under scrutiny. Coincident spike trains with <100 events were discarded.
For each cNE spike/non-cNE spike comparison, we subsampled the cNE
spikes and spikes from the non-cNE groups to the same number.
Subsequently, the cNE spike STRF PTD and MI were compared with
the median values of the random spike STRF PTD and MI from the
non-cNE groups.

Quantifying slow oscillations in neural activity. To determine
whether the neural activity in a recording showed a prominent pattern
of slow oscillations, we measured silence density and the coefficient of

variation (CV) of MU firing rate. Silence density was defined as the frac-
tion of 20 ms time bins with no population activity (zero spikes; Mochol
et al., 2015). The CV of MU firing rate was calculated as CV = s/m ,
where m is the mean firing rate and s is the standard deviation of the
firing rate binned at 20 ms time bins.

Permutation test. We used permutation tests to determine the statis-
tical significance of differences in cross-correlograms (CCGs) among
neurons based on their membership (Figs. 2C, 3D), as well as to assess
differences in the proportion of stable cNEs between different stimulus
conditions (Figs. 4E, 7E). For example, to assess the difference in
CCGs between member pairs and nonmember pairs (Fig. 2C), we
shuffled the membership labels of the CCGs and calculated the difference
between the average CCGs of member and nonmember pairs. We
repeated this process 10,000 times to generate null distributions of the
CCG difference for each data point. The 0.5th and 99.5th percentiles
of the null distribution were taken as the cutoffs for significance. We con-
sidered consecutive time bins∼0 ms lag with p< 0.01 to be significant. To
assess the difference in the proportion of stable cNEs, we shuffled the sti-
mulus condition label [spontaneous (“spon”), DMR (“dmr”), or cross-
condition comparison (“cross”)] and repeated this process 10,000 times
to generate a null distribution of the difference in proportion. The sign-
ificance level was then determined based on the null distribution.

Statistics. Statistical analyses were performed in Python. To compare
two unpaired groups (e.g., Fig. 2B), we used Mann–Whitney U tests. To
compare two paired groups (e.g., Fig. 4F), we usedWilcoxon signed-rank
tests. Permutation tests (e.g., Fig. 2C) and Monte Carlo methods (e.g.,
Fig. 4D) were used as described above. To determine if two samples
are drawn from the same distribution, we used Kolmogorov–Smirnov
test (Fig. 3D). The specific applications of these tests are explained in
the results section and figure legends. Significance levels are noted as
n.s. (p≥ 0.05), * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

Results
Auditory responses in MGB
We conducted extracellular recordings in the rat MGB (Fig. 1A)
using a 64-channel linear probe, which allowed us to cover most
of its span along the dorsal–ventral axis. To obtain the tonal
response properties of the recording sites, we presented pure
tones of various frequencies and intensities. In the MGB, we usu-
ally observed a gradient in the frequency preference of MU
responses from low to high along the dorsal–ventral axis, which
could vary gradually (Fig. 1A-i) or abruptly (Fig. 1A-ii) depend-
ing on the probe’s location. Responses on most channels in the
tonotopic region exhibited clear frequency tuning (between the
red lines in Fig. 1A), which likely reflect activities in the ventral
MGB, the primary input station to the A1. We included all
SUs from the MGB in our analysis after spike sorting, without
distinguishing between subregions although the vast majority
was likely from the ventral nucleus according to its tonotopic
organization.

To estimate the STRFs of SUs, we used a 15 min DMR sti-
mulus, which is a broadband noise with varying spectral and
temporal modulation (Escabí and Schreiner, 2002). The
STRFs of MGB neurons also showed a clear gradient in fre-
quency preference from low to high along the dorsal–ventral
axis (Fig. 1B), consistent with the MU responses to pure tones.
We then examined the firing correlations between pairs of
simultaneously recorded SUs. MGB neuron pairs showed
widely different correlations in their firing activity, even if
they were close in proximity and had similar STRFs. For exam-
ple, neurons #1, #2, and #3 had similar receptive fields (Fig. 1B).
While neurons #1 and #3 showed correlated firing in both
stimulus-driven and spontaneous activity, neurons #2 and #3
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showed no significant correlation in their activity despite sim-
ilar STRFs (Fig. 1C). This diversity of correlation patterns, even
among neurons with similar receptive fields, parallels what was
previously observed in the cortex (Brosch and Schreiner, 1999;
Eggermont, 2000; Atencio and Schreiner, 2013; See et al., 2018;
Mogensen et al., 2019; Wahlbom et al., 2021). Although the role
of neuronal coordination in information processing in the cor-
tex has been extensively proposed and studied (Paninski et al.,
2004; Bizley et al., 2010; Buzsáki, 2010; Carrillo-Reid et al.,
2015; See et al., 2018), less is known about the organization
of neuronal ensembles in subcortical regions. Therefore, we
aimed to identify clusters of neurons that exhibit consistent
synchronized firing in the MGB and compared the properties
of these ensembles with those in A1.

Identifying groups of neurons with coordinated firing inMGB
To identify cNEs, that is, groups of neurons with synchronous
firing, we performed a combined PCA–ICA (Lopes-dos-Santos
et al., 2013; See et al., 2018). The procedure for detecting cNEs
in a population of neurons is demonstrated in Figure 2A using a

recording of spontaneous activity from the MGB (Fig. 2A).
Among the 20 isolated SUs in the recording, some pairs of neu-
rons had highly correlated firing with each other, as shown in
dark red in the correlation matrix, while others showed low cor-
relation (Fig. 2A-i). We performed PCA on the correlation
matrix of 10 ms binned spike trains, resulting in 20 eigenvalues
and corresponding eigenvectors or principal components (PCs;
Fig. 2A-ii). These eigenvalues describe the contribution of each
PC to the variance in the neural population activity. To deter-
mine the significance of the patterns extracted by PCA, we com-
pared the eigenvalues to a threshold drawn based on the
Marchenko–Pastur distribution (Peyrache et al., 2010; Lopes-
dos-Santos et al., 2013; Fig. 2A-ii). In this example recording,
we observed four significant eigenvalues above the threshold,
indicating the presence of four detectable cNEs in the recorded
population. Although PCA efficiently extracts ensemble pat-
terns, it has some limitations due to its variance maximization
framework. When two ensembles account for similar variance
in the data on their corresponding axis, the first PC will repre-
sent the average of the two instead of an individual ensemble.

Figure 1. In vivo recordings in rat MGB. A, Left: schematic of the recording setup in the MGB using a linear 64-channel probe. i and ii, Two electrode penetrations with MU recordings from the
MGB. Left: stacked firing rate (color coded) of pure-tone frequency response areas. Right: characteristic frequencies (CF, the frequency at which the response threshold is the lowest). The red
dashed lines indicate the potential boundaries of the ventral MGB. B, Example of STRFs of SUs from a recording in the MGB. Unit numbers 1 to 3 indicate the positions and STRFs of pairs of
neurons whose CCGs are plotted in C. C, Example CCGs from two pairs of neurons (#1–#3 and #2–#3). The black bars represent the CCGs of stimulus-driven activity, while the gray lines represent
the CCGs of spontaneous activity. The baseline is estimated by averaging the counts in 5 ms windows at the shoulders of the CCGs and is indicated by dashed red lines.
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This problem is even more pronounced when ensembles
share neurons. To overcome these limitations, we applied
ICA to the subspace spanned by the significant PCs
(Fig. 2A-iii). This approach is not constrained by the orthogo-
nality requirement of PCA, allowing for a more precise identifi-
cation of individual cNEs. After the PCA–ICA procedure, we
obtained the weights of neurons on the axes that define cNEs
in the neural population, which were color coded as columns
in Figure 2A-iii. Neurons were considered members of a cNE

if their IC weights were higher than what would be expected
from an even weight contribution from all neurons
(Fig. 2A-iv). The activity resulting from the coactivation of
cNE members can be obtained by projecting the spike matrix
on the corresponding IC weights of the cNE. To determine
the significance of cNE activity magnitude, we generated a
null distribution of the cNE activity values by circularly shuffl-
ing spike trains and set the significance criteria at 99.5%
(Fig. 2A-v). For example, when cNE #1 was active, multiple

Figure 2. Groups of neurons with coordinated activities exist in MGB. A, Procedures for detecting cNEs in a thalamic penetration. i, Correlation matrix of spike trains. ii, Eigenvalues of the
correlation matrix shown in i. The dashed red line represents the 99.5th percentile of the Marchenko–Pastur distribution, which was used as the significance threshold for eigenvalues. The top
four eigenvalues are significant and represent the number of detected cNEs. iii, IC weights of neurons for each cNE. The green dots represent neurons that are members of a cNE. iv, cNE members
(red stems) are neurons with IC weights exceeding the threshold (1 /√N ) shown as gray areas. v, Example of cNE activation. Top: activity trace of cNE #1. The red line shows the threshold
estimated using Monte Carlo methods. The peaks crossing the threshold indicate cNE events when multiple cNE member neurons fire jointly. Bottom: spike raster of neurons, with red ticks
indicating spikes that contribute to instances of cNE events, which were referred to as cNE spikes. Shaded areas show member neurons. B, Correlations (10 ms bin) of neuron pairs that were both
members of the same cNE (members) and neuron pairs that were not members of the same cNE (nonmembers) in MGB (p= 6.9 × 10–235, Mann–Whitney U test). C, z-scored CCGs (1 ms bin) of
member pairs (left) and nonmember pairs (right) in MGB. Top: stacked CCGs ordered by the peak delay. Bottom: average of the data above (mean ± SD; shaded area, p< 0.01; permutation test,
shuffling the members/nonmembers labels).
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member neurons (2–5 out of 6) fired together. The combined
PCA–ICA approach provided a useful framework to investi-
gate the organization and function of coordinated neuronal
activity in the MGB.

To provide evidence that cNEs captured groups of neurons
with correlated firing, we compared the correlations of 10 ms
binned spike trains based on their cNE membership. Pairs of
neurons that participated in the same cNE (“member pairs”)
exhibited significantly higher correlations compared with pairs

of neurons that did not share membership in any cNE (“non-
member pairs”) (Fig. 2B). To examine the correlation between
member and nonmember pairs at a finer timescale, we cross-
correlated the spike trains using 1 ms bins. The correlation
among cNE member pairs was significantly higher compared
with nonmember pairs within the [−50, 40] ms lag window
(red-shaded area in Fig. 2C, bottom left). These results pro-
vided evidence that groups of neurons with coordinated
firing exist in the MGB and that their coordination was

Figure 3. Variability of IC weights across different time bin sizes. A, Example of two MGB cNEs whose member neurons are either consistently identified across different bin sizes (i) or only
detected using smaller bin sizes (ii). B, Proportion of significantly matched cNEs. Using different bin sizes as reference bin sizes (row), we calculated the proportion of cNEs on different bin sizes
that have a significantly matched cNE on the reference bin size. The red square highlights the proportion of 10 ms cNEs that have significant matches with 160 ms cNEs and is further analyzed in
C. C, Left: correlation of IC weights of 10 ms cNEs with the most correlated IC weights of 160 ms cNEs. Right: proportion of shared membership between 10 ms cNEs with their most correlated
160 ms cNEs. D, Firing rate of member neurons in 10-ms-only cNEs, 10 ms cNEs without a significant match with 160 ms cNEs, and 160-ms-only cNEs (p= 0.57; Kolmogorov–Smirnov test).
E, Top: schematic of membership of neurons for different bin sizes. Bottom: mean z-scored CCGs (1 ms bin, mean ± SD) between (i) member neurons in both 10 ms and 160 ms cNEs,
(ii) member neurons only in the 160 ms cNE and member neurons in both 10 and 160 ms cNEs (shaded area, p< 0.01, permutation test, shuffling neuron pair labels of i and ii), and
(iii) member neurons only in the 10 ms cNE and member neurons in both 10 and 160 ms cNEs (no time bin showed significant difference from i).
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captured by the PCA–ICA procedure, resulting in the identifi-
cation of cNEs.

Variability in cNE identity for different bin sizes
The temporal frame used to identify neuronal ensembles plays a
critical role in shaping our understanding of their nature and
function (Buzsáki, 2010). To investigate how different choices
of timescale affect the identification of cNEs, we calculated
cNEs using various spike train bin sizes, ranging from 2 to
160 ms (Fig. 3). Some cNEs showed consistent IC weights across
different time bin sizes, with a high correlation to IC weights
obtained using 10 ms bins (Fig. 3A-i). Other cNEs could only
be consistently identified using smaller time bin sizes but devi-
ated from those when assessed with larger bin sizes (Fig. 3A-ii).
We matched cNEs calculated using different bin sizes to evaluate
their similarity (Fig. 3B). With only small change in the bin size,
the cNEs identified were highly similar. For example, 96% of
cNEs identified using 10 ms bins had a significant match with
20 ms cNEs. However, when compared with cNEs calculated
with larger differences in bin sizes, their identities could vary sub-
stantially. For example, 43% of 10 ms cNEs did not show a sign-
ificant match with 160 ms cNEs (Fig. 3B). The remaining 57% of
10 ms cNEs that significantly matched 160 ms cNEs exhibited
high correlation (>0.6) in their IC weights (Fig. 3C-i).
Moreover, the majority of significantly matched cNEs shared
more than half of their neuron membership. Nonetheless,
∼25% of 10 ms cNEs had no common members with the
160 ms cNEs (Fig. 3C-ii). There was no significant difference in
the firing rate of MGB neurons participating in 10 ms and
160 ms cNEs (Fig. 3D). In summary, small variations in time

bin sizes have a limited effect on cNE identity. However, using
large time bin sizes to identify cNEs, such as 160 ms, may result
in the loss of half or more of the cNEs identified using small bin
sizes, such as 10–20 ms.

In cases where differences in cNE membership arise due to
different bin sizes, we investigated the firing correlations between
neurons that had shifted in or out of the ensemble. We compared
the membership of neurons in cNEs identified using 10 ms and
160 ms bin sizes (“10 ms cNEs” and “160 ms cNEs,” Fig. 3E)
and categorized neurons in each cNE as the following: members
in both 10 and 160 ms cNEs, members only in the 10 ms cNE, or
members only in the 160 ms cNE. Neurons sharing memberships
in both 10 and 160 ms cNEs (stable members) had positive cor-
relations in their firing (Fig. 3E-i). Neurons only in 160 ms cNEs
were positively correlated with stable members, although the cor-
relation was significantly weaker in the [−17, 10] ms window
(Fig. 3E-ii) compared with the correlation among stable mem-
bers (Fig. 3E-i). Furthermore, some members of 10 ms cNEs
were not identified as members in 160 ms cNEs. These neurons
showed no significant difference in their correlations with stable
members (Fig. 3E-iii) compared with the correlation among sta-
ble members (Fig. 3E-i). Therefore, using wider bin sizes to iden-
tify cNEs results in neurons with weak correlations being
included in the ensemble, as well as neurons with strong correla-
tions being omitted.

Variability in cNE structures across spontaneous and evoked
activity
Several studies have shown that cortical neuronal ensembles have
stable structures across spontaneous and stimulus-driven

Figure 4. cNEs identified in spontaneous activity are mostly preserved in stimulus-driven activity. A, Diagram illustrating the recording sequence and partitioning of spontaneous (yellow/
orange) and DMR-evoked (dark green/light green) activity. The four blocks allowed the comparison of cNEs obtained within stimulus conditions and across stimulus conditions. B, Absolute
correlation values of the IC weights calculated on adjacent blocks from an MGB recording including the two examples (i and ii) shown in C. C, Example of IC weights on adjacent blocks with high
(i) and moderate (ii) correlation values across stimulus conditions. The dashed lines show the threshold to determine the membership of the neurons. D, The two cNE examples in C have
significantly matched IC weights across stimulus conditions. See the method for how the null distribution was generated. The significance threshold for the correlation values was set at p= 0.01
(red dashed line, 99.5th percentile of the null distribution). The brown (i) and blue (ii) solid lines represent the two examples in C. E, Correlations of IC weights identified on adjacent activity
blocks for real (red) and circularly shifted data (pink). The hollow histograms show all correlations of matched cNEs on adjacent blocks; the histograms show significant correlations based on the
test shown in D. The inset numbers show the percentage of cNEs with significantly matched IC weights on adjacent blocks. The triangles show the median of all IC weight correlations (real data
vs shuffled data, spon, p= 5.6 × 10−36; dmr, p= 1.3 × 10−28; cross, p= 2.0 × 10−22, Mann–Whitney U test with Bonferroni’s correction). F, The number of cNEs detected using real and
circularly shifted activities on the four recording blocks (spon1, p= 4.7 × 10−10; spon2, p= 4.7 × 10−10; dmr1, p= 4.7 × 10−10; dmr2, p= 4.7 × 10−10; Wilcoxon signed-rank test with
Bonferroni’s correction).
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Figure 5. Properties of cNEs in MGB. A, The number of cNEs detected in any given penetration increases with the number of recorded neurons. B, cNE size increases with the number of
recorded neurons. C, The number of cNEs a neuron belongs to. D, Spatial distribution of cNE members. i, Pairwise distance of neurons in the same cNE (colored bar) or neurons not in the same cNE
(black line). ii, Spatial span of cNE members (colored bar) and random groups of neurons with the same number of neurons as cNEs (black line). E, Frequency tuning distribution of cNE members.
i, Pairwise difference in the BFs of neurons. ii, The largest difference in the BF among cNE members or random groups of neurons (Mann–Whitney U test).

Figure 6. MGB cNEs can refine sound features encoded by member neurons. A, Two examples of STRFs of MGB neurons calculated with all spikes (left) and cNE spikes (right). All spikes are
subsampled to have an equal number as cNE spikes. B, i, STRF PTD for cNE spikes or all spikes of neurons. ii, STRF PTD for groups of cNE members or nonmembers. iii, STRF PTD for cNE spikes and
coincident spikes of a neuron. The coincident spikes refer to instances where a neuron’s firing occurs within a 10 ms timeframe of another neuron’s firing in a group of nonmember neurons. This
group is designed to match the number of neurons present in the cNE. C, i, MI between stimulus and cNE spikes or all spikes of neurons. ii, STRF MI for groups of cNE members or nonmembers.
iii, STRF MI for cNE spikes and coincident spikes of a neuron (Wilcoxon signed-rank test).
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activity, suggesting a consistent local network organization uti-
lized in processing stimulus information (Jermakowicz et al.,
2009; Luczak et al., 2009; See et al., 2018; Filipchuk et al.,
2022). To investigate if this property also exists in cNEs in the
MGB, as was observed in A1 (See et al., 2018), we recorded con-
tinuous segments of neural activity in the absence of sound
(“spon”) and during the presentation of the DMR stimulus
(“dmr”). We divided each activity type into two segments and
detected cNEs in each segment separately. We then compared
the stability of the cNEs within and across stimulus conditions,

measured by the correlation of IC weights between adjacent seg-
ments (Fig. 4A,B). We observed that while some cNEs exhibited
high stability across stimulus conditions, with IC weight correla-
tion comparable to that within the same stimulus condition
(Fig. 4C-i), others showed structures that were less stable across
stimulus conditions compared with within a stimulus condition
(Fig. 4C-ii). Using null distributions generated by circularly
shuffling spikes, we determined the significance of the IC weight
correlations and found that both examples in Figure 4C were
significantly stable across stimulus conditions, although one

Figure 7. MGB and A1 cNEs have similar properties. A, Left: schematic of the recording setup in A1 using a two-shank probe with 64 channels. Right: MU responses to pure tones as in
Figure 1A. B, i, PTD of STRFs calculated using all spikes or only cNE spikes from a neuron in A1. ii, Difference between cNE spike STRF PTD and all spike STRF PTD in MGB and A1 (p= 0.72, Mann–
Whitney U test). C, i, MI of STRFs calculated using all spikes or only cNE spikes from a neuron in A1. ii, Difference between cNE spike STRF MI and all spike STRF MI in MGB and A1 (p= 0.92,
Mann–Whitney U test). D, The number of cNEs detected using real and circularly shifted activities on the four recording blocks in A1, as shown in Figure 4F for MGB (spon1, p= 6.1 × 10−5;
spon2, p= 6.1 × 10−5; dmr1, p= 6.1 × 10−5; dmr2, p= 6.1 × 10−5; n= 17 recordings; Wilcoxon signed-rank test with Bonferroni’s correction). E, Correlations of IC weights identified on
adjacent activity blocks for real (blue) and circularly shifted data (light blue) in A1. The hollow histograms and histograms show the distribution of correlations and significant correlations
as in Figure 4E. The triangles show the median of IC weight correlations (spon, p= 1.4 × 10−33; dmr, p= 4.6 × 10−34; cross, p= 4.8 × 10−28; Mann–Whitney U test with Bonferroni’s
correction).
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was slightly more stable than the other (Fig. 4D). In MGB, within
spontaneous or stimulus-driven activity,∼80% of cNEs exhibited
stable structures across adjacent activity blocks (Fig. 4E).
Significantly fewer cNEs (54.8%) were stable across stimulus
conditions than within a stimulus condition (spon vs cross,
p = 0 × 10−4; dmr vs cross, p= 6 × 10−4; spon vs dmr, p= 1.0; per-
mutation test with Bonferroni’s correction). The results provide
evidence for the stability of cNEs in the MGB, during both spon-
taneous and stimulus-driven activity, although fewer cNEs
exhibit stable structures across different stimulus conditions
than within the same stimulus condition.

To test the possibility of false-positive detection of cNEs, we
generated shuffled data on each segment by circularly shifting
spike trains to disrupt their temporal correlations. We then
applied the cNE detection algorithm to the shuffled data using
the same criteria as for the real data. Our analysis revealed a dras-
tically lower number of cNEs identified in shuffled segments (real
data vs shuffled data, spon1, 3.2 ± 0.9 vs 0.2 ± 0.3; spon2, 3.1 ± 0.7
vs 0.3 ± 0.4; dmr1, 3.1 ± 0.9 vs 0.1 ± 0.2; dmr2, 3.2 ± 1.1 vs 0.1 ±
0.1, mean ± SD; Fig. 4F), suggesting that the chance of false-
positive detection of cNEs is quite low. Furthermore, any cNEs
identified in the shuffled data did not exhibit the same stability
across stimulus conditions observed in real data (Fig. 4E). In
summary, our findings indicate that the detection of cNEs in
the MGB is reliable and not susceptible to false positives.
Moreover, the properties of cNEs we observe, such as their stabi-
lity across stimulus conditions, are genuine and not artifacts of
random data.

cNE properties in MGB
We determined some basic structural properties of MGB cNEs.
The spontaneous activity in 34 MGB recordings revealed 115
cNEs with 3.4 ± 0.9 cNEs per penetration. More cNEs were
observed in penetrations that captured a higher number of iso-
lated SUs (Fig. 5A). The mean cNE size was 4.3 ± 1.5 members,

dependent on the number of isolated neurons (Fig. 5B). Of the
407 neurons isolated in MGB, the majority (78.6%) belonged
to a single cNE, 11.5% did not belong to any cNE, and 9.8%
belonged to multiple cNEs (Fig. 5C).

Next, we investigated whether cNE members were physically
and functionally closer to each other than nonmember pairs of
neurons. The pairwise spatial distance of cNEmembers was sign-
ificantly smaller than that of nonmember pairs of neurons in
MGB (Fig. 5D-i). Moreover, the span of cNEs, defined as the lon-
gest pairwise distance among all members, was shorter than that
of randomly selected groups of neurons in the recording
(Fig. 5D-ii). The tuning of cNE members was also closer to
each other, as the difference in the BF between cNEmember pairs
was smaller than that of nonmember pairs (Fig. 5E-i). The BF
span of cNEs, defined as the largest difference in BF among all
members, was smaller than that of randomly selected groups of
neurons (Fig. 5E-ii). Our results demonstrate that cNEs in the
MGB are composed of neurons that are physically and function-
ally closer to each other than nonmember pairs, suggesting a pat-
tern of local circuit organization as well as local functional
congruence.

While we observed similarity in the tuning of cNE members
(Fig. 5E-ii), cNEs are not limited to groups of neurons with sim-
ilar receptive fields. The distribution of the pairwise difference in
the BF of cNE members exhibits a long tail, where cNE members
could differ in their BF by >4 octaves (Fig. 5E-i). This suggests
that neurons with largely different tuning properties also exhibit
synchronous activities and participate in the same cNE.

Previous studies have proposed a manifestation of ensemble
coding based on neuronal groups with covarying firing rate
(Wills et al., 2005; Niessing and Friedrich, 2010; Aschauer
et al., 2022), for example, groups of neurons that jointly increased
their firing rates in response to various pure tones (Aschauer
et al., 2022). Assessing coactivation based on the firing rate in
response to various stimuli, however, is a limited basis for the

Figure 8. cNE events do not rely on slow oscillation in neural activity. A, Silence density and firing rate (FR) CV of population activity in response to DMR. Some recordings show strong slow
oscillation in population activity with pronounced silent period between highly active moments (i), while others show little (ii) or moderate (iii) levels of slow MU firing rate oscillation.
Recordings with silence density <0.4 and MU firing rate coefficient of variance <0.8 (dashed lines) did not show prominent slow oscillation in population activity and were included in B.
B, STRF MI with all spikes and cNE spikes in recordings without prominent slow oscillations (Wilcoxon signed-rank test). C, Correlation values of cNE IC weights on adjacent activity blocks
from recordings with no prominent slow oscillations in both spontaneous and stimulus-driven activities. The inset numbers show the percentage of cNEs with significantly matched IC weights
on adjacent blocks in MGB (red) and A1 (blue). The hollow histograms and histograms show all correlation values and significant correlation values with the same presentation scheme as in
Figure 4E.
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identification of neurons that functionally cooperate. Such meth-
ods may simply reflect coactivation due to the overlap between
receptive fields along the tonotopic axis, and distinct groups of
neurons may emerge due to BF discontinuities in the tonotopic
organization (Fig. 1A; Imaizumi et al., 2004). A more stringent
criterion, that of tight temporal synchrony, as utilized here, can
help differentiate between neuron groups based on coincidental
coactivation and groups based on synchronous coactivation.

cNEs enhance stimulus information encoding
Synchronization of neuronal spikes in the cortex has been found to
enhance information encoding about a stimulus compared with
the participating neurons alone (Dan et al., 1998; Atencio and
Schreiner, 2013; See et al., 2018). This is consistent with the mul-
tiplexed nature of an individual spike train, whereby spikes repre-
senting distinct stimulus aspects are mixed but can be separated
based on their synchrony with other neurons (Lankarany et al.,
2019; See et al., 2021). To investigate whether spikes from individ-
ual neurons that participate in cNEs also exhibit differential coding
compared with the neuron’s entire spike train, we compared the
STRFs calculated using all the spikes emitted by a neuron to
STRFs only based on the subset of spikes that contributed to
cNE events (“cNE spikes”; Fig. 6A). The spike trains were subsam-
pled to ensure an equal number of spikes across conditions. Our
analysis revealed that the STRFs of cNE spikes exhibit stronger
excitatory and inhibitory fields compared with the STRFs of all
spikes from the same neuron, as evidenced by the larger PTD of
the cNE STRFs (Fig. 6B-i), which quantifies the difference between
the largest and smallest value in the STRF. Given that PTD only
considers two extreme values in the STRF, we further evaluated
the reliability of cNE spikes relative to all spikes in encoding the
sound features represented by their STRFs by calculating the MI
between the stimulus and the spikes. Our results demonstrate
that cNE spike STRFs have higher MI than STRFs constructed
from all spikes (Fig. 6C-i).

To demonstrate that the increased information conveyed by
cNE spike STRFs was not simply because cNEs integrate signals
over multiple neurons and thus must enhance information
through population encoding, we compared STRFs derived from
cNE member and nonmember neurons. First, we compared the
MUSTRFs of cNEmember neurons (cNE group STRF) with those
of a neuronal group devoid of neurons sharing membership from
any cNE (non-cNE group STRF). The cNE group STRFs exhibited
a significantly higher MI than that of the non-cNE STRFs,
although no significant difference in PTD was observed
(Fig. 6B-ii,C-ii). As the group STRFs did not take spike synchrony
into account, we further compared cNE spikes and coincident
spikes of a cNE member. The coincident spikes refer to spikes
that occurred within a 10 ms window relative to firing of other
neurons not sharingmembership with the neuron under examina-
tion. Both the PTD and MI of cNE spike STRFs were significantly
higher than that of the coincident spike STRFs (Fig. 6B-iii,C-iii).

Collectively, these findings suggest that cNE spikes can
enhance information processing by increasing the SNR and pro-
moting more consistent encoding of certain stimulus features
compared with including all spikes from the neuron.
Furthermore, the enhanced information encoding of cNEs is
not a trivial result of population encoding but rather hinges on
the identity of cNE members and synchronous spike events.

MGB and A1 cNEs have similar properties
The properties and functions of cNEs have previously been
explored within the primary auditory cortex (A1; See et al.,

2018, 2021), whereas investigations into cNEs in subcortical
regions are limited. Hence, we aim to determine whether the
properties of cNEs in the MGB differ substantially from those
observed in A1 cNEs or if they share similarities. To target A1,
we used a two-shank probe with 64 channels. The MU responses
to pure tones from the two shanks of the probe exhibited similar
frequency tuning, as the shanks sampled nearby cortical columns
(Fig. 7A). The responses on each shank showed small variation in
their frequency preference along the depth of the probe, as neu-
rons in the same cortical column have consistent characteristic
frequencies across the active middle and deep cortical layers
(Atencio and Schreiner, 2010; Merzenich et al., 1975). Much
like cNEs in MGB, cNE spike STRFs in A1 exhibited higher
PTD and MI compared with all spike STRFs (Fig. 7B-i,C-i).
Compared to A1 neurons, MGB neurons displayed significantly
higher STRF PTD (all spike STRF PTD, p= 3.1 × 10−42; cNE
spike STRF PTD, p= 8.6 × 10−36) and MI (all spike STRF MI,
p = 1.9 × 10−25; cNE spike STRF MI, p= 4.2 × 10−22). We did
not observe, however, a significant difference between MGB
and A1 cNEs regarding their gain in cNE spike STRF PTD and
MI values over that of member neuron spiking (Fig. 7B-ii,C-ii).

Addressing concerns of potential false-positive detections in
A1, we compared the number of cNEs detected on real and
shuffled activities. A substantially smaller number of cNEs
were detected on shuffled data compared with real data (real
data vs shuffled data, spon1, 4.6 ± 1.5 vs 0.9 ± 0.6; spon2, 4.2 ±
1.2 vs 1.1 ± 0.6, dmr1, 4.3 ± 1.5 vs 0.9 ± 0.6, dmr2, 4.2 ± 1.2 vs
1.0 ± 0.8; mean ± SD; Fig. 7D). Moreover, A1 cNEs were mostly
stable across stimulus conditions, similar to MGB cNEs, whereas
false-positive cNEs did not show such stability (Fig. 7E). The sim-
ilarity between MGB and A1 cNEs in their stability across stimu-
lus conditions and enhanced information encoding provides
support for the concept of cNEs serving as a universal mecha-
nism for neuronal organization and information processing.

cNE formation does not rely on strong slow oscillations
Slow-wave oscillations, characterized by alternating periods of
large and sustained network activity (up states) and neural quies-
cence (down states), are frequently observed in the cortex and
thalamus during anesthesia (Steriade et al., 1993; Contreras
et al., 1996; Sanchez-Vives and McCormick, 2000; Hasenstaub
et al., 2007; Chauvette et al., 2011; Neske, 2016). To quantify
the level of slow oscillations in the recording and their potential
influence on cNE properties, we used two measurements: silence
density and the CV of the MU firing rate. Silence density repre-
sents the proportion of recording time when no spike was fired by
the neural population, which is a characteristic of the down state
in slow oscillations. In brains without strong slow oscillations,
the population of neurons fires continuously, resulting in low
silence density. The MU firing rate CV measures the level of var-
iation in the firing rate of the MU, which is high for neurons
going through up–down state cycles but small for neural popula-
tions with less synchronized oscillatory activity. Recordings with
high silence density and high MU firing rate CV showed prom-
inent slow oscillations, with epochs of synchronous firing of neu-
rons and epochs of quiescence with no spikes (Fig. 8A-i). In
contrast, recordings with low silence density and low MU
firing rate CV did not exhibit strong slow oscillations, displaying
relatively stable and continuous firing (Fig. 8A-ii). Recordings
with moderate silence density and MU firing rate CV exhibited
moments of elevated firing, although not as synchronized as in
recordings with strong oscillations (Fig. 8A-iii). By utilizing
silence density and MU firing rate CV, we were able to
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differentiate recordings without strong slow oscillations from
those with strong slow oscillations.

The relationship between cNEs and slow oscillations was
investigated by applying the cNE detection algorithm to record-
ings without strong oscillations in response to DMR during
15 min recordings. Recordings exhibiting low silence density
and low CV of the MU firing rate were selected to ensure the
absence of strong slow oscillations [n(animals), MGB= 8;
A1 = 18; n(recordings), MGB= 13; A1 = 10]. To determine
whether cNEs were solely a by-product of slow oscillations, we
compared the number of cNEs detected in these recordings
against the expected false-positive rate. We found a significantly
higher occurrence of cNEs in activity characterized by low silence
density and low MU firing rate CV in both MGB [n(cNE) = 3.9 ±
1.0, mean ± SD; p= 2.4 × 10−4, Wilcoxon signed-rank test] and
A1 [n(cNE) = 5.2 ± 1.9; p= 0.002] when compared with shuffled
data (as in Fig. 5). This supports the notion that cNEs are not
a by-product of slow oscillations.

Slow oscillations in thalamic and cortical firing rates are com-
monly observed and can be related to synchronized and desynchro-
nized states of the system (Metherate andAshe, 1993; Steriade et al.,
1993; Cowan and Wilson, 1994; Sanchez-Vives and McCormick,
2000; Hasenstaub et al., 2007). However, the effect of firing rate
changes on the information carried by cNEs is not known.
Therefore, we tested whether cNE spikes exhibit enhanced infor-
mation encoding in recordings without strong oscillations in
response to the stimulus. The results showed that cNE spike
STRFs have higher MI compared with all spikes in both MGB
and A1 (Fig. 8B), indicating that enhanced information encoding
is not specific to synchronized states under slow oscillations.
Additionally, a subset of recordings did not show strong slow oscil-
lations in either stimulus-driven or spontaneous activity [n(ani-
mals), MGB=4; A1= 6; n(recordings), MGB=5; A1=8]. We
also examined the stability of cNEs across andwithin stimulus con-
ditions in these recordings. The majority of cNEs were stable both
within and across stimulus conditions (Fig. 8C). In summary, cNEs
exist in both MGB and A1 without the presence of strong slow
oscillations in neural activity. Their enhanced information encod-
ing and stability across stimulus conditions are not due to a special
behavior of neurons in synchronized states under slow oscillations.

Discussion
This study aimed to investigate whether the auditory thalamus
(MGB) contains cNEs with enhanced information properties,
similar to those observed in A1. Our results confirm the presence
of cNEs in the MGB, with consistent compositions across vari-
ous, but especially smaller, bin sizes and stable structures across
different stimulus conditions. Importantly, coordinated spikes
among cNE member neurons exhibit higher reliability and con-
vey more stimulus-related information than those among indi-
vidual neurons. Neuronal groups formed by shared firing rate
changes to stimuli appear not to be congruent with cNEs.
Furthermore, our findings demonstrate that cNEs are not the
result of false-positive detections or by-products of slow-state
oscillations in anesthetized animals. These findings provide sup-
port for the notion that synchronized neuronal ensembles repre-
sent a general principle of local organization for information
processing in the auditory forebrain.

cNEs are ubiquitous in local circuit organization
Neuronal ensembles were proposed as fundamental units for
information processing in the brain (Hebb, 1949; Buzsáki,

2010), supported by evidence of precise temporal coordination
in cortical columns (Atencio and Schreiner, 2013; See et al.,
2018; Lankarany et al., 2019). Cortical columns consist of neu-
rons with fairly homogeneous properties maintained through
intracortical processing and shared afferent input (Mountcastle,
1997). This raises the question of whether cNEs are unique to
cortical organization or represent a general organizational and
information processing unit along sensory pathways. In the audi-
tory system, reciprocal connectivity exists between the MGB and
A1, with convergence of frequency tuning and spectral and tem-
poral modulation preferences, preserving topographic organiza-
tion in both regions (Miller et al., 2001, 2002; Bartlett and Wang,
2007; Read et al., 2011). Therefore, investigating neuronal coor-
dination in the MGB, where neurons possess similar properties
but differ in their organizational and cytoarchitectonic patterns
from A1 (Winer, 2010), can provide insights into whether
cNEs are general organizational principles of local circuits or spe-
cialized units specific to the cortical circuit composition.

We conducted recordings of neuronal activity across multiple
isofrequency layers of the MGB and were able to reliably detect
cNEs in MGB (Fig. 2). Neurons within the same cNE displayed
closer spatial proximity and shared more similar tuning proper-
ties (Fig. 5D,E), indicating functional coherence within cNEs. It is
important to note that our recordings were limited to relatively
small populations of 10–30 neurons due to the techniques
employed. Therefore, the confinement of spatial and frequency
tuning properties within cNEs may vary when larger populations
with hundreds or thousands of neurons are recorded.

We further demonstrated that the identification of cNEs relies
on the temporal coordination among neurons. When the original
temporal order among neurons was disrupted through circular
shuffling of spike trains, a significantly lower number of cNEs
were detected in both the MGB and A1 (Figs. 4F, 7D).
Moreover, the few false-positive cNEs that were identified did
not exhibit the properties observed in cNEs identified in the
real data, such as stability across different stimulus conditions
(Figs. 4E, 7E). These findings provide strong support for the crit-
ical role of temporal coordination in the formation and charac-
terization of cNEs in the auditory thalamus and cortex.

Timescale of cNEs
Previous studies have investigated neuronal synchrony and
coordination across widely differing timescales, ranging from a
few milliseconds (Lankarany et al., 2019; Shahidi et al., 2019;
El-Gaby et al., 2021) to several hundred milliseconds (Miller
et al., 2014; Tremblay et al., 2015; Filipchuk et al., 2022). The
selection of a specific timescale in these studies was influenced
by various factors, including the temporal resolution of the
recording methods used, the targeted functional timescale, and
the interneuronal distance under investigation. In the context
of auditory processing, where information changes rapidly
within tens of milliseconds (Rosen, 1992), we specifically chose
a temporal resolution of 10 ms. This choice aligns with the time-
scale at which auditory information operates and holds relevance
for synaptic integration. Selecting an appropriate timescale is
crucial for future investigations into the functional role of cNEs
in synaptic transmission within the auditory thalamocortical
system.

We have demonstrated the robustness of cNE identification
across different time bin sizes (Fig. 3), which can be attributed
to the sparse nature of neural activity. Since most synchronized
neuronal firing occurs at frequencies below 10 Hz (O’Connor
et al., 2010), the choice of time windows, whether 10 ms or
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20 ms, has minimal impact on the observed correlations among
neurons. However, it is important to note that cNEs identified
with longer time resolutions (hundreds of milliseconds) may
significantly differ from those identified with shorter resolutions
(tens of milliseconds). Specifically, cNEs identified with larger
time bins may falsely include “synchronous” events from burst-
ing or rebound activity rather than from an initial period that
dominates the transmission of stimulus-triggered information.
Long synchronization windows may also include neurons dis-
playing weaker synchronization within short time windows while
potentially de-emphasizing neurons with high temporal preci-
sion in synchrony (Fig. 3D). Hence, the chosen temporal resolu-
tion influences the composition and properties of cNEs,
emphasizing the importance of selecting the appropriate time-
scale for studying neural ensembles.

Stability of cNEs for spontaneous and evoked activity
Our study revealed that a significant proportion of cNEs (55% in
MGB and 76% in A1) maintained a consistent composition dur-
ing both spontaneous and sensory-evoked neural activity (Figs.
4E, 7E). This suggests that cNEs generally represent stable confi-
gurations within local circuits that can manifest independently of
stimulus-driven synchrony. These findings align with previous
research demonstrating similarities between patterns observed
in spontaneous and stimulus-driven activity (Luczak et al.,
2009). Moreover, the similarity betweenMGB and A1 cNEs indi-
cates that functional network units are not limited to cortical
organization but likely exist as a common modality across mul-
tiple stages of the sensory pathway.

cNEs enhance stimulus encoding
Considering that cNEs were observed in both spontaneous and
stimulus-driven activity, some argue that they are merely a reflec-
tion of background activity and not involved in stimulus encod-
ing and even potentially impairing it (Zohary et al., 1994; Abbott
and Dayan, 1999; Jermakowicz et al., 2009). Contrary to this
notion, our observations revealed that cNE spikes exhibit a
higher SNR and convey more information per spike when com-
pared with the entire spike train (Fig. 6B,C). This suggests that
cNE events are more stimulus selective than the contributing
neurons (See et al., 2021) and exhibit a more reliable response
to the stimulus features represented by the cNE STRF. The stable
connectivity pattern revealed by spontaneous, intrinsic activity
likely reveals aspects that have been imprinted by extensive expe-
rience and the behavioral relevance of the associated functional
preferences.

Additionally, we observed an enhanced information encoding
in cNE groups and cNE spikes when compared with non-cNE
groups or coincident spikes, with control of the total number
of neurons in the groups (Fig. 6B,C). This observation suggests
that the information increase relies on the coordination among
cNE member neurons, rather than being a simple result of inde-
pendent population coding (deCharms, 1998; Hatsopoulos et al.,
1998).

Correlated spikes can enhance the transmission of salient
auditory information by synchronously converging on their tar-
gets (Stevens and Zador, 1998; Zandvakili and Kohn, 2015).
Additionally, neurons exhibit a multiplexed nature of stimulus
encoding, where spikes from the same neuron can carry informa-
tion related to distinct stimulus aspects (Walker et al., 2011;
Lankarany et al., 2019; See et al., 2021). The function of cNEs
may involve selectively choosing spikes from member neurons
that are most relevant for a specific target information and

enhancing information propagation while excluding functionally
irrelevant spikes of the same neurons. This mechanism signifi-
cantly improves both the robustness and capacity of information
encoded within a population of neurons (Walker et al., 2011; See
et al., 2021). Thus, the presence of cNEs and their coordination
within a neuronal population can facilitate efficient information
processing and transmission in the auditory system. Future stud-
ies involving simultaneous recordings from two stations along
the auditory pathway will be necessary to test this hypothesis.

cNE formation does not depend on strong slow oscillations
Slow oscillations are commonly observed in neural activity dur-
ing anesthesia (Chauvette et al., 2011; Dasilva et al., 2021) and
have been shown to influence stimulus encoding (Pachitariu
et al., 2015). Concerns have been raised regarding whether
cNEs are solely a result of anesthesia-induced synchrony.
However, our research findings refute this notion. We focused
on a distinct timescale of synchronization unrelated to
anesthesia-induced slow oscillations and successfully detected
cNEs in recordings without strong slow oscillations. These
cNEs exhibited stable structures and enhanced information
properties, indicating that they are not solely a by-product of
anesthesia-induced synchrony. While we ruled out slow oscilla-
tions as the primary force underlying cNE formation, it is impor-
tant to consider their potential interaction with other oscillatory
activity, such as gamma rhythms (Oberto et al., 2022). Further
research is needed to explore the interplay between cNEs and
different types of brain oscillations.

References
Abbott LF, Dayan P (1999) The effect of correlated variability on the accuracy

of a population code. Neural Comput 11:91–101.
Anderson LA, Linden JF (2011) Physiological differences between histologi-

cally defined subdivisions in the mouse auditory thalamus. Hear Res
274:48–60.

Aschauer DF, Eppler JB, Ewig L, Chambers AR, Pokorny C, Kaschube M,
Rumpel S (2022) Learning-induced biases in the ongoing dynamics of
sensory representations predict stimulus generalization. Cell Rep 38:
110340.

Atencio CA, Schreiner CE (2008) Spectrotemporal processing differences
between auditory cortical fast-spiking and regular-spiking neurons.
J Neurosci 28:3897–3910.

Atencio CA, Schreiner CE (2010) Laminar diversity of dynamic sound pro-
cessing in cat primary auditory cortex. J Neurophysiol 103:192–205.

Atencio CA, Schreiner CE (2013) Auditory cortical local subnetworks are
characterized by sharply synchronous activity. J Neurosci 33:18503–
18514.

Baeg EH, KimYB, HuhK,Mook-Jung I, KimHT, JungMW (2003) Dynamics
of population code for working memory in the prefrontal cortex. Neuron
40:177–188.

Bartlett EL (2013) The organization and physiology of the auditory thalamus
and its role in processing acoustic features important for speech percep-
tion. Brain Lang 126:29–48.

Bartlett EL, Wang X (2007) Neural representations of temporally modulated
signals in the auditory thalamus of awake primates. J Neurophysiol 97:
1005–1017.

Bathellier B, Ushakova L, Rumpel S (2012) Discrete neocortical dynamics pre-
dict behavioral categorization of sounds. Neuron 76:435–449.

Bizley JK, Walker KMM, King AJ, Schnupp JWH (2010) Neural ensemble
codes for stimulus periodicity in auditory cortex. J Neurosci 30:5078–
5091.

Boucly CJ, Pompili MN, Todorova R, Leroux EM, Wiener SI, Zugaro M
(2022) Flexible communication between cell assemblies and ‘reader’ neu-
rons. bioRxiv:2009–2022.

Brosch M, Schreiner CE (1999) Correlations between neural discharges are
related to receptive field properties in cat primary auditory cortex. Eur J
Neurosci 11:3517–3530.

14 • J. Neurosci., May 8, 2024 • 44(19):e1729232024 Hu et al. • cNEs in MGB



Buzsáki G (2010) Neural syntax: cell assemblies, synapsembles, and readers.
Neuron 68:362–385.

Carrillo-Reid L, Miller JEK, Hamm JP, Jackson J, Yuste R (2015) Endogenous
sequential cortical activity evoked by visual stimuli. J Neurosci 35:8813–
8828.

Chamberland S, Yang HH, Pan MM, Evans SW, Guan S, Chavarha M, Yang
Y, Salesse C,WuH,Wu JC (2017) Fast two-photon imaging of subcellular
voltage dynamics in neuronal tissue with genetically encoded indicators.
Elife 6:e25690.

Chauvette S, Crochet S, Volgushev M, Timofeev I (2011) Properties of slow
oscillation during slow-wave sleep and anesthesia in cats. J Neurosci 31:
14998–15008.

Contreras D, Timofeev I, Steriade M (1996) Mechanisms of long-lasting
hyperpolarizations underlying slow sleep oscillations in cat corticothala-
mic networks. J Physiol 494:251–264.

Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal projec-
tions of single corticostriatal neurons in the rat medial agranular cortex.
J Neurophysiol 71:17–32.

D’amour JA, Froemke RC (2015) Inhibitory and excitatory spike-timing-
dependent plasticity in the auditory cortex. Neuron 86:514–528.

Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual information
by precisely correlated spikes in the lateral geniculate nucleus. Nat
Neurosci 1:501–507.

Dasilva M, Camassa A, Navarro-Guzman A, Pazienti A, Perez-Mendez L,
Zamora-López G, Mattia M, Sanchez-Vives MV (2021) Modulation of
cortical slow oscillations and complexity across anesthesia levels.
Neuroimage 224:117415.

deCharms RC (1998) Information coding in the cortex by independent or
coordinated populations. Proc Natl Acad Sci U S A 95:15166–15168.

deCharms RC, Merzenich MM (1996) Primary cortical representation of
sounds by the coordination of action-potential timing. Nature 381:610–
613.

Domanski APF, Kucewicz MT, Russo E, Tricklebank MD, Robinson ESJ,
Durstewitz D, Jones MW (2023) Distinct hippocampal-prefrontal neural
assemblies coordinate memory encoding, maintenance, and recall. Curr
Biol 33:1220–1236.

Ebrahimi S, Lecoq J, Rumyantsev O, Tasci T, Zhang Y, Irimia C, Li J, Ganguli
S, Schnitzer MJ (2022) Emergent reliability in sensory cortical coding and
inter-area communication. Nature 605:713–721.

Eggermont JJ (2000) Sound-induced synchronization of neural activity
between and within three auditory cortical areas. J Neurophysiol 83:
2708–2722.

El-Gaby M, Reeve HM, Lopes-dos-Santos V, Campo-Urriza N, Perestenko
PV, Morley A, Strickland LAM, Lukács IP, Paulsen O, Dupret D (2021)
An emergent neural coactivity code for dynamic memory. Nat Neurosci
24:694–704.

Escabí MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis
by neurons in the auditory midbrain. J Neurosci 22:4114–4131.

Filipchuk A, Schwenkgrub J, Destexhe A, Bathellier B (2022) Awake percep-
tion is associated with dedicated neuronal assemblies in the cerebral cor-
tex. Nat Neurosci 25:1327–1338.

Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G (2003) Organization of
cell assemblies in the hippocampus. Nature 424:552–556.

Hasenstaub A, Sachdev RNS, McCormick DA (2007) State changes rapidly
modulate cortical neuronal responsiveness. J Neurosci 27:9607–9622.

Hatsopoulos NG, Ojakangas CL, Paninski L, Donoghue JP (1998)
Information about movement direction obtained from synchronous
activity of motor cortical neurons. Proc Natl Acad Sci U S A 95:15706–
15711.

Hebb DO (1949) The organization of behavior. New York, NY: John Wiley &
Son.

Homma NY, Hullett PW, Atencio CA, Schreiner CE (2020) Auditory cortical
plasticity dependent on environmental noise statistics. Cell Rep 30:4445–
4458.e5.

Imaizumi K, Priebe NJ, Crum PA, Bedenbaugh PH, Cheung SW, Schreiner
CE (2004) Modular functional organization of cat anterior auditory field.
J Neurophysiol 92:444–457.

Ince RAA, Panzeri S, Kayser C (2013) Neural codes formed by small and tem-
porally precise populations in auditory cortex. J Neurosci 33:18277–
18287.

Jermakowicz WJ, Chen X, Khaytin I, Bonds AB, Casagrande VA (2009)
Relationship between spontaneous and evoked spike-time correlations
in primate visual cortex. J Neurophysiol 101:2279–2289.

Konorski J (1948) Conditioned reflexes and neuron organization. Cambridge,
MA: Cambridge University Press.

Kreiter AK, Singer W (1996) Stimulus-dependent synchronization of neuro-
nal responses in the visual cortex of the awake macaque monkey.
J Neurosci 16:2381–2396.

LankaranyM, Al-Basha D, Ratté S, Prescott SA (2019) Differentially synchro-
nized spiking enables multiplexed neural coding. Proc Natl Acad Sci U S
A 116:10097–10102.

Laubach M, Wessberg J, Nicolelis MAL (2000) Cortical ensemble activity
increasingly predicts behaviour outcomes during learning of a motor
task. Nature 405:567–571.

Léger JF, Stern EA, Aertsen A, Heck D (2005) Synaptic integration in rat fron-
tal cortex shaped by network activity. J Neurophysiol 93:281–293.

Lopes-dos-Santos V, Ribeiro S, Tort ABL (2013) Detecting cell assemblies in
large neuronal populations. J Neurosci Methods 220:149–166.

Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the
realm of possible sensory responses in neocortical populations.
Neuron 62:413–425.

Marchenko VA, Pastur LA (1967) Distribution of eigenvalues for some sets of
random matrices. Mat Sb 114:507–536.

MerzenichMM, Knight PL, Roth GL (1975) Representation of cochlea within
primary auditory cortex in the cat. J Neurophysiol 38:231–249.

Metherate R, Ashe JH (1993) Nucleus basalis stimulation facilitates
thalamocortical synaptic transmission in the rat auditory cortex.
Synapse 14:132–143.

Miller JEK, Ayzenshtat I, Carrillo-Reid L, Yuste R (2014) Visual stimuli
recruit intrinsically generated cortical ensembles. Proc Natl Acad Sci U
S A 111:E4053–E4061.

Miller LM, Escabí MA, Read HL, Schreiner CE (2001) Functional conver-
gence of response properties in the auditory thalamocortical system.
Neuron 32:151–160.

Miller LM, Escabí MA, ReadHL, Schreiner CE (2002) Spectrotemporal recep-
tive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol
87:516–527.

Miller LM, Recanzone GH (2009) Populations of auditory cortical neurons
can accurately encode acoustic space across stimulus intensity. Proc
Natl Acad Sci U S A 106:5931–5935.

Miller LM, Schreiner CE (2000) Stimulus-based state control in the thalamo-
cortical system. J Neurosci 20:7011–7016.

Mochol G, Hermoso-Mendizabal A, Sakata S, Harris KD, De La Rocha J
(2015) Stochastic transitions into silence cause noise correlations in cor-
tical circuits. Proc Natl Acad Sci U S A 112:3529–3534.

Mogensen H, Norrlid J, Enander JMD, Wahlbom A, Jörntell H (2019)
Absence of repetitive correlation patterns between pairs of adjacent neo-
cortical neurons in vivo. Front Neural Circuits 13:1–11.

Morel A, Rouiller E, de Ribaupierre Y, de Ribaupierre F (1987) Tonotopic
organization in the medial geniculate body (MGB) of lightly anesthetized
cats. Exp Brain Res 69:24–42.

Mountcastle VB (1997) The columnar organization of the neocortex. Brain
120:701–722.

Neske GT (2016) The slow oscillation in cortical and thalamic networks:
mechanisms and functions. Front Neural Circuits 9:1–25.

Niessing J, Friedrich RW (2010) Olfactory pattern classification by discrete
neuronal network states. Nature 465:47–52.

Oberto VJ, Boucly CJ, Gao H, Todorova R, Zugaro MB, Wiener SI (2022)
Distributed cell assemblies spanning prefrontal cortex and striatum.
Curr Biol 32:1–13.

O’Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in bar-
rel cortex underlying vibrissa-based object localization in mice. Neuron
67:1048–1061.

Pachitariu M, Lyamzin DR, Sahani M, Lesica NA (2015) State-dependent
population coding in primary auditory cortex. J Neurosci 35:2058–2073.

Pachitariu M, Sridhar S, Stringer C (2023) Solving the spike sorting problem
with Kilosort. bioRxiv:2023.01.07.523036.

Paninski L, Shoham S, Fellows MR, Hatsopoulos NG, Donoghue JP (2004)
Superlinear population encoding of dynamic hand trajectory in primary
motor cortex. J Neurosci 24:8551–8561.

Peyrache A, Benchenane K, Khamassi M, Wiener SI, Battaglia FP (2010)
Principal component analysis of ensemble recordings reveals cell assem-
blies at high temporal resolution. J Comput Neurosci 29:309–325.

Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric
auditory receptive field organization across five cortical fields in the albino
rat. J Neurophysiol 97:3621–3638.

Hu et al. • cNEs in MGB J. Neurosci., May 8, 2024 • 44(19):e1729232024 • 15



Qiu A, Schreiner CE, Escabí MA (2003) Gabor analysis of auditory midbrain
receptive fields: spectro-temporal and binaural composition.
J Neurophysiol 90:456–476.

Read HL, Nauen DW, Escabí MA, Miller LM, Schreiner CE, Winer JA (2011)
Distinct core thalamocortical pathways to central and dorsal primary
auditory cortex. Hear Res 274:95–104.

Rosen S (1992) Temporal information in speech: acoustic, auditory and lin-
guistic aspects. Philos Trans R Soc Lond Ser B Biol Sci 336:367–373.

Sanchez-Vives MV, McCormick DA (2000) Cellular and network mecha-
nisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:
1027–1034.

See JZ, Atencio CA, Sohal VS, Schreiner CE (2018) Coordinated neuronal
ensembles in primary auditory cortical columns. Elife 7:1–33.

See JZ, Homma NY, Atencio CA, Sohal VS, Schreiner CE (2021) Information
diversity in individual auditory cortical neurons is associated with func-
tionally distinct coordinated neuronal ensembles. Sci Rep 11:4064.

Shahidi N, Andrei AR, Hu M, Dragoi V (2019) High-order coordination of
cortical spiking activity modulates perceptual accuracy. Nat Neurosci
22:1148–1158.

Smith PH, Uhlrich DJ, Manning KA, Banks MI (2012) Thalamocortical pro-
jections to rat auditory cortex from the ventral and dorsal divisions of the
medial geniculate nucleus. J Comp Neurol 520:34–51.

Steinmetz NA, et al. (2021) Neuropixels 2.0: a miniaturized high-density
probe for stable, long-term brain recordings. Science 372:eabf4588.

Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscilla-
tions in the sleeping and aroused brain. Science 262:679–685.

Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of
cortical neurons. Nat Neurosci 1:210–217.

Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of
nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:
2315–2331.

Tremblay S, Pieper F, Sachs A, Martinez-Trujillo J (2015) Attentional filtering
of visual information by neuronal ensembles in the primate lateral pre-
frontal cortex. Neuron 85:202–215.

WahlbomA,Mogensen H, Jörntell H (2021)Widely different correlation pat-
terns between pairs of adjacent thalamic neurons in vivo. Front Neural
Circuits 15:1–10.

Walker KMM, Bizley JK, King AJ, Schnupp JWH (2011) Multiplexed and
robust representations of sound features in auditory cortex. J Neurosci
31:14565–14576.

Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics
in the hippocampal representation of the local environment. Science 308:
873–876.

Winer JA (2010) Neurochemical organization of the medial geniculate body
and auditory cortex. In: The auditory cortex, pp 209–234. Springer.

Winer JA, Miller LM, Lee CC, Schreiner CE (2005) Auditory thalamocortical
transformation: structure and function. Trends Neurosci 28:255–263.

Yoshida T, Ohki K (2020)Natural images are reliably represented by sparse and
variable populations of neurons in visual cortex. Nat Commun 11:872.

Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev
Neurosci 16:487–497.

Zandvakili A, Kohn A (2015) Coordinated neuronal activity enhances corti-
cocortical communication. Neuron 87:827–839.

Zohary E, Shadlen MN, NewsomeWT (1994) Correlated neuronal discharge
rate and its implications for psychophysical performance. Nature 370:
140–143.

16 • J. Neurosci., May 8, 2024 • 44(19):e1729232024 Hu et al. • cNEs in MGB


	 Introduction
	 Materials and Methods
	Outline placeholder
	Outline placeholder
	 Animals
	 Surgery
	 Electrophysiology
	 Stimuli
	 Detecting cNEs
	 Matching cNEs across different bin sizes
	 Assessing stability of cNEs
	 False-positive detection of cNEs
	 STRF analysis
	 STRF comparisons between cNEs and non-cNE groups of neurons
	 Quantifying slow oscillations in neural activity
	 Permutation test
	 Statistics



	 Results
	 Auditory responses in MGB
	 Identifying groups of neurons with coordinated firing in MGB
	 Variability in cNE identity for different bin sizes
	 Variability in cNE structures across spontaneous and evoked activity
	 cNE properties in MGB
	 cNEs enhance stimulus information encoding
	 MGB and A1 cNEs have similar properties
	 cNE formation does not rely on strong slow oscillations

	 Discussion
	 cNEs are ubiquitous in local circuit organization
	 Timescale of cNEs
	 Stability of cNEs for spontaneous and evoked activity
	 cNEs enhance stimulus encoding
	 cNE formation does not depend on strong slow oscillations

	 References

