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ABSTRACT: The risk of developing chronic illnesses and disabilities is increasing with age. To predict and 

prevent aging, biomarkers relevant to the aging process must be identified. This paper reviews the known 

molecular, cellular, and physiological biomarkers of aging. Moreover, we discuss the currently available 

technologies for identifying these biomarkers, and their applications and potential in aging research. We hope 

that this review will stimulate further research and innovation in this emerging and fast-growing field. 
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1. Introduction  
 

Owing to advances in public health and medicine, 

population aging has become a severe challenge 

worldwide. In 2020, individuals aged 60 years and above 

outnumbered those aged less than 5 years. In the current 

trajectory, the share of the global population over the age 

of 60 will almost double from 12% to 22% between 2015 

to 2050 [1]. Simultaneously, human life expectancy has 

been increasing, from an average of 67 years in 2000 to 

71 years in 2015 [2]. Aging affects everyone and has 

substantial implications for the evolution of a nation's 

economy over time. 

Aging is a gradual degenerative condition 

characterized by declining tissue stem cell reserves, 

shrinking organs, aging appearance, reduced life 

expectancy, decreased capacity to handle stress and 

injury, and the need for regeneration [3]. It is 

accompanied by organ damage, metabolic dysfunction, 

decreased bone density, matrix changes, tissue 

inflammation, and cell aging, the modifications of which 

reflect potential molecular alterations in nutrient 

perception, protein balance, mitochondria, intercellular 

interactions, DNA repair, and epigenetics [4], or the 

influence of external factors such as chemotherapy, 

smoking, radiation, high-fat diets, and other lifestyle or 

environmental factors [5]. These factors increase the risk 

of age-related diseases and mortality. Additionally, aging 

is a key risk factor for many diseases and disorders, 

including diabetes, osteoarthritis, Alzheimer’s disease 

(AD), cancer, and cardiovascular diseases  [6, 7]. Without 

new models of medicine and healthcare, chronic diseases, 

which already have unfavorable social and economic 

repercussions, will continue to have an unsustainable 

impact globally. Fundamental studies on the mechanisms 

of aging and methods for reducing its consequences have 

been stimulated by the connection between aging and 

these disorders. 
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The search for reliable aging biomarkers is urgent, as 

they could enable better aging prediction, faster discovery 

of anti-aging strategies, and improved intervention and 

prognosis for age-related diseases. Furthermore, the 

discovery of reliable aging biomarkers may have 

substantial effects on preventing age-related ailments. For 

example, the development of neurofibrillary tangles is 

preceded by the concentration of senescent cells, 

indicating that senescent cells may affect how tangles 

form [8]. Furthermore, age-dependent AD pathogenesis 

might be mediated by molecular networks of gene 

regulatory elements, which could provide new therapeutic 

targets for AD treatment [9]. The search for precise and 

adaptable biomarkers of aging has benefited from the 

work of numerous scientists over the years. To identify 

and verify age indicators or advance basic gerontological 

studies and clinical translational research, the 

mechanisms of aging and its correlation with diseases 

must be clearly understood [10]. However, we must 

acknowledge the heterogeneity of aging paths, the causes 

and complexity of aging. To date, no reliable and 

independent aging biomarkers are available that can 

precisely depict an individual's aging condition or forecast 

the aging process and life span. 

This paper reviews the current research hotspots, 

identifies cellular, molecular, and physiological 

biomarkers, and systematically evaluates the technologies 

and methods involving aging biomarkers. This review 

aims to assist readers in understanding concepts better, 

achieve insights into the effectiveness and limitations of 

existing studies and appreciate more vividly the 

application prospects and potential development trends of 

aging biomarkers. 

 

2. Importance and Characteristics of Aging 

Biomarkers  

 

2.1. Definition of aging biomarkers and their role in 

assessing biological age  

 

Aging biomarkers are physiological and molecular 

indicators of age-related structural or functional 

degeneration at the fuselage, organ, tissue, cellular, and 

subcellular levels. It can be used to monitor and analyze 

the biological changes associated with aging, and to 

anticipate the progression of organ aging to disease. In the 

study of aging, three fundamental issues, including a 

person’s actual age, the reason for aging, and the 

possibility of healthy aging are explored. Aging 

biomarkers help establish biological age (BA). This is the 

basis and prerequisite for an in-depth aging assessment, 

early warning, and intervention for age-related diseases. 

Therefore, systematic research on aging biomarkers is 

important to promote the development of basic and 

translational medicine for aging and to help enhance the 

health of the elderly. 

 

2.2. Key characteristics of effective aging biomarkers 

 

The American Federation for Aging Research (AFAR) 

recommended the following criteria for reliable and 

advantageous biomarkers of aging [11]: (1) It must 

forecast age-related physiological, cognitive, and physical 

function of a person. That is, the BA must be determined, 

which more correctly characterizes one’s physical state 

than the chronological age (CA) and anticipates the future 

incidence of age-related diseases. (2) It must be testable 

and harmless to the test subject. Moreover, it must be 

technically straightforward for the vast majority of 

clinical laboratories to execute the test precisely and 

reliably without using any specialist tools or technologies. 

(3) It must be valid in both human beings and 

experimental animals, because experiments prior to 

clinical testing are always performed on non-human 

subjects. Therefore, in addition to avoiding discomfort or 

tension for the patients, the usage of biomarkers should be 

as simple and affordable as possible.  

Recently, a systematic review suggested that a 

biometric measure for qualifying aging must be specific, 

systemic, and serviceable [12]. (1) Specificity: Aging is 

heterogeneous, not only in individuals of the same 

species, but also among different tissues and organs of the 

same individual. Therefore, different biomarkers will be 

required to evaluate the age of each organ in an organism. 

Similarly, each biomarker must capture one-of-a-kind 

aging signals of the organ being investigated. In addition, 

biomarkers of aging should predict the likelihood of 

development of illness, which necessitates a particular 

threshold marking the shift from physiological aging to 

pathological diseases. (2) Systemic: Aging affects each 

organ and system in the body, and changes in one organ 

may cause compensation or feedback in the whole body, 

so markers interact with each other and are not 

independent of each other. Biomarkers should be obtained 

from a variety of sources to accurately represent the 

systemic changes that occur with aging. (3) 

Serviceability: Biomarkers gathered using non-invasive 

techniques are ideal for translation into clinical 

applications. Given that aging is a process that involves 

gradual deterioration and requires longitudinal studies 

over a prolonged period, non-invasive techniques have 

become the preferred modality for detection.  

Carlos et al. also proposed several criteria that must 

be applied to each aging biomarker. However, relative to 

the aforementioned characterization, they proposed a 

complementary one: markers that accelerate aging can be 

highlighted experimentally, and intervention in the aging 

biomarker could potentially decelerate, halt, or even 
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reverse aging [13]. The disparity between BA and CA 

may serve as a basis for determining the extent to which 

certain markers contribute to aging. That is, objective 

quantification of the morphological and functional 

deterioration that affects aging organisms is the key to 

successfully assessing BA, both in laboratory animals and 

humans. 

 

2.3. Importance of longitudinal studies for evaluating 

aging biomarkers 

 

Aging is a pervasive process that results from a mix of 

elements ranging from hereditary factors to 

environmental influences. Extensive cross-sectional 

studies have been conducted on aging biomarkers, and the 

molecular changes accompanying human aging must also 

be studied to achieve a deeper understanding of the 

mechanisms of aging, because longitudinal studies are 

fundamental to understanding how the environment 

shapes the aging phenotype and influences the 

development of aging. Morgan et al. noted that aging 

gives rise to variable degrees of DNA methylation 

(DNAm) alterations in mammals and is considered to 

facilitate the development of age-related diseases [14]. A 

distinct DNAm age can be calculated by analyzing the 

methylation status in various tissues. This DNAm age 

correlated well with CA, which may be determined with 

relative precision within a few years [15]. In addition to 

epigenetic markers, some clinical indicators such as 

glycated hemoglobin and insulin-like growth factor-1 

shift with advancing age [16]. This indicates that aging is 

accelerated when people check for important marker 

abnormalities, with a concomitant increase in the 

prevalence of associated metabolic or cardiovascular 

diseases. In another longitudinal study, the authors 

identified individual markers of aging that changed in 

short periods of two to three years. Moreover, they  

established many forms of aging patterns that may occur 

in different individuals according to the kinds of 

molecular pathways that can be altered throughout the 

course of one’s lifetime in a particular individual, thereby 

offering molecular analysis of each individual that could 

be improved at the individual level through selective 

interventions or lifestyle changes [17]. Therefore, over 

time, aging biomarkers could potentially control aging at 

an individual level. In conclusion, longitudinal studies 

will help us gain a better insight into the effects of aging 

on specific functions of organs and systems and help us 

understand the relevant features of the function and 

structure of each system during different physiological 

processes, as well as their changes during the individual 

life cycle. Combined interventions at a specific time of 

aging may prevent the emergence of age-related diseases 

and improve the quality of life, even prolonging one’s 

healthy life expectancy. 

 

3. Molecular Aging Biomarkers  

 

3.1. Telomere length and telomerase activity as 

indicators of cellular aging  

 

Telomere length (TL) and telomerase activity (TA) have 

been established as essential indicators of aging. To 

evaluate the drop in TL with age, cross-sectional data over 

the period 1999-2022 on 7826 people undergoing TL 

measurement from the National Health and Nutrition 

Examination Survey of the US population were examined, 

and the results revealed that TL became shorter with age 

[18]. Age-related TL changes have also been observed in 

circulating peripheral blood mononuclear cells of three 

male rat species: Brown Norway, Sprague-Dawley, and 

Fischer 344 [19]. Telomeres are DNA-protein 

constructions at the ends of chromosomes that consist of 

multicomponent protein complexes including shelterin 

and short tandem DNA repeats [20]. Due to issues with 

terminal replication, telomeres shorten throughout cell 

division when the DNA replication machinery fails to 

finish synthesis at the tip of linear chromosomes [21]. 

However, the loss of telomeres can be offset by 

telomerase [22]. As shown in Figure 1, telomerase is a 

ribonucleoprotein complex composed of a telomerase 

reverse transcriptase (TERT) catalytic subunit, which 

copies the telomerase RNA component (TERC) and 

synthesizes new telomere repeats [3]. The systematic 

knockout of telomerase subunits results in a shorter 

lifetime, rapid organ failure, and a TL reduction [23-26]. 

Overexpression of TERT in mTert-/- cells reversed the 

accelerated senescence and transformation phenotypes 

caused by the removal or downregulation of TERT 

expression using CRISPR/Cas9 or shRNA [27]. 

Similarly, telomerase reactivation in TERT-ER mice 

extended telomeres, reduced DNA damage signaling, and 

reversed degenerative phenotypes in multiple organs [28]. 

Animal models in which telomerase genes are absent or 

inducible have helped researchers establish links among 

telomeres, telomerase, aging and related dysfunctions, 

thereby confirming the crucial role of telomeres in aging.  

Consequently, intervening in the biological processes 

associated with telomeres or telomerase to slow aging or 

improve age-related dysfunction must be studied. An in-

depth understanding of telomerase-regulated molecular 

networks and telomerase-activated regeneration in 

prematurely aged mice has stimulated interest in 

developing anti-aging drugs that activate TERT 

expression. In the embryonic fibroblasts of haploid 

defective mice, a small molecule telomerase activator can 

lengthen the average telomeres, lower the fraction of 
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extremely short telomeres, and lessen DNA damage [29]. 

Inhibition of PAPD5, an oligo-adenylation and TERC-

stabilizing polymerase, could restore TL in pluripotent 

stem cells induced in patients with congenital 

dyskeratosis [30]. In addition, genome-wide thymidine 

(dT) nucleotide metabolism was identified as a constraint 

in the maintenance of human telomeres via CRISPR/Cas9 

functional TL screening. When telomere anomalies are 

inherited, SAMHD1 inhibition or dT supplementation 

may help regenerate the telomeres of induced pluripotent 

stem cells [31]. Sirtuin 6 (SIRT6) is closely associated 

with telomere integrity maintenance. It deacetylates 

telomeres during the S phase to stabilize specific 

telomerase enzymes and prevent abnormal loss of 

telomere sequences; additionally, it promotes chromatin 

depolymerization of damaged telomeres, which 

substantially affects the control  of telomere movement 

following injury [32]. To explore whether short telomeres 

are irreversibly damaged after reestablishment of 

telomerase activity, the researchers crossbred Terc+/- mice 

with late-stage telomerase-deficient Terc-/- mice that had 

been reintroduced to telomerase, resulting in offspring 

with identifiable telomeres and free of chromosomal 

instability, and unaffected by early aging [33]. Various 

aspects remain unclear, such as the accuracy of TL, TA, 

and TERC measurement methods, whether TL and TA 

can be employed as direct markers of age-related 

disorders and aging in clinical trials, the control 

mechanism of telomerase expression and activity, and the 

mechanism of action of telomerase activators. Therefore, 

further studies are necessary. 

 
 

Figure 1 Structure of the vertebrate telomere/telomerase complex. Inhibition of PAPD5, supplement of dT, inhibition of 

SAMDH1, TA-65, etc. were reported to promote telomere recovery. POT1, protection of telomeres 1; TRF1, telomeric repeat binding 

factor 1; TPP1, telomere protection protein 1; RAP1, TERF2-interacting protein; TRF2, telomeric repeat binding factor 2; TIN2, 

TERF1-interacting nuclear factor 2. 

3.2. Epigenetic modifications  

 

Nearly a decade ago, numerous CpG sites in the human 

genome have shown that methylation rates increased or 

decreased over time [34]. Epigenetic modifications such 

as DNAm, histone acetylation, phosphorylation, and 

ubiquitination are emerging areas of aging biomarker 

research. These modifications regulate transcription and 

X-chromosome inactivation by altering promoters, 

enhancers, and genes [35, 36]. For instance, aging kidneys 

show reduced expression of the anti-aging factors 

KLOTHO and Nrf2 (nuclear factor erythroid 2 – related 

factor 2), along with increased hypermethylation of the 

Nrf2/KLOTHO gene promoters and DNA 

methyltransferase (DNMT) 1/31/3b. SGI-1072 (a DNMT 

inhibitor) reversed these changes [37]. Therefore, 

epigenetic modifications are thought to be correlated with 

CA at the molecular level and are promising candidates 

for quantifying biological aging rate, measuring lifespan, 

or intervening in rejuvenation [38]. Belsky et al. 

demonstrated that the rate of biological aging can be 

gauged using a DNA blood test [39]. Ran et al. have 

detailed the properties, differences, and applications of 

epigenetic clocks in aging research [40]. Specifically, 
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several classic epigenetic clocks, such as DNA 

PhenoAge, DNA GrimAge, Hannum's clock, Dunedin 

PACE, and Horvath's clock, have been proposed as 

effective techniques to promote healthy aging and as 

aging biomarkers and have also been employed as useful 

tools to assess the effectiveness of age-reversing 

interventions [40, 41]. However, differences in statistical 

methods, sample sizes, and tissue types result in unique 

calibration methods for each epigenetic clock. Existing 

epigenetic clocks vary not only in CpGs and Illumina 

arrays, but also in tissue origin and ethnicity, which 

restricts their applications [42]. For example, most clocks 

were trained using only whole blood samples, whereas 

two clocks contained multiple tissue samples (Table 1).  

 

Table 1. Summary of recent existing 12 epigenetic clocks in human samples. 

 
First author, Year # of 

CpGs 

Illumina 

array 

# of 

subjects 

Age Tissues used 

in training 

Training 

phenotype 

Regression Prediction 

accurady 

Ref. 

Bocklandt, S., 2011 1 27K 68 21-

55 

Saliva Chronological 

age 

lasso penalized 

regression 

0.77 [245] 

Garagnani, P., 

2012 

1 450K 64 9-83 Whole blood Chronological 

age 

Spearman 0.92 [246] 

Hannum, G., 2013 71 450K 482 19-

101 

Whole blood Chronological 

age 

penalized 

regression model 

0.905 [247] 

Horvath, S., 2013 353 27K, 450K 7844 0-

100 

51 healthy 

tissues and 

cell types 

Chronological 

age 

penalized 

regression model 

(elastic net) 

0.960 [34] 

Weidner, C.I., 

2014 

3 27K 575 0-78 Whole blood Chronological 

age 

multivariate 

regression model 

0.87 [248] 

Lin, Q., 2015 99  450K 656 19-

101 

Whole blood Mortality  multivariate Cox 

regression 

- [249] 

Vidal-Bralo, L., 

2016 

8  27K 390 20- Whole blood Chronological 

age 

forward stepwise 

linear regression 

0.68 [250] 

Yang Z., 2016 385  450K 650 0, 

80- 

Whole blood Chronological 

age 

linear regression - [44] 

Zhang Y., 2017  10  450K 1000 50-

75 

Whole blood Mortality linear 

combination of 

LASSO 

regression 

- [43] 

Levine, M., 2018 513 27K,450K, 

EPIC 

9926 0-

100 

Whole blood Phenotypic Age cox penalized 

regression model 

- [45] 

Horvath, S., 2018 391 450K, 

EPIC 

896 0-94 Skin and 

blood 

Chronological 

age 

elastic net 

regression 

- [251] 

Lu, 2019 1030 450K, 

EPIC 

6935 46-

78 

Whole blood lifespan elastic net Cox 

regression model 

- [252] 

 

In addition, while most are developed as “predictors 

of CA”, three are trained using different phenotypes that 

depict how aging affects different aspects of an 

individual’s health. Zhang et al. created a clock to predict 

mortality from all causes [43], and Yang et al. trained the 

clock to approximate mitosis rates [44]. The Levine et al. 

clock was designed to simulate a multi-system clinical 

measure of aging that closely correlates with age, but 

separates people of similar ages based on morbidity and 

mortality risk [45]. 

Liu et al. developed a new clock based on 11 classical 

clocks that were decomposed into submodules and 

recombined into more powerful epigenetic aging 

measures. The clock showed considerably higher ability 

to detect senescent cell states, such as cancer and aging, 

and forecast mortality risk based on DNAm in blood [46]. 

Recently, epigenetic clocks have been used in the 

randomized clinical trials to validate the effects of an 

interventions [47]. A series of subsequent clinical studies 

further emphasized the importance of studying potential 

changes in DNAm levels during aging [48, 49]. In 

general, epigenetic age prediction is easier and more 

effective. Packages for the epigenetic clock are widely 

accessible, some of which require only the methylation 

values of a few CpG sites to accurately predict age [50]. 

However, additional assessments must be conducted 

before a high degree of confidence can be placed in these 

reports. In addition to building more accurate time clocks, 

the precise processes through which the epigenome 

influences aging remain unclear. 

 

3.3. Genetic variants associated with aging and 

longevity 

 

The role of genetic variants (GVs) in aging is the subject 

of ongoing debate. GVs, which include single nucleotide 

polymorphisms (SNPs) in structural variants, such as 

copy number variants (CNVs) in the human genome, 

contribute to population diversity and influence the study 

of the genetic effects of complex traits and disease 
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vulnerability. According to genome-wide association 

studies, various complex diseases and traits have been 

linked to numerous GVs according to genome-wide 

association studies (GWAS) [51]. In both animal models 

and human populations, certain GVs affect age-related 

phenotypes. For example, knock-in mice carrying an Lrp6 

variant exhibited age-dependent structural and functional 

synaptic defects [52]. Fifty-two aging variables were 

examined in a phenotype-wide association analysis of 

379,758 UK Biobank participants from European heritage 

sites to confirm the association between SH2B3 missense 

variants and aging [53]. Another gene involved in aging 

encodes thioredoxin reductase (TXNRD), an antioxidant 

enzyme that protects organisms from oxidative stress. 

Variations in TXNRDI have been correlated with physical 

and cognitive functions in older people [54], which was 

validated in a cohort study from southern Italy [55]. Age-

dependent obesity is a major public health problem that 

may be influenced by GVs. To identify GVs that show 

differential effects on age-dependent obesity, Ju et al. 

conducted a GWAS on 355,335 UK Biobank participants, 

stratified the analysis of five obesity-related phenotypes, 

and conducted t-statistics. Five significant lead SNPs 

were identified: rs9861311 and rs429358 for body fat 

percentage, rs2258461 for body mass index, rs145500243 

for waist circumference, and rs2870099 for waist-to-hip 

ratio [56]. Notably, rs429358, located in APOE, is also 

associated with various age-related diseases such as 

cognitive decline, coronary artery disease, and age-related 

macular disease [57, 58]. However, the contributions of 

these genes to the aging process are limited. After 

thorough cleansing and verification, Jonna et al. studied 

86 million profiles from openly accessible Internet 

genealogical data and obtained a single-family tree that 

included 13 million people. These data were used to 

estimate the heritability of human longevity, and the 

results showed that genes play a marginal role in longevity 

[59], similar to the result of another study published in the 

same year [60]. According to some studies, centenarians 

may have fewer detrimental alleles, such as rare non-

synonymous SNP variants, while others show that 

centenarians share similar risk GVs for major diseases to 

those in the younger population [61, 62]. Ukraintseva et 

al. explained this discrepancy by considering the 

conditional and trade-off-like effects of various biological 

mechanisms, including the antagonistic effects of genes 

on various health conditions and age-specific mortality 

susceptibility, interactions between genes and the 

environment, and other factors [63, 64]. This suggests that 

when evaluating the aging status or implementing 

interventions based on GVs, we must also consider the 

trade-off-like effects of GVs that may be caused by 

diseases to provide personalized treatment or assessment 

and reduce all-cause mortality. 

4. Cellular Aging Biomarkers  

 

4.1. Cellular senescence markers and associated 

phenotypic changes  

 

Cellular senescence was first described in 1961, when 

Hayflick et al. discovered that diploid fibroblast lines 

ceased to divide after a 40-60 fold multiplication [65]. 

Generally, cellular senescence is characterized by 

morphological flattening, enlargement, and irregularly 

shaped bodies, which occur because the cytoskeleton 

rearranges and involves vimentin intermediate fibers and 

microtubules [66]. As shown in Figure 2, senescent cells 

exhibit drastic changes in chromatin structure and gene 

expression [66]. Even under optimal growth conditions or 

mitogenic stimuli, somatic cells that enter senescence, 

stop proliferating and enter a long-term stable phase of 

growth arrest while maintaining their metabolic capacity 

and viability, and even resisting apoptosis [67]. The 

resistance to apoptosis exhibited by senescent cells may 

be related to the activation of cell survival mechanism, 

including those of the anti-apoptotic protein BCL-2 

family [68]. The fate of cells is determined by the duration 

and intensity of the initial stimulations, and the nature and 

cell type of the damage. Moreover, cellular senescence 

has been suggested to serve as a defense mechanism to 

stop damaged cells from spreading [69]. Cellular 

senescence has also been implicated in aging and age-

related diseases. The senescence-associated secretory 

phenotype (SASP), which refers to substances secreted by 

senescent cells, influences other cells and tissues. The 

accumulation of SASP components and senescent cells 

can impair tissue regeneration, promote chronic 

inflammation, and contribute to aging. 

Various markers, such as p16, p21, and senescence-

associated -galactosidase (SA-gal), have been used to 

differentiate senescent cells from healthy, non-

proliferating cells; however, none of these markers are 

universal indicators of cellular senescence [70]. SA-β-gal 

is the mostly used marker for cellular senescence, the 

activity of which is upregulated at pH 6, which is the pH 

of intra-lysosome of senescence cells [71]. Deng et al. 

reported a novel precursor drug development strategy 

based on this marker; namely, the precursor drug SSK1 

was designed to be specifically cleaved into cytotoxic 

substances by lysosome-gal in senescent cells and to 

induce apoptosis, thereby eliminating them [72]. 

However, SA-gal activity has also been observed in 

lysosome-active cells such as macrophages in a variety of 

post-mitotic cells, including neurons, and even in the early 

stages of embryonic development [73]. Authors observed 

a delay between senescence entry and SA-β-gal derived 

staining [74]. Moreover, the activity of endogenous SA-

β-gal is also observed in confluent non-transformed 
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fibroblast cultures [73, 75]. All these studies suggest that 

SA-β-gal as a biomarker for cellular senescence is lacking 

in specificity and sensitivity. Cell cycle arrest can be 

induced by the cyclin-dependent kinase inhibitors p16 and 

p21. The main tumor suppressor protein p53 typically 

controls these cells, and its increased expression can serve 

as a marker of cellular senescence [76]. Satotaka et al. 

established a mouse model p16-CreERT2- tdTomato 

analyzed the single-cell properties of p16high cells. They 

found that p16high cells positive for tdTomato were 

detectable in all organs and accumulated with age [77]. 

Xue et al. revealed that ADAR1 controls the expression 

of p16INK4a through post-transcriptional regulation and 

modulates cellular senescence, independent of RNA-

editing [78]. However, p16INK4a staining of keratinocyte 

subsets in wound margin tissue was also evident in 

patients undergoing selective amputation due to severe 

limb ischemia [79]. Hes1 was found to differentially 

regulate the proliferation of neural stem cells via p21 [80]. 

Laminin is an extracellular matrix glycoprotein that 

defines the shape of the nucleus, influences DNA 

replication and repair, regulates gene expression, 

participates in stress responses, and is involved in cell 

cycle processes [81]. Consequently, lamins, which are 

nuclear envelope proteins that interact with laminin, are 

involved in cellular senescence. Lamin B1, a nuclear layer 

factor down-regulated in senescent cells, is involved in the 

regulation of subtelomere genes [82]. The knockdown of 

METTL14 reduced the m6A level of the lamin B receptor, 

leading to instability of the lamin B receptor mRNA, 

which in turn leads to cellular senescence [83]. 

 
Figure 2. Various stimuli can induce cellular senescence, and the senescence-associated secratory phenotype 

(SASP) can cause a series of negative consequences. SAHF, senescence-associated heterochromatin foci; SA-β-gal, 

senescence-associated β-galactosidase; TAF, telomere-associated foci; SAMD, senescence-associated mitochondrial 

dysfunction; DDR, DNA damage response.  

4.2. Mitochondrial function and oxidative stress 

markers  

 

Reactive oxygen species (ROS) and energy are produced 

by the mitochondria and are essential for cell metabolism. 

However, cellular components such as proteins, lipids, 

and DNA can sustain oxidative damage from ROS, 

implicating mitochondria as a major source of age-related 

damage in cells and tissues [84]. Miquel et al. were the 

first to link aging and mitochondria, and observed that 

moderate temperature reduction extended the lifespan of 

poikilotherms by lowering their metabolic rate [85]. They 
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also noted that large animals tended to exhibit lower rates 

of basal metabolism and lived longer than smaller 

animals. They suggested that a lower metabolic rate 

limited ROS generation and mitochondrial oxidative 

damage, thereby delaying aging [85]. According to the 

mitochondrial free radical theory of aging (MFRTA), 

aging results from the cumulative oxidative damage 

caused by an imbalance between antioxidant defenses and 

ROS generation in cells and tissues [86]. According to this 

theory, mitochondria, particularly mitochondrial DNA 

(mtDNA), are the main sites of ROS generation and 

important targets of ROS-induced damage. Mutations in 

the mtDNA can impair mitochondrial function and 

increase ROS production, thereby creating a vicious cycle 

of oxidative stress and aging [87]. However, mtDNA 

exists in multiple copies and a single mtDNA mutation is 

unlikely to cause functional abnormalities. This 

abnormality has a threshold, and ROS-induced 

mitochondrial dysfunction gradually accumulates. 

Moreover, defects in nuclear replication can affect 

mitochondrial energy production [88]. Studies over the 

last century have established a relationship between 

mitochondria and oxidative stress during aging, indicating 

that mitochondrial function, ROS levels, antioxidant 

capacity, and tissue repair ability are important factors in 

aging. However, whether mitochondria and antioxidants 

are the cause or consequences of aging remains unclear. 

Recently, these factors were shown to be associated with 

longevity at the cellular level but required further 

validation at the animal level. Furthermore, the 

measurement of tissue oxidative damage alone seems to 

provide more conclusive evidence than testing for 

mitochondrial ROS and other oxidative or antioxidant 

factors. Specific amino acids or lipids may serve as 

markers for aging [89]. For example, methionine or 

cysteine may be sensitive to oxidation, and therefore 

scavenge oxidized components and participate in oxidized 

tissue repair [90]. DNA damage caused by ROS can 

produce DNA damage markers, which can be assessed by 

evaluating DNA damage and DNA repair mechanisms. 

These markers can also be used to evaluate aging. 

Recently, the role of mitochondria in oxidative stress-

induced aging has been investigated. De Lucia et al. 

revealed that serum mitochondrial activity did not differ 

between older and younger people [91]. Van et al. 

reported that mice with reduced expression of superoxide 

dismutase (SOD) had increased DNA damage and tumor 

incidence but did not show accelerated aging or reduced 

lifespan compared with the control group [92]. 

Furthermore, previous studies have considered a decline 

in mitochondrial function as a marker of aging. However, 

Liu et al. demonstrated that disrupting oxidative 

respiratory chain function without causing cell death can 

not only impair mitochondrial function, but also alter the 

growth rate and extend lifespan in worms, flies, and mice 

[93]. Therefore, the assessment of mitochondrial function 

alone may not explain aging. In conclusion, mitochondrial 

damage, DNA damage, and oxidative stress are 

interrelated factors that influence aging and longevity in 

various organisms. However, the exact mechanisms and 

interactions between these factors have not been fully 

elucidated and require further investigation. 

 

4.3. Markers of inflammation and immune senescence 

 

Innate and adaptive immune responses that become 

dysfunctional with age weaken pathogen defenses and 

increase mortality and morbidity rates. This phenomenon, 

often termed immune aging, encompasses an abundance 

of memory T cells, a decrease in antigen-reactive 

capability, alterations in calcium-mediated signaling, 

damage and atrophy of the thymus, and persistent low-

grade inflammation driven by the SASP [94]. One aspect 

of immune aging is the progressive deterioration of the 

innate immunity mediated by phagocytes. The magnitude 

and timing of the type I interferon (INF) response 

determines susceptibility to viral infection. In older 

adults, the production of type I INF by circulating 

plasmacytoid dendritic cells (pDC) is diminished and 

delayed [95]. Immune cells such as NK cells and 

macrophages can be recruited and activated by type I IFN, 

whose reduction affects multiple levels of the innate 

immune response during aging [96]. Aged alveolar 

macrophages exhibit a reduced ability to phagocytose 

neutrophils, leading to prolonged neutrophil retention and 

tissue damage [97]. Aging also leads to an increase in the 

number of bone marrow-derived suppressor cells 

(MDSCs), which have the ability to restrict T-cell activity 

and thus contribute to the pathogenesis of a number of 

illnesses, including infectious diseases and cancer [98]. 

Even in mouse models lacking exposure to infections, 

adaptive immune responses that are predominantly driven 

by T and B cells were less effective with age. Aging 

reduces the quality and level of B-cell responses to 

infection, leading to lower antibody production and 

affinity [99]. In mouse models with accelerated immune 

aging and natural aging, spleen B cells showed increased 

expression of p16INK4a and p21Cip1 but limited expression 

of SASP compared to other immune subtypes [100]. A 

subpopulation of B cells called age-related B cells (ABC) 

increased with age in mice [101]. The phenotype of these 

cells was defined as B220CD19+, but they were deficient 

in the mature B cell markers, CD21 and CD23. 

Additionally, CD11c and T-bet, which drive cells toward 

a pro-inflammatory phenotype, are also expressed in 

ABC. Through targeted death of infected cells, CD8t 

cytotoxic. T cells aid in pathogen removal. High levels of 

p38 and yH2AX, along with other age-related 
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characteristics, including a decreased rate of proliferation 

and shortened telomeres, are present in highly 

differentiated CD27-CD28-CD8+ T cells [102]. 

CD45RA+CD27-CD4+ T cells were suggested to be 

senescent T cells with reduced telomerase activity and 

proliferation, and constitutive p38 expression. With the 

reduced activation of T cell receptors (TCRS), senescent 

T cells express NK cell receptors. These cells may cause 

substantial tissue damage via NK cell receptors (NKRs) 

as opposed to T cell receptors because they express high 

levels of cytotoxic chemicals [103]. In a recent study that 

employed the SA-gal staining approach to detect “true” 

senescent immune cells in human aging, senescent 

circulating T cells, particularly CD8+ T cells, showed 

senescent gene expression characteristics and decreased 

proliferation potential. High SA-β-gal CD8+ cells, 

however, displayed a T-cell destiny that was distinct from 

that of T cells that were previously classified as senescent 

[104]. In addition, the expression of p16INK4a in CD8+ T 

cells was associated with both BA and illness [105]. 

Dysfunctional T cells exhibited strong expression of the 

retrotransposon LINE-1, whose reduction can restore the 

function of the T cell effector. LINE-1 expression levels 

are crucial in controlling T cell effector function, 

quiescence, and failure, although LINE-1 is known to be 

increased in senescent cells, triggering a type 1 IFN 

response [106]. 

Many senescent cells exhibit a pro-inflammatory 

SASP, which involves the release of various chemokines 

and cytokines that modulate or attract immune cells [107]. 

The SASP may also include the secretion of 

metalloproteinases, microRNAs, reactive oxygen species, 

metabolites, and extracellular vesicles. Through the 

SASP, the build-up of senescent cells in aging organs 

causes regional and systemic inflammation, impairs stem 

cell function, and promotes tissue degeneration [108]. 

Bora et al. analyzed Tabula Muris Senis data and 

identified 10 age-related genes, among which interleukin 

1β (IL1b) was particularly enriched in almost all the 

Kupffer cells in older mice compared with approximately 

37% in younger mice [109]. Another study showed that 

the deficiency of Ercc1 (part of the Ercc1XPF 

endonuclidene enzyme, which is crucial for various DNA 

repair processes, especially in hematopoietic cells) 

impaired the repair of DNA damage, accelerated the 

increase of senescent cells and endogenous oxidative 

damage in various tissues in mice [110]. The absolute 

number of pDCs in the intestinal epithelium of aged mice 

was  substantially reduced and the expression of the 

inflammatory chemokine CCL25 changed with age [111]. 

Moreover, senescence and SASP production in several 

organs were induced by the adoptive transfer of spleen 

cells from old WT mice to young mice, which 

considerably decreased longevity [112]. According to 

these findings, DNA damage can cause immune cells to 

become more senescent as they age; subsequently, the 

secreted SASP factors can trigger secondary aging. The 

specific immune cell subpopulations that are responsible 

for senescence and systemic aging in lymphoid and non-

lymphoid organs remain unclear. Conversely, a mouse 

model of accelerated aging and senescence was 

adoptively transferred with young immune cells, which 

resulted in a reduced number of senescent cells in many 

tissues, demonstrating the ability of young immune cells 

to eradicate SnCs that develop with age and disease. 

 

5. Physiological Aging Biomarkers  

 

5.1. Physical performance and functional decline 

assessments  

 

Physical function metrics are vital for gauging present and 

future health. Physical functional assessments (Fig. 3) that 

are both objective and standardized have been created and 

are increasingly used in population research. Physical 

aging can be tracked using common functional measures, 

including the grip strength, gait speed, time up and go test, 

and six-minute walk test [113]. Many studies and 

systematic reviews conducted to evaluate the risk of 

subsequent disability have shown that elderly people who 

perform poorly on physical functional tests (e.g., weaker 

grip strength, slower walking speed, or poorer standing 

balance) are more likely to be functionally handicapped in 

the future [114, 115].  

Aging is also linked to changes in physical 

composition such as the development of wrinkles and 

hyperpigmentation, increased body fat, reduction in organ 

mass, decline in muscle mass and strength, and 

osteoporosis. Skin aging is a readily observable sign of 

aging and a direct reflection of the body’s age. Wrinkles, 

particularly on the face, are the clearest indicator of skin 

aging. Histological evidence from aged, wrinkled skin 

shows a rough distribution and volume decrease of 

collagen and reduction in the number of elastic fibers in 

the dermis extracellular matrix components [116]. 

Changes in pigmentation are another indicator of skin 

aging. These spots often emerge in sun-exposed regions 

and are a consequence of increased pigment synthesis 

caused by exposure to ultraviolet radiation [117]. Higher 

body mass index (BMI) is a risk factor for diseases 

associated with aging, with a 30% rise in overall mortality 

for each 5 unit rise in BMI [118]. A study from the 

Nanyang Technological University in Singapore showed 

that higher levels of visceral fat, BMI, and reduced high-

density lipoprotein (HDL) levels were causally associated 

with cognitive decline in Asian populations. Specifically, 

each additional 0.27 kilogram of visceral fat is 

comparable to an additional 0.7 years of cognitive aging 
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[119]. Furthermore, the lipids are redistributed over age 

[120]. Excess fat also attacks the immune system, with the 

exception of accumulation in the liver and bone marrow. 

Lymph nodes undergo a process in which normal tissue is 

gradually replaced by adipose tissue, leading to 

lipomatosis [121]. Eventually, fat accumulation in the 

lymph nodes renders them non-functional. Skeletal 

muscle constitutes the majority of the total tissue mass. 

Age-related degeneration of the neuromuscular junction 

has been documented in both animal models and humans. 

During aging, synaptic transmission is impaired and 

muscle fibers lose innervation, resulting in degeneration 

and atrophy [122].  

 
Figure 3. Physical performance and functional decline assessments. 

Muscle mass and strength become progressively 

weaker and muscle function decreases with muscle fiber 

atrophy after 40 years, which is known as sarcopenia 

[123]. Kim et al. reported that the grip strength, muscle 

mass, and endurance of 18-month-old C57BL/6J mice 

were substantially lower than those of 10-week-old mice, 

demonstrating an increasing incidence of sarcopenia in 

aging animals [124]. Similarly, compared to 10-month-

old mice, 25-month-old mice showed substantially 

reduced hind limb muscle mass, muscle grip strength, 

maximal muscle strength, and daily activity capacity 

[125]. Aging affects all organ systems, but the trajectory 

of aging varies across organ systems and between 

individuals. Except for the heart, organ mass mostly 

decreases with age, resulting in impaired reserve capacity 

and limited reactivity to stress [12]. As aging progresses, 

bone resorption increases, resulting in reduced bone 

density [126]. Dual energy X-ray absorptiometry (DXA) 
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is recommended by physicians in the US for men aged > 

70 years and women aged > 65 years to test the bone 

mineral density (BMD) at the lumbar spine and femoral 

neck. An osteoporosis determination is made once the T-

score is less than or equal to -2.5 [127]. On the other hand, 

both the C-telopeptide of type I collagen (CTX-I) and the 

N-terminal propeptide of type I procollagen (PINP) are 

indicated for use in clinical settings as indicators of bone 

production and resorption, but can only be used to support 

the diagnosis of osteoporosis [128]. 

 

5.2. Cardiovascular and metabolic biomarkers of 

aging  

 

Age is one of the most powerful predictors of 

cardiovascular health and regular cardiovascular function 

is an important factor in determining whether a person 

will live a long and healthy life. As the human 

cardiovascular system is composed of many distinct cell 

types, aging may affect the biological activity of each cell 

type in the body. Cardiomyocytes and cardiovascular cells 

are especially prone to age-related dysfunction and 

failure, leading to structural damage; heart dysfunction, 

such as myocardial cell death, myocardial hypertrophy or 

fibrosis, reduced elastic fibers, and valve calcification, is 

also an indicator of cardiac aging. The direct result of 

these pathological features is cardiac conduction 

malfunction derangement and systolic-diastolic 

dysfunction [129, 130], which in severe cases leads to 

age-related heart failure [131]. Over the past 20 years, 

various biomarkers reflecting neuroendocrine activation, 

myocardial injury, cardiac remodeling, inflammation, and 

other pathophysiological alterations in heart failure have 

been identified [25], focusing on biomarkers active during 

cardiac load, myocardial injury, and matrix remodeling.  

N-terminal pro-B-type natriuretic peptide (NT-proBNP) 

and B-type natriuretic peptide (BNP) in the natriuretic 

peptide family are the most important biomarkers of 

cardiac load and have the highest recommended category 

among all biomarkers of heart failure. While a correlation 

has not been observed, their clinical applications are 

comparable. For example, compared to BNP, NT-proBNP 

is more concentrated in peripheral blood and more stable 

in vitro. It has no biological activity, and aging and renal 

function have a greater impact. BNP/NT-proBNP testing 

is indicated for both the support and differential diagnosis 

of heart failure in individuals who are older and present 

with symptoms of the condition, when BNP ≥ 35 pg/ml or 

NT-proBNP ≥ 125 pg/ml is present for a long period of 

time, a more thorough examination is recommended 

[132].  

Cardiac troponin T (cTnT) and cardiac troponin I 

(cTnl) are the most commonly used clinical biomarkers 

for assessing myocardial injury. The two biomarkers are 

different to a certain extent: the half-life of cTnT is 30 min 

longer than that of cTnl; cTnl is less affected by renal 

function compared to cTnT; cTnI is more specific to 

cardiac tissue than cTnT; and cTnT is also seen in 

neuromuscular diseases in addition to myocardial injury. 

High-sensitivity cTnI (hs-cTnI) can be used to 

independently predict the onset of heart failure; however, 

the highest predictive value for HF was obtained when hs-

cTnI was paired with NT-proBNP [133]. Furthermore, hs-

cTnT has also been found to be related to the incidence of 

heart failure in cohort studies, and its increase over time 

suggests the progression of myocardial injury, 

particularly in those with >50% elevation from baseline, 

together with an accompanying increase in the probability 

of mortality in the coming years [134].  

Currently, soluble growth stimulation expressed gene 

2 (sST2) and galectin-3 (Gal-3) are the most common 

indicators of cardiac stromal remodeling used in clinic. 

Multiple studies have demonstrated considerably higher 

levels of sST2 and Gal-3 in patients with HF than in those 

without HF, and the extent of this increase corresponds to 

the degree of diastolic dysfunction [135]. Various 

molecular signaling pathways are altered during cardiac 

aging. ROS accumulate in the aging heart and cause 

mitochondrial oxidative stress damage, which is 

associated with increased mtDNA mutations and 

deletions [136]. In contrast, cardiac autophagy decreases 

with age. Taneike et al. studied age-related changes in 

autophagy in the hearts of wild-type mice and found that 

autophagy markers, such as microtubule-associated 

protein 1 light chain 3-II (LC3-II), were decreased in 14- 

or 26-month-old mouse hearts compared with 10-week-

old mice. mTOR plays an important role in controlling 

autophagy [137]. Aging has been shown to enhance 

mTOR phosphorylation in mouse hearts [138], while 

inhibition of mTOR prolongs mice lifespan [139].  

 

5.3. Neurological and cognitive markers 

 

The brain is the command center of the body. Together 

with the spinal cord, it constitutes the central nervous 

system, which innervates the entire body via the 

peripheral nervous system. The brain degenerates over 

time, which increases the risk of age-related 

neurodegenerative diseases. Morphological changes in 

the brain and pathological deposition of abnormal 

proteins such as amyloid-beta (Aβ), tau and alpha-

synuclein [140], and alterations in physiological function, 

together affect human lifespan. Morphological changes in 

the brain include reduced brain volume, ventricular 

enlargement, cortical thinning, and white matter 

degradation caused by neuronal reduction, dendritic 

degeneration, demyelination, microglial activation, white 

matter lesions, and metabolic slowdown [141]. These 
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multiple alterations in the brain may form the basis of age-

related cognitive decline. Integrating several studies on 

whole-brain volume changes in humans over a limited age 

range reveals that such changes occur throughout the 

lifespan, with the brain tissue beginning to decrease 

steadily after 35 years and brain volume loss steadily 

exceeding 0.5% per year over 60 years of age [142]. 

Unlike physiological aging, neurodegenerative diseases 

show different patterns of atrophy, such as medial 

temporal lobe atrophy, which is a hallmark of AD [143]. 

A reduction in neuronal volume rather than number, and 

a decrease in dendritic spines are believed to be the 

primary causes of age-related brain atrophy [144]. These 

morphological changes in neurons cause synaptic 

dysfunction and impair neurotransmitter signaling, which 

in turn affects cognitive function [145]. Synaptic density 

in the CA1 area of the hippocampus is lower in aged rats 

than in younger animals, and the spatial memory capacity 

decreases [146]. Aged rats have reduced spatial memory 

capacity compared to younger rats, and histological 

examination has revealed lower synaptic density in the 

CA1 region of the hippocampus [39]. Glutamate is an 

excitatory neurotransmitter involved in synaptic 

transmission and is closely associated with learning and 

memory during aging. Learning and memory formation 

are associated with long-term potentiation (LTP), and 

maintenance of hippocampal synaptic LTP requires 

activation of glutamate receptors: N-methyl-D-aspartate 

receptors (NMDAR) [147]. The composition and function 

of NMDAR have been found to decrease with age in 

rodent models [148]; although NMDAR-mediated 

synaptic current dynamics remain unchanged in the CA1 

region [149], the inactivation rate of these currents 

increases with aging [150]. Similarly, the expression of 

the postsynaptic glutamate receptors α-amino-3-hydroxy-

5-methyl-4-isoxazole-propionicacid receptor (AMPAR) 

and its GluA2 subunit are also reduced in the CA1 region 

of aged mice [151], and AMPAR-mediated synaptic 

current strength has been shown to be diminished in aged 

mice [152]. Furthermore, the levels of many synapse-

associated proteins, including synaptophysin, SNAP25 

and PSD95, are lower in the hippocampi of aged rats [151, 

153]. Indeed, the signaling of the inhibitory 

neurotransmitter gamma-aminobutyric acid (GABA) is 

equally impaired at aging synapses. McQuail et al. 

discovered that the aged hippocampus has a reduced 

frequency of inhibitory postsynaptic potentials driven by 

GABA, and a reduction in both current intensity and 

duration [154], thereby disrupting GABAergic 

interneurons and inhibitory synaptic circuits.  

Additionally, a number of humoral indicators 

associated with brain aging have been identified. In both 

the blood and cerebrospinal fluid, high levels of CCL11 

and 2-microglobulin have been shown to be related to 

diminished neurogenesis [155, 156]. The 

metallopeptidase inhibitor TIMP2 is associated with 

recovery of hippocampal neural activity [157]. The 

protein levels of TREM2, an immune signaling hub gene, 

increased progressively with age in the CSF, reflecting 

microglial function, and were also associated with AD 

[158]. In addition to changes in body fluids, the microglia 

of young and aged mice differed dramatically. Using 

transmission electron microscopy, Marschallinger et al. 

observed the cytoplasmic content of mice that were three 

and twenty months old. They observed that microglia in 

the aging hippocampus had distinct lipid droplets, but did 

not observe this in other cells [159]. Jin et al. identified a 

unique highly activated microglia (HAM) cell type that 

expressed an age-related activation pattern that triggers 

brain inflammation rather than the traditional M1/M2 

pattern. In addition, Lpl and Lgals3 may be effective 

candidate markers for HAM [160]. 

 

6. Emerging Technologies and Approaches in Aging 

Biomarker Research 

 

6.1．Omics technologies for comprehensive profiling 

 

Aging is a continuous process that involves various 

detectable biomarker changes in the body and is 

influenced by the occurrence of diseases or decline of 

organ systems. Conventional methods of measuring aging 

rely on isolated indicators such as telomere length or ROS 

components, but these are insufficient to systematically 

and accurately describe aging. Owing to the rapid growth 

of omics technologies in recent years, aging can be 

characterized from a higher perspective using omics data. 

High-throughput sequencing, mass spectrometry (MS)，
and other quantitative techniques allow us to understand 

aging from the perspective of genes, tissue components, 

metabolites, and epigenetics. Multiple omics techniques 

can be integrated for aging identification to form a 

complex but accurate network structure [161].  

Genomics: The process of aging is ongoing and 

regulated by numerous genes in the genome; however, we 

do not have a clear indicator to confirm that a gene is 

related to aging. Age-related genes may vary considerably 

among populations, and studies on a single population 

may overestimate the effects of a single gene. Therefore, 

studying a single gene might not capture the effects of 

aging on the entire genome. GWAS aims to determine the 

association between genotype and phenotype by detecting 

variations in allele frequencies of genetic variation 

between individuals with similar ancestry but different 

phenotypes [162]. Although SNP are the most frequently 

examined genetic variations in GWAS, copy number 

variation and sequence variation in the human genome 

have also been considered. GWAS tests the genomes of 
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thousands of people for numerous genetic variations to 

identify those that are statistically linked to certain traits 

or disorders [163]. Therefore, genetic data from long-

lived individuals in a population can provide insight into 

the longevity of genomes in specific populations. In 

particular, genes near the 5q33.3 locus of FOXO3 have 

been consistently associated with longevity. Timmers et 

al. analyzed genome-wide associations and mortality risk 

factor data from one million genotyped subjects with 

parental lifespan information using GWAS [164]. They 

replicated previously unconfirmed findings near 

FURIN/FES, CDKN2B-AS1, 13q21.31, PSORS1C3, 

ZW10, and ATXN2/BRAP, and discovered and validated 

new findings near IGF2R, ABO, and ZC3HC1. They also 

confirmed the roles of the 5q33.3/EBF1 and FOXO3 loci. 

Despite such extensive data, they affirmed that substantial 

differences in life expectancy at the population level were 

hard to achieve solely via genomic information. However, 

aging can be measured using life expectancy and health 

span, which are not equivalent when performing a 

GWAS. Zenin et al. identified 12 loci associated with 

human health span data that did not overlap with previous 

GWAS on lifespan [165]. 

Therefore, genomic analyses, especially GWAS, can 

identify biomarkers of differential gene expression 

associated with lifespan or health span. Analyzing these 

differential genes helps to better understand aging, while 

more refined comparison indicators cannot be equated 

with aging, and further research is required.  

Proteomics: Proteins directly execute most biological 

activities. Compared to gene expression, proteins have 

more complex functional structures owing to post-

translational modifications during transcription or 

translation, resulting in more complex aging effects. In 

traditional research fields, single biomarkers are used as 

indicators of aging, whereas proteomics can increase 

throughput to thousands or even tens of thousands 

simultaneously. Differential samples can be 

simultaneously scanned and observed using high-

sensitivity MS and isotopic technology. This changes the 

incompleteness of the single-angle analysis and focuses 

more on system analysis from a system perspective.  

Proteomic technology has been used from different 

perspectives to discuss aging, lifespan, and other related 

topics [166]. The age of the subjects ranged from 

newborns less than 1 year old to elderly people up to 95 

years old, but the sample size varied greatly. In aging 

proteomics, samples are not limited to plasma or tissues. 

To date, various types of tissues, such as skeletal muscle, 

bone marrow, saliva, and urine, have been used for 

proteomic analysis. From a technical perspective, most 

studies have used LC-MS/MS to identify proteins and 

peptides. However, owing to the complex in vivo 

environment, unbiased quantitative detection of proteins 

remains challenging. Some studies have used the 

relatively advanced SOMAscan method developed by 

SomaLogic, which quantifies protein abundance in 

plasma using slow-off-rate-modified aptamers with high 

affinity for proteins. Owing to the length of this article, 

we will not analyze the data of existing research papers in 

the following summary, but focus on the summary of 

recent review papers. Ubaida et al. conducted a systematic 

review of several Google Scholar papers that used 

proteomics and aging as keywords [167]. They reanalyzed 

the data from these studies and identified 1,128 proteins 

that were reported as potential biomarkers in two or more 

studies. Interestingly, 751 proteins, including ANXA1 

and HSPB1, were consistently detected in different 

groups using different tissues for proteomic analysis. 

Several potential biomarkers have been previously 

validated. Moreover, the authors summarized the 

common differential proteins reported in at least five 

papers and performed corresponding bioinformatics 

analyses and nonlinear and linear regression to propose 

models of aging. Moaddel et al. summarized and 

reanalyzed previous data using various proteomics and 

age-related keywords [168]. They collected proteomic 

data from subjects aged 14-103 years. Although LC-

MS/MS is the most commonly used proteomics 

technology, they also included papers that used newer 

methods, such as the SOMAscan assay and Proximity 

Extension Assay (PEA O-Link). They identified 4,077 

proteins in plasma data, of which 232 were highly 

correlated with age. These 232 differential proteins were 

used for further bioinformatics analysis, which revealed 

112 potential age-related signaling pathways belonging to 

21 signaling pathway categories. 

Post-translational modifications (PTMs) of proteins 

can form more complex and diverse functional structures 

compared to gene expression. Moreover, PTMs are 

crucial for the aging process [169]. However, protein 

name-aging indicator regression analysis for PTM-type 

analysis remains scarce. Many bioinformatics analysis 

works and reviews, including Luigi Ferrucci’s work, 

summarize differently numbered proteins into single 

entries and then perform enrichment analysis. Moreover, 

in clinical diagnosis, PTM products are rarely used as 

markers. However, with the development of MS, omics 

technology can also identify different types of PTM 

protein content that change with age. For example, Collins 

et al. used data-independent acquisition (DIA) to achieve 

the unbiased quantitative detection of PTM proteins 

[170]. To date, several analysis software packages and 

corresponding product pipelines based on the DIA 

technology have been successfully developed. 

In summary, according to existing proteomic data, 

aging is closely related to protein changes. Proteomics can 

provide indicators of aging. Analysis of deviation from 
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the mean value of proteins may help in the diagnosis of 

diseases. This finding is clinically important. Another 

advantage of proteomics is that it can provide direct 

evidence of biomarkers that are important for disease 

diagnosis. PTM protein identification has a relatively 

short development time in proteomics; however, 

considering the importance of PTM in life activities, its 

role in aging research cannot be ignored. 

Metabolomics: Metabolomics is an omics technology 

that uses MS or nuclear magnetic resonance to measure 

small molecules (< 1500 Da) in biological samples such 

as cerebrospinal fluid, saliva, muscle, and plasma. These 

molecules, known as metabolites, reflect the metabolic 

status and physiological functions of an organism. 

Metabolomics can reveal age-related changes in 

metabolism, which is one of the hallmarks of aging 

biology. Several platforms such as HMDB and 

MetaboAge have been established to explore the 

relationship between metabolomics and aging. Adav et al. 

summarized metabolomics and aging research from 

various perspectives [171]. They classified age-related 

metabolic changes into eight categories: lipid and 

lipoprotein metabolism, steroid hormones and 

menopause, amino acid metabolism, urinary system and 

excretion, carbohydrate metabolism, dietary changes, 

oxidative stress, and inflammatory responses. They also 

identified population-specific aging markers influenced 

by sex, race, health status, and age. Therefore, when 

studying the relationship between metabolomics and 

aging, the impact of multiple dimensions on 

metabolomics data must be considered. Moreover, some 

factors, such as sample collection and processing, may 

have affected the results. Metabolomics can identify 

meaningful markers of the aging process that are related 

to many diseases, such as coronary heart disease, 

metabolic syndrome, ischemic heart disease, obesity, type 

2 diabetes, and other diseases that affect patients' quality 

of life and lifespan [172]. These findings have clinical 

importance for aging interventions and prevention. 

However, many challenges remain in this field, including 

the difficulty in identifying unknown metabolites. In the 

future, with improvements in the integration of multi-

omics data and MS, more evidence can be provided to 

understand the complex aging process. 

 

6.2. Machine learning and data mining approaches in 

biomarker discovery 

 

In recent years, various machine learning approaches have 

been presented for estimating the BA. Previous omics 

studies have shown that a single biomarker is often 

insufficient to assess aging; however, the use of multiple 

biomarkers with different properties increases the 

complexity and cost of measurement. Therefore, a major 

research goal is to identify suitable biomarkers with 

potential research value. One approach is to use 

supervised multicomponent comparisons, linear 

regression, or PCA dimensionality reduction to obtain a 

set of biomarkers. Another approach is to use computer 

processing to obtain index weights or no-threshold 

decision making to extract more effective models with 

limited biomarkers. For example, simple random forest 

and DNN algorithms can significantly improve predictive 

performance [173]. These are the typical data analysis 

methods used in machine learning, and many biomarkers 

have been successfully identified using these methods. 

However, owing to the instability and complexity of 

biological systems, these data are highly complex. With 

recent advancements in artificial intelligence, machine 

learning and deep neural networks have enabled the fast 

analysis and extraction of critical data from complex 

systems and data. Altmann et al. studied the ranking of 

feature importance using the permutation feature 

importance score (PFI) method. Through multiple 

iterations, they calculated the average value of feature 

importance [174]. This method is effective and can be 

used to efficiently obtain important indicators. However, 

these indicators are not completely independent, and some 

related indicators are redundant as biomarkers. The PFI 

method did not provide any advantages as a biomarker. 

Therefore, appropriate evaluation methods should avoid 

data pollution, reduce the strong coupling effect between 

extraction indicators, and identify more independent 

biomarkers for predicting aging. In recent years, machine 

learning methods have been widely used to rationalize 

omics data and several representative ML applications 

have been developed, including RapidMiner, KINME, 

Weka, and Galaxy [175]. However, despite the 

rationalization of packaging, these programs lower the 

technical barriers for operators to some extent, but lack 

transparency and have limited adjustable parameters. 

Users must master computer languages, such as Python or 

R, to call machine learning or deep learning packages. 

Blood samples are good and viable tests for predicting 

age, and common blood tests can often assess a subject’s 

general health and detect the first signs of disease. 

Mamoshina et al. trained a model based on DNAm clock 

biomarkers to measure BA, using blood indicators as 

parameters [176]. Mamoshina et al. trained deep neural 

networks on population-specific datasets. Samples from 

Korean, Eastern European, and Canadian ethnicities were 

used. They trained the network within each group and 

tested it on a different test set with each available group. 

When trained and tested on the same population, the 

models showed good predictions for all three data sets. 

However, the accuracy values declined when tested in 

different ethnicities, and simply aggregating biomarkers 

into one model did not reflect all aspects of aging [176]. 
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Holzscheck et al. used gene expression data as the input 

layer for a rationalized deep learning network that 

predicted BA based on the data [177]. After several 

cycles, the predicted age was positively correlated with 

the CA. The trained model could also predict various 

biological processes, such as the effect of virtual targeted 

knockouts on biological lifespan, the influence of various 

pathways on aging, and novel age-related biomarkers. 

This study provides an example of omics research using 

machine and deep learning. Biologists can use powerful 

AI models to discover a wider range of biomarkers from 

larger datasets. 

BA estimation is the only example of machine 

learning that is used in aging research. Machine learning 

and artificial intelligence modules are generalized tools 

that make full use of deep learning networks such as 

transformers, CNN, and RNN, which can also be used to 

predict survival rates and brain-related BA. The key is to 

rationalize the relationship between the output and input 

indicators. However, some inherent disadvantages of 

machine learning also exist, such as the black box effect, 

which complicates the practical application of CA and 

BA; this comes not only from the measurement error of 

BA and CA, but also from the variation in indicators 

caused by different experimental conditions. Therefore, 

additional methods have been introduced to solve this 

problem. In short, with more data available under big data, 

BA can be better predicted through omics or a series of 

indicators. 

 

Table 2. Summary of non-invasive imaging application in aging processes. 

 
Imaging 

modality 

Specific 

method 

Imaging content Imaging agents/ 

Biomarker change 

Imaging scale Reference 

PET Aβ-PET Aβ plaques 11C-PiB Brain [182-185] 
11C-AZD2184 
18F-florbetapir 

18F-flutemetamol 
18F-florbetaben 

Tau-PET Tau proteins 18F-AV1451 Brain [186, 187] 

FDG-PET Glucose 

metabolism 

18F-fluorodeoxyglucose Brain [188-190] 

FDG-PET/CT SUV; SMI; Volume 18F-fluorodeoxyglucose Skeletal 

muscle 

[191-193] 

Structural MRI T1WI Brain volume ↓ Brain [194, 195] 

T2-FLAIR Water content ↑ 

DTI Water diffusion ↑ 

Functional MRI MRS Metabolite ↓ Brain [200] 

PWI (ASL) CBF ↓ Brain [196] 

Rs-fMRI Brain network 

connectivity 

(BOLD) 

↓ Brain [202, 203] 

Task-fMRI Brain area 

activation 

↓ Brain [204] 

 

Abbreviations: PET, positron emission tomography, MRI, magnetic resonance imaging, FDG-PET, fluorodeoxyglucose positron emission tomography , 

T1WI, T1-weighted imaging, T2-FLAIR, T2-fluid attenuated inversion recovery, DTI, diffusion tensor imaging, MRS, magnetic resonance spectroscopy, 

PWI, perfusion-weighted imaging, ASL, arterial spin labeling, Rs-fMRI, resting-state functional MRI, Task-fMRI, task functional MRI, SUV, 

standardized uptake value, SMI, skeletal muscle index, CBF, cerebral blood flow, BOLD, blood-oxygen level dependent 

6.3. Imaging techniques for non-invasive assessment of 

aging processes 

 

With the rapid development of both imaging and physical 

technologies, a wealth of imaging modalities have been 

widely used in clinical medicine. Molecular and 

functional alterations during the course of aging may be 

detected using a range of imaging techniques, such as 

computed tomography (CT), magnetic resonance imaging 

(MRI), ultrasound, PET emission tomography, and 

single-photon emission computed tomography (SPECT). 

In this section we focus on the use of PET and MRI 

imaging in the assessment of aging, and a detailed 

summary is presented in Table 2. 

PET imaging, based on the distinctive identification 

of targets present in the body, not only directly reflects 

abnormalities in the early phase of disorders, but also 

offers unique advantages in revealing alterations in 

biomarkers of the aging process [178]. AD is an age-

related neurodegeneration that mostly affects people of 

advanced age. AT(N) biomarkers are ones that the NIA-

AA framework suggests using: markers of 

neurodegeneration (N), amyloid deposition (A), and 

neurofibrillary tangles Tau (T), that support or exclude the 
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diagnosis of AD and brain aging [179]. Aβ and Tau PET 

imaging accomplish early visualization of disease 

primarily by quantitatively assessing the Aβ plaque 

deposition and Tau tangles in the living brain [180, 181]. 

Commonly used tracers for Aβ PET include18F-

florbetaben, 18F-flutemetamol, 11C-PiB, 18F-florbetapir, 

which have received regulatory approval for use in 

medical facilities in the US [182, 183]. In addition, 11C-

AZD2184 as an analog of 11C-PiB also showed 

considerably higher uptake in critical brain regions of AD 

patients than in normal brain tissue, with higher affinity 

and specificity for Aβ compared with 11C-PiB, and may 

have better results for diagnosing early AD [184, 185]. 

For tau PET imaging, 18F-AV1451 is the most researched 

tau-specific PET tracer, and the intracerebral distribution 

obtained is consistent with the known deposition of tau 

regions in neuropathological studies. Therefore, it can 

detect pathological tau proteins specific for AD to a large 

extent [186, 187]. Moreover, fluorodeoxyglucose positron 

emission tomography (FDG-PET) been reported to be a 

promising biomarker of synaptic activity for predicting 

AD progression [188]. When 18F-fluorodeoxyglucose 

uptake in the brain is reduced, as was measured using 

FDG-PET, it indicates a decrease in glucose metabolism 

and may respond to synaptic dysfunction [189]; for the 

AD signature hypometabolism, the cut point is 1.31 [190]. 

Sarcopenia, which commonly affects the elderly, plays a 

decisive role in confirming the diagnosis through 

estimation of muscle mass and volume using FDG-

PET/CT. Generally, CT is commonly used to clinically 

observe muscle volume, whereas the metabolic 

information provided by FDG-PET can complement the 

anatomical correlation and characterization of the skeletal 

muscle obtained using CT [191]. Normal skeletal muscle 

shows uniform FDG uptake, with maximum standardized 

uptake values (SUVmax) usually between 0.5 and 2.2 

[192]; comparatively, patients with sarcopenia may 

exhibit low metabolism and a reduction in muscle 

circumference [193]. 

In comparison to PET, MRI provides superior 

contrast for soft tissues, particularly the brain and 

abdomen. Consequently, the use of MRI in aging studies 

tends to focus on the process of brain aging. This 

demonstrates age-related changes in the structural 

makeup of the brain in vivo. Atrophy is one of the most 

important changes that occur during aging. This change 

may be tracked via measurements of the macroscopic 

dimensions of the brain and may also be seen as a 

localized loss of microscopic tissue, which manifests as 

an increase in the percentage of water in the brain in some 

instances [194, 195]. In addition to structural alterations, 

modifications in the brain function have been linked to 

aging and age-related neurodegenerative diseases. 

Functional magnetic resonance imaging (fMRI) can 

provide details on vascular and neural functions. Elderly 

people have a reduced volume of cerebral blood flow 

(CBF) across the whole brain [196], and this change in 

CBF with aging is linked to physiological shifts in the 

pressure of carbon dioxide in the arterial blood [197-199]. 

Magnetic Resonance Spectroscopy (MRS) uses a series of 

radiofrequency pulses to disturb the nuclei of various 

molecules and detect the resulting resonance signals. 

Because the frequency of a signal is determined by the 

precise chemical structure of the molecule, the levels of 

various metabolites in the brain can be calculated as an 

indirect assessment of aging [200].  

Resting-state fMRI (rs-fMRI) measures brain 

network connectivity using blood-oxygen level-

dependent (BOLD) signals, which can be applied to 

evaluate neurocognitive aging. Tau protein levels are 

corelated with greater functional connectivity in both 

normal elderly individuals and patients with AD [201]. 

However, another recent study suggested that decreased 

functional connectivity is associated with aging [202]. A 

meta-analysis showed that within the Default Mode 

Network (DMN), functional connection strength exhibits 

an inverse U-shape, reaching its peak in adulthood, after 

which is gradually declines [203]. Task-fMRI measures 

brain activaty during a specific cognitive task. Eevent-

boundary-evoked brain activation in the hippocampus and 

posterior medial network decreases with age and can 

predict episodic memory ability [204]. MRI-derived brain 

age is a widely adopted biomarker of cognitive aging 

[205, 206]. The application of a deep learning algorithm 

makes the predicted brain age more accurate and reliable 

[207]. Critically, the deviation of individual brain ages 

from typical brain age trajectories can predict diseases 

such as schizophrenia [208] and mild cognitive 

impairment (MCI) [209]. 

Although MRI has been widely used in clinical 

practice, it mainly indirectly reflects aging-induced 

changes in the brain, and more methods are required to 

improve the imaging capability of MRI for biomarkers of 

aging.   

 

7. Challenges and Limitations in Aging Biomarker 

Research 

 

7.1. Variability and heterogeneity in aging trajectories 

 

Complex life activities are characterized by substantial 

heterogeneity from individuals to cells. Aging is a 

necessary part of an individual’s life, and its high 

variability and heterogeneity are first reflected in gene 

transcription. Numerous age-related markers result from 

alterations in transcription, but the aging phenotype varies 

[210]. Based on various senescence inducers, cell types, 

and stages of senescence, the analysis of substantial 
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sequencing data from human and mouse fibroblasts has 

revealed discrepancies in transcriptome profiles and 

SASPs [211]. In aged mice, p16 and p21 aggregate greater 

in hippocampal microglia, oligodendrocyte progenitor 

cells, and oligodendrocytes with some degree of 

heterogeneity [212]. The mouse senescent cell atlas, 

completed in 2020, contains sequencing data from 23 

mouse tissues collected throughout their lifespan and 

demonstrates that p16, E2f2, Lmnb1, Tnf, and Itgax 

expression increases considerably with aging [213]; 

however, E2f2 is typically downregulated in senescent 

cells [214]. Another study compared transcriptome 

differences in the spleen, kidney, and lungs of aging and 

young mice using single-cell sequencing and discovered 

that different cell types display different aging trajectories 

as a consequence of gene enrichment [215]. In conclusion, 

in most in vitro experiments, senescent cells were 

dispersed in different cell masses rather than forming 

specific clusters, further demonstrating the existence of 

heterogeneity. A clinical study revealed that although 

certain serum biomarkers are associated with in vivo 

phenotypes (e.g., hippocampal volume and cognitive 

performance), they are not associated with CA [91]. This 

supports the view that the difference between CA and BA 

increases owing to various susceptibility factors, leading 

to increased heterogeneity in the elderly population. 

Aging process also exhibits substantial heterogeneity in 

terms of sex. For example, healthy women have 41%, 

50%, and 39% lower risks than healthy men, for 

developing cancer, cardiac diseases, or death, 

respectively. Following cancer incidence, men were 

found to be twice as likely as women to develop disability 

or dementia; following the onset of disability or dementia, 

men showed twice the mortality rate compared to women. 

A higher percentage of women aged 75 and 85 years 

remained healthy compared with men of the same age 

[216]. Although age is highly associated with accelerated 

disease progression, inter-individual differences remain. 

 

7.2. Standardization and reproducibility issues in 

biomarker assessment       

 

Although important advances have been made in 

identifying biomarkers of aging, data from promising 

marker studies have been found not to be reproducible. 

The validation of a biomarker through repeated 

independent experiments improves the chances of 

establishing the authenticity of this marker and further 

demonstrates the consistency of the experimentally 

detected data using the intended target. Studies related to 

biomarkers with poorly reproducible results can waste 

time and effort and prove costly for other follow-up 

investigators attempting to reproduce the results. Many 

potential factors can contribute to low reproducibility, 

such as cohort-related factors, experimental conditions, 

biological variability of the marker, statistical 

methodological flaws, and a lack of appropriate validation 

methods, which usually introduce random errors or 

systematic biases, leading to inaccurate measurement 

results. For example, some forms of subject recruitment 

that use selection or exclusion criteria are less 

reproducible than random recruitment [217]. Meanwhile, 

the operability of the detection method, sensitivity of 

detection instrument, stability of detection reagents, pre-

detection sampling, and post-detection preservation may 

be affected by systematic errors that interfere with the 

reproducibility of the data. Therefore, all subjects, 

whether in the experimental or control group, were 

required to perform at the same location and time period 

and use the same standardized procedure, which improved 

both the standardization and reproducibility of the 

experimental process. Variability in laboratory 

measurement procedures has been a major challenge in 

assessing biomarkers, and with the development of 

international protocols for standardized methods, we 

know that a complete set of standardized procedures for 

biomarker assessment includes not only a standardized 

measurement process, but also the way in which the 

measurement results are applied, including how to 

combine them with clinical information for diagnosis 

[218]. Therefore, the discovery of candidate biomarkers 

for clinical testing is a long and difficult process; 

however, the standardized assessment of aging 

biomarkers is still not fully universal and the 

establishment of a coherent and comprehensive 

standardized assessment procedure for aging biomarkers 

needs to be urgently addressed. 

 

7.3. Ethical considerations and privacy concerns in 

biomarker utilization 

 

Aging research brings various benefits to human health 

and society. However, as in other innovative biomedical 

fields, basic research on aging biomarkers and their 

clinical translation is usually conducted in animals and 

humans, which brings potential social and ethical risks. 

An ethical framework for clinical research is proposed 

based on major guidelines, statements, and other 

documents related to human research: value, scientific 

validity, good risk-benefit proportion, fair subject choice, 

independent evaluation, informed consent, and respect of 

subject’s interests [219]. Owing to the variability and 

heterogeneity of aging trajectories, which diminish the 

predictive value of aging biomarkers to some extent, their 

clinical validity is readily questioned, together with the 

absence of corresponding clinical therapies, which makes 

confirming their clinical efficacy harder. For physicians, 

a conclusive diagnosis based on test findings is 
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challenging, and may include biases. Furthermore, the 

results must be communicated to the subjects without 

alarming them or diminishing the credibility of the test. 

Researchers will have to establish a manner of effectively 

and thoroughly educating individuals on the possible 

advantages and hazards of aging biomarker testing. The 

Belmont Report identified three principles: respect for 

persons, beneficence, and justice [220]. Respect for a 

person requires not deceiving the subject in any way and 

ensuring his or her autonomy; therefore, the subject 

should understand what tests are to be performed, why, 

and consent to any laboratory tests performed. In addition, 

aging biomarker research and the accompanying clinical 

trials raise the issue of whether the data should be made 

public to the subjects [221]. While subjects may benefit 

from early illness care and life planning, which might 

increase their quality of life, disclosure is likely to induce 

psychosocial discomfort because of the restricted 

availability of aging interventions, which may be 

detrimental to the subject’s quality of life. For example, 

those who are assessed as being at high risk for age-

related diseases are likely to face discrimination [222]. In 

short, testing researcher’s abilities has become a complex 

and long-term challenge. Therefore, establishing a 

standardized ethical framework for aging research can 

guide researchers and clinicians. Adhering to the ethical 

principles of aging research will safeguard the long-term 

health of the field. 

 

8. Applications and Potential of Aging Biomarkers  

 

8.1. Early detection and prediction of age-related 

diseases 

 

The discovery of aging biomarkers is helpful for early 

monitoring and prediction of age-related diseases. Jin et 

al. reviewed the role of aging biomarkers in the 

pathogenesis of AD, which is mainly caused by age-

related factors [9]. Heterogeneous biomarkers such as 

DNAm and histone modifications can predict early 

disease risk and mortality [223]. A novel pharmacological 

target for AD therapy is the age-dependent gene 

regulatory network, a molecular network of elements that 

changes dynamically with aging. This network may be 

responsible for AD [224]. A BA algorithm based on aging 

biomarkers trained by Julia et al. in an older age cohort 

predicted an increased risk of all major diseases 

associated with aging, including dementia associated with 

accelerated aging  [225]. Julia et al. incorporated the 

neurofilament light chain (NfL), the best predictor of 

neurological prognosis [226], into a BA algorithm, further 

improving the predictions of increased dementia risk 

without adding value, suggesting that aging biomarkers 

may be highly sensitive in predicting age-related diseases 

[225]. 

 

8.2. Monitoring interventions and assessing treatment 

efficacy  

 

A thorough understanding of the multifactorial aging 

biomarkers underpins the need for an all-encompassing 

strategy for older patients, particularly the frail 

multimorbid elderly, to create a patient-centered and goal-

oriented clinical management plan [227]. In clinical 

studies, biomarkers of aging can be used to identify 

individuals who are suitable and likely to be most 

receptive to aging-biology-focused therapies. In this type 

of trial, biomarkers can be used to validate target contacts 

or as surrogate endpoints for information that may change 

before clinical outcomes (e.g., frailty measurement 

[228]). For example, certain interventions can improve 

brain health by increasing the expression of biomarkers 

that delay brain aging. Timely monitoring of relevant 

indicators during the intervention process can help assess 

the corresponding treatment effects and subsequently 

adjust the treatment strategy [229]. In frail elderly 

patients, high IL-6 and low albumin levels are 

significantly associated with 3-month all-cause mortality, 

and measuring their expression may help provide tailored 

therapeutic interventions to reduce short-term mortality in 

hospitalized elderly patients [230]. In older adults 

undergoing surgery, age-related biomarkers have been 

shown to predict unfavorable outcomes such as surgical 

complications and hospital readmission [231]. 

 

8.3. Personalized medicine and targeted interventions 

for healthy aging 

 

Healthy aging is an important topic in global aging 

research. The objective was to investigate and lengthen 

the healthy life expectancy, while reducing periods of 

disease and dysfunction [12]. From a medical and 

prevention perspective, researchers have focused on 

changes in individual aging, with the aim of screening 

high-risk groups with prompt intervention to achieve 

healthy aging. Bai et al. confirmed that, when measuring 

individual aging, BA determined using the BA equation 

according to the development of aging biomarkers is 

preferable to CA and aids in identifying people vulnerable 

to age-related disorders [232]. Bai et al. also screened 

seven types of aging biomarkers, and conducted BA 

evaluation on 852 healthy individuals, which were split 

into three groups based on age: normal, early, and delayed 

aging; they observed substantial differences in biomarkers 

in the four age groups [232]. Chu et al. found that 

extracellular vesicle treatment prolonged the lifespan of 

aged mice owing to decreased expression of the 
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transcription factor BTB and CNC homolog 1 (Bach1) 

and enhanced expression of Nrf2. They suggested that 

targeting the Nrf2/Bach1 axis might repair oxidative 

stress damage in aged mice [233]. These findings indicate 

that aging biomarkers can contribute to the timely 

detection and intervention of individual aging and even 

may help delay aging.  

Potential AD treatment candidates, such as DNMTs, 

Sirtuin 1 (SIRT1), and methyl-CpG-binding protein 2 

(MeCP2), have been proposed following the exploration 

of a dynamic network that coordinates DNAm and histone 

modifications [234]. This suggests that aging biomarkers 

may be helpful in personalized medicine and targeted 

interventions for healthy aging. For instance, the 

multidimensional prognostic index (MPI), an indicator 

derived from a comprehensive geriatric assessment 

(CGA), uses information from eight domains relevant to 

the overall evaluation of older adults (mobility, nutrition, 

functional and cognitive status, pressure ulcer risk, 

multiple diseases, multi-medication treatment, and 

cohabitation) to estimate the overall risk of 

multidimensional impairment and provide a reliable 

prognostic measure. It has decent calibration, accuracy, 

and discrimination, and serves as a crucial point of 

reference for decision-making and resource allocation in 

clinical practice and research [227]. Combined with the 

detection of aging biomarkers, this study is expected to 

provide accurate and personalized care for patients and 

older adults. 

 

9. Future Directions and Research Priorities 

 

9.1. Integration of multi-modal biomarker approaches 

for comprehensive assessments  

 

In the future, age-related assessments and interventions 

will require several assessment systems that integrate 

existing biomarkers. Bai et al. proposed that multi-model 

aging biomarker systems can be integrated and optimized 

through prospective cohort studies to estimate the 

probability of death and onset of age-related diseases. In 

particular, a streamlined aging evaluation technique was 

developed for primary care facilities [12]. Moreover, 

given the nonlinear and heterogeneous characteristics of 

age-related changes, the likelihood of a single biomarker 

meeting the ideal predictive or diagnostic criteria is very 

low. Because “omics” approaches are now widely 

available, potential biomarkers such as genes, non-coding 

RNAs, proteins, transcripts, and metabolites, can be 

identified without making any assumptions [235]. 

Combining a hypothesis-driven approach from a single 

biological pathway with a multi-omics approach from a 

physiological perspective may be a major challenge for 

future healthy aging biomarker research. Therefore, 

artificial intelligence must be introduced into research so 

that the complex interactions and network changes of 

markers can be integrated at the molecular, cellular, and 

bodily levels. This can help us to better comprehend the 

mechanisms underlying systemic aging and incorporate a 

single, seamless end-to-end approach for biomarker and 

drug discovery, target identification, and other processes 

that may speed up research and development procedures 

[236]. Although the use of neural networks in aging 

research is still in its infancy, neural networks have 

attracted the interest of an increasing number of 

biomedical researchers. The first cloud-based deep neural 

network (DNN) was approved by the Food and Drug 

Administration (FDA) in the medical device category. 

The FDA has also approved the creation of the first fully 

open-access database for AI/machine learning (ML)-

based medical technologies, which will be continuously 

updated [237]. The FDA has authorized 178 medical 

devices with AI/ML capabilities as of October 5, 2022 

[238]. While many privacy issues may be involved in the 

acquisition, generation, and use of health data, the 

guarantee established by the General Data Protection 

Regulation (GDPR) in Europe is that medical records will 

be used and transferred properly. Hopefully, they will not 

hinder meaningful technological development. 

 

9.2. Longitudinal studies to capture dynamic changes 

in aging biomarkers  

 

Notably, cross-sectional studies constitute the majority of 

existing research on the connection between aging and 

biomarkers. Therefore, longitudinal studies are necessary 

to periodically assess  physical and mental functions 

across a range of ages and health situations [239]. A 

greater understanding of the rate of biological aging is 

promised by longitudinal research, which may also reveal, 

in the context of clinical trials, the extent to which the 

molecular and cellular effects of aging can be reduced or 

even reversed. In particular, cohorts of middle-aged 

participants will aid in the discovery of early biomarkers 

of healthy aging that may be overlooked in older adult 

research owing to selection bias. Dynamic variations in 

potential biomarkers can be studied through longitudinal 

examinations, which will provide more room for 

discussion on the biological process of aging and its 

heterogeneity among individuals [240, 241].  

 

9.3. Translational potential and implementation 

challenges in clinical practice of aging 

 

Translating basic research findings into clinical 

applications poses several challenges. For the 

development and validation of biomarkers, we must use 

animal models that age faster than humans and can be 
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subjected to controlled modification of biological 

pathways or environmental factors. Budding yeast 

(Saccharomyces cerevisiae), fruit flies (Drosophila 

melanogaster), fish, laboratory mice (Mus musculus), and 

nematodes (Caenorhabditis elegans) are traditional 

animal models used in aging research [242]. Several 

conserved genes that regulate lifespan across long 

evolutionary distances have been identified in numerous 

studies using animal models [243]. African killifish, for 

example, age more quickly than mice and are therefore 

excellent models [244]. As models for human aging, each 

of these species has drawbacks and advantages; the 

similarities and differences in physiology, longevity, and 

aging characteristics must be considered. Therefore, the 

gap between laboratory conditions and real-life situations 

must be bridged [239]. For clinical applications, 

systematic and individualized assessment, and 

stratification of the elderly in hospitals and community 

health centers at all levels can help achieve the precise 

prevention and targeted management of age-related 

diseases. Effective use of limited health resources will be 

the focus of future research [12] (Table 3). 

 

Table 3. Benefits and limits of monitoring aging biomarkers. 

 
Title Contents 

Benefits In-depth understanding of the formation processes and influencing factors of various aging phenotypes 

Comprehensive understanding of the effects on the structure and function of the human body with aging 

Early detection and prediction of age-related diseases 

Monitoring interventions and assessing treatment efficacy 

Personalized medicine and targeted interventions for healthy aging 

Limits Aging heterogeneity undermines some of the predictive value of biomarkers 

Lack of corresponding therapies makes the clinical validity of biomarkers questionable 

Inability to accurately diagnose disease based on the results of biomarkers 

Publicizing results maybe have an impact on the state of social life of patients 
 

10. Conclusion  

 

In this paper, we review the current advances in the field 

of aging biology and geriatrics, focusing on molecular, 

cellular, and organismal biomarkers and targets of aging. 

We highlighted the challenges and opportunities for 

identifying and validating reliable and comprehensive 

measures of the health span and BA. We also discuss the 

importance of considering the effects of individual aging 

biomarkers at distinct biological organization levels and 

the integration of multi-dimensional and multi-domain 

methods for studying the underlying processes of aging. 

We have emphasized that no single biomarker can 

encapsulate the complexity and heterogeneity of aging, 

and that multi-omics approaches may offer unbiased and 

systematic ways to discover new aging biomarkers. 

However, we acknowledge that these methods require 

further development and validation, in addition to ethical 

and privacy considerations surrounding data utilization. 

This review has some limitations, such as the omission of 

some relevant phenomena in aging biology, including 

autophagy and the microbiome. We suggest that future 

research should explore these topics in more depth and 

detail, and their potential roles as biomarkers or targets for 

healthy aging. We hope this review will stimulate further 

research and innovation in this exciting and rapidly 

evolving field. 
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