
RESEARCH ARTICLE

E-CLEAP: An ensemble learning model for

efficient and accurate identification of

antimicrobial peptides

Si-Cheng WangID*

School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, China

* 20202523@aufe.edu.cn

Abstract

With the increasing problem of antimicrobial drug resistance, the search for new antimicro-

bial agents has become a crucial task in the field of medicine. Antimicrobial peptides, as a

class of naturally occurring antimicrobial agents, possess broad-spectrum antimicrobial

activity and lower risk of resistance development. However, traditional screening methods

for antimicrobial peptides are inefficient, necessitating the development of an efficient

screening model. In this study, we aimed to develop an ensemble learning model for the

identification of antimicrobial peptides, named E-CLEAP, based on the Multilayer Percep-

tron Classifier (MLP Classifier). By considering multiple features, including amino acid com-

position (AAC) and pseudo amino acid composition (PseAAC) of antimicrobial peptides, we

aimed to improve the accuracy and generalization ability of the identification process. To val-

idate the superiority of our model, we employed five-fold cross-validation and compared it

with other commonly used methods for antimicrobial peptide identification. In the experi-

mental results on an independent test set, E-CLEAP achieved accuracies of 97.33% and

84% for the AAC and PseAAC features, respectively. The results demonstrated that our

model outperformed other methods in all evaluation metrics. The findings of this study high-

light the potential of the E-CLEAP model in enhancing the efficiency and accuracy of antimi-

crobial peptide screening, which holds significant implications for drug development,

disease treatment, and biotechnology advancement. Future research can further optimize

the model by incorporating additional features and information, as well as validating its reli-

ability on larger datasets and in real-world environments. The source code and all datasets

are publicly available at https://github.com/Wangsicheng52/E-CLEAP.

1 Introduction

Antimicrobial peptides (AMPs) are a class of small molecular peptides that exhibit broad-spec-

trum antimicrobial activity and have significant potential in combating microbial infections

and the development of novel antibiotics [1,2]. Traditional antibiotics face increasing chal-

lenges of drug resistance, while AMPs, as a new antimicrobial strategy, offer advantages such

as broad antimicrobial spectra, rapid action, low resistance development, and minimal
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selective pressure [3]. AMPs not only possess bactericidal properties but also exhibit various

biological activities, including immune modulation, anti-inflammatory effects, and wound

healing promotion [4]. In comparison to traditional antibiotics, AMPs possess unique charac-

teristics and advantages, making them promising candidates for future antibiotic alternatives

[5].

In recent years, with the growing concern about antibiotic resistance, efficient peptide

screening has emerged as a crucial research direction in the search for new antimicrobial and

anticancer agents [6]. Currently, the screening of AMPs heavily relies on laborious and costly

laboratory methods, which are often inefficient [7]. However, with the advancements in com-

puter science and biotechnology, the development of efficient models for screening antimicro-

bial peptides has become highly meaningful.

Currently, numerous studies have delved into the effective screening of diverse peptides

using machine learning and deep learning methodologies. For example, in 2023, Davide et al.

crafted a deep learning-based model to forecast the activity and drug properties of therapeutic

peptides. This model, leveraging insights from known drug peptides, accurately predicts the

activity and attributes of unfamiliar peptide sequences [8,9]. Another noteworthy investigation

by Sun et al. in 2017 harnessed deep learning algorithms to formulate precise high-throughput

approaches for discerning protein-protein interactions, a pivotal aspect for comprehending

protein functions, disease mechanisms, and treatment design [10]. In 2021, Lin et al. devised

the AI4AMP model, a deep learning-infused protein encoding technique proficient in pre-

cisely anticipating the antibacterial activity of a given protein sequence [11]. In 2018, Bhadra

et al. developed the AmPEP model, leveraging the random forest algorithm and amino acid

property distribution patterns for antimicrobial peptide prediction [12]. Söylemez et al. (2023)

introduced the AMP-GMS model, employing a group-based and score-based methodology for

antimicrobial peptide prediction [13]. Lastly, Li et al. (2023) utilized bidirectional long short-

term memory (Bi-LSTM) and attention mechanisms to construct the AMPlify model, show-

casing remarkable performance in antimicrobial peptide prediction [14].

These studies demonstrate the potential of machine learning, deep learning, and computer-

aided design methods in the efficient screening and optimization of other peptides. By leverag-

ing information on peptide sequences, structures, and properties, these methods can enhance

the activity, selectivity, and stability of peptides. Future research can further develop and inte-

grate these methods to provide more possibilities and opportunities for the discovery and

application of other peptides.

The traditional methods for screening antimicrobial peptides are characterized by low effi-

ciency, necessitating the development of an efficient screening model. Therefore, this study

proposes a model based on Ensemble Voting for analyzing the features of antimicrobial pep-

tide AAC sequences and PseAAC sequences. To improve the predictive performance of the

extracted features, we employ an ensemble classification of four MLPClassifiers and then

aggregate the predictions of each MLPClassifier model through voting [15,16]. The model

leverages the advantages of multiple MLP classifiers, enabling it to capture complex nonlinear

relationships. By addressing data imbalance using the SMOTE algorithm and accurately

assessing model performance through stratified 5-fold cross-validation, our model outper-

forms traditional approaches in terms of predictive performance and robustness. Additionally,

objective evaluation of the model’s performance is achieved by drawing ROC curves and calcu-

lating AUC values, providing evidence for its superiority in analyzing features of antimicrobial

peptide sequences. The workflow of this study is illustrated in Fig 1.

Overall, the Ensemble Voting model, through innovative ensemble learning methods, com-

prehensive feature utilization, data balancing techniques, and comprehensive performance
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evaluation, has overcome the limitations of traditional antimicrobial peptide screening meth-

ods. It proposes a more efficient and superior screening model.

2 Materials and methods

2.1 Data collection

We collected 1750 experimentally validated antimicrobial peptide samples from the APD3

(https://aps.unmc.edu/about), PlantPepDB (http://14.139.61.8/PlantPepDB/index.php),

BaAMPs (https://www.baamps.it/) and BioPepDB (https://bis.zju.edu.cn/biopepdbr/).These

samples had unique sequences and were non-synthetic. As a positive control, we extracted

1750 non-antimicrobial peptide samples from the UniProt database (https://www.uniprot.org/

). In total, we obtained 3500 peptide sequences as our dataset for this study. To construct the

model, we randomly selected 3000 samples as the training set and an additional 500 samples as

the test set. It is important to note that we ensured there were no duplicates between positive

and negative samples in both the training and test sets, as well as within each sample.

2.2 Sequence feature extraction

2.2.1 AAC characteristic. The AAC feature is a representation method used to describe

the relative abundance of different amino acids in a protein sequence. It calculates the fre-

quency of occurrence of each amino acid in the entire sequence. Given a protein sequence, the

AAC feature is calculated using the following formula:

AACðiÞ ¼
Frequency of amino acidðiÞ

Length of the peptide
ð1Þ

i can be any natural amino acid, and AAC has a fixed length of 20 features. We used the SeqIO

module from the Biopython library in Python to read protein sequences from the input file.

Then, we applied the AAC formula to calculate the AAC feature for each protein sequence.

2.2.2 PseAAC characteristic. PseAAC is a commonly used protein sequence feature

representation method that captures structural and functional information of sequences. We

extract PseAAC features by counting the occurrence frequencies of amino acid fragments of

different lengths in the protein sequence.

Fig 1. The flow chart of the data analysis.

https://doi.org/10.1371/journal.pone.0300125.g001
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Specifically, we first calculate the frequency of each amino acid and then generate amino

acid fragments of a specified length. We then calculate the occurrence frequency of these frag-

ments. For each pair of amino acids (aa1 and aa2), the calculation formula for PseAAC features

is as follows:

PseAACðaa1; aa2Þ ¼
ðxþ wÞ

½yðaa1Þ
∗ yðaa2Þ þ w2�

ð2Þ

In the formula, x represents the occurrence count of the dipeptide fragment, y(aa1) and y
(aa2) represent the frequency of amino acids aa1 and aa2, respectively. During the process, the

parameter lambda_value controls the length of the generated amino acid fragments, determin-

ing the range of fragment lengths considered. In this case, we set it to 1, considering only

amino acid fragments of length 1. The parameter w is a smoothing parameter used to avoid

division by zero. By default, we set it to 0.05.

2.3 Model construction

2.3.1 E-CLEAP ensemble model. The E-CLEAP ensemble model consists of four

MLPClassifier models named clf1, clf2, clf3, and clf4. Each MLPClassifier model has different

parameters such as hidden layer sizes, random seed, maximum iteration count, learning rate,

etc. clf1 and clf4 have two hidden layers with 100 and 50 nodes, respectively. The random seed

is set to 420, the maximum iteration count is 5000, the initial learning rate is 0.001, the

momentum factor is 0.9, the batch size is 8, the optimization algorithm is Adam, and the acti-

vation function is ReLU. clf2 and clf3 have a total of four hidden layers with 100, 100, 50, and

25 nodes, respectively. Other parameters are the same as clf1 and clf4.

The E-CLEAP ensemble model combines the predictions of each MLPClassifier model

through voting. Specifically, each model provides probability predictions for the two classes

based on the test samples. Using the soft voting mechanism (voting = ’soft’), probabilities are

weighted averaged based on the model’s weights. The final classification result is determined

by the decision from the weighted average probabilities. The model framework is illustrated in

Fig 2.

Fig 2. Ensemble model architecture diagram.

https://doi.org/10.1371/journal.pone.0300125.g002
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Voting mechanisms come in two main forms. Hard Voting: Each model classifies the test

samples, and the final classification result is the class with the most votes. This is suitable when

the models output categories instead of probabilities. Soft Voting: Each model provides proba-

bility predictions for two categories for the test samples. The final classification result is deter-

mined by the decision from the weighted average probabilities. This is suitable when models

output probabilities, allowing better utilization of the confidence information.

The Ensemble Voting model adopts the soft voting mechanism mainly for the following

reasons: Soft voting can more fully leverage each model’s category probability predictions for

the test samples. Compared to hard voting, which only considers the quantity of categories,

soft voting takes into account the confidence of each model, handling the model’s output more

flexibly. This allows for a more accurate capture of sample uncertainties, thereby improving

overall classification performance. Algorithm 1 represents the pseudocode of the E-CLEAP

model.
Algorithm 1. AAC (PseAAC) Feature-based Voting Ensemble Model
Training.
Input: AAC (PseAAC) feature data from the CSV file
Output: Trained voting ensemble model, mean area under the ROC curve
(AUC)
1:
Read the AAC (PseAAC) feature data from the CSV file and shuffle the
data.
2:
Initialize the input file path: inputfile  ’AAC (PseAAC) features.
csv’
3:
Read the data from the CSV file: data  pd.read csv()
4:
Shuffle the data: shuffle(data)
5:
Split the data into training set: data train  data[:int(1 *
len(data)), :]
6:
7:
Prepare the input features and labels for training.
8:
Extract the features: x  data train[:, 1:19] * 30
9:
Extract the labels: y  data train[:, 20].astype(int)
10:
11:
Define multiple MLP classifiers and create a voting ensemble model
using these
classifiers.
12:
Define the first MLP classifier: clf1  MLPClassifier(. . .)
13:
Define the second MLP classifier: clf2  MLPClassifier(. . .)
14:
Define the third MLP classifier: clf3  MLPClassifier(. . .)
15:
Define the fourth MLP classifier: clf4  MLPClassifier(. . .)
16:
Create a voting ensemble model: model  VotingClassifier()
17:
18:
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Perform SMOTE resampling and cross-validation for model evaluation.
19:
Initialize SMOTE:smo  SMOTE(random_state = 42)
20:
Initialize stratified k-fold cross-validation: cv  StratifiedKFold()
21:
22:
Initialize mean true positive rate: mean tpr  0.0
23:
Initialize mean false positive rate: mean tpr  np.linspace(0,1,100)
24:
25:
for i, (train,test) in cv.split(x, y) do
26:

Apply SMOTE resampling: x train, y train  smo.fit_resam-
ple()
27:

Train the model and make predictions: probas_  model.fit(x
train,

y_train).predict proba(x[test])
28:

Make binary predictions: y pred  model.predict(x[test])
29:

Calculate performance metrics:
30:

Calculate false positive rate, true positive rate, and thresh-
olds: fpr,

tpr,thresholds  roc curve(y[test], probas [:, 1])
31:

Update mean true positive rate:
mean tpr  mean tpr +

np.interp(mean fpr, fpr, tpr)
32:

Set the initial value of mean true positive rate to 0: mean tpr
[0]  0.0
33:

Calculate ROC AUC: roc auc  auc(fpr, tpr)
34:

Calculate accuracy: accuracy  accuracy score(y[test], y pred)
35:

Calculate recall: recall  recall score(y[test], y pred)
36:

Calculate precision: prec  precision score(y[test], y pred)
37:

Calculate F1 score: f1  f1 score(y[test], y pred)
38:
end for
39:
40:
Calculate the mean ROC curve and area under the curve (AUC).
41:
Divide mean true positive rate by the number of iterations: mean tpr  
mean tpr / cnt
42:
Set the last value of mean true positive rate to 1: mean tpr[–1]  1.0
43:
Calculate mean AUC: mean auc  auc(mean fpr, mean tpr)
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2.3.2 Support Vector Machine (SVM). SVM has various applications in peptide identifi-

cation. By optimizing the selection of hyperplanes, SVM can effectively distinguish antigenic

and non-antigenic peptide segments. Guo et al. (2008) used SVM models to predict the antige-

nicity of peptides, providing valuable information for peptide vaccine design [17,18]. Ouellet

et al. (2023) applied SVM models to classify peptide segments and successfully differentiated

different structural and functional domains [19]. In this study, the radial basis function kernel

(RBF) was selected for SVM. The RBF kernel is suitable for nonlinear data distribution and

can capture complex boundaries between different classes.

2.3.3 Naive Bayes classifier (Bayes). The Bayes model analyzes peptide mass spectra

obtained through mass spectrometry techniques, calculates the posterior probability of each

possible peptide sequence, and determines the most likely sequence [20]. On the other hand,

the Bayes model can predict the epitope positions of unknown peptides, providing a powerful

tool for peptide vaccine design and immunogenicity prediction [21]. In this study, the naive

Bayes model is mainly used to classify antimicrobial and non-antimicrobial peptide sequences

based on AAC features and PseAAC features. The classifier is built by selecting appropriate

priors and variance smoothing terms (var_smoothing). In this study, the prior probabilities of

the naive Bayes model are estimated based on the class distribution of the training data, and

the variance smoothing term is set to 1e-09.

2.3.4 K-Nearest Neighbors (K-NN). K-NN classifier is one of the classic algorithms in

machine learning and widely used in various research fields due to its relatively simple princi-

ples and training process. It calculates the distance between new data and training data, and

then selects the k (k�1) nearest neighbors for classification or regression. The K-NN model

determines the classification of unknown peptides by comparing their similarity to known

peptides and has been applied in protein identification [22,23]. However, in the case of imbal-

anced sample sizes, the interpretability and prediction accuracy for rare classes are lower. In

this study, a supervised K-NN classifier is chosen, and through multiple adjustments, k = 5

yields the best performance.

2.3.5 Decision Tree (DT). DT has multiple applications in peptide identification. In pep-

tide mass spectrometry identification, the decision tree model utilizes the features of peptide

mass spectra as branching conditions to progressively divide the feature space of spectra and

determine the sequence and modifications of unknown peptides [24]. In peptide sequence clas-

sification, the decision tree model assigns unknown peptides to corresponding categories by

learning the relationship between known peptide sequences and their features [25]. These appli-

cation scenarios demonstrate the importance of decision tree models in peptide identification,

providing powerful tools for peptide proteomics research and protein analysis. In this study, the

decision tree model using the Gini coefficient as the purity measure for nodes is employed.

2.4 Experimental setup

A five-fold cross-validation is used to evaluate the training set. The dataset is divided into five

equal subsets, with four subsets used for training and the remaining subset used for validation.

This process is repeated five times, and the model with the best average performance is selected

for the test set. To address the issue of class imbalance, the SMOTE algorithm is applied to

oversample the data for each training set partition. Furthermore, parameter optimization is

conducted for all experimental models to obtain the best performance. By adjusting hyper-

parameters such as learning rate, regularization terms, and the number of neurons in hidden

layers, the performance and generalization ability of the models are improved.

The independent test set is inputted into the best model, and its performance on unseen

data is evaluated based on the model’s predictive ability. The model predicts the samples in the
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test set and generates corresponding classification results or predictions. This process helps us

understand the model’s generalization ability in real-world scenarios, i.e., whether it can accu-

rately generalize to unknown data.

We used a standard computer configuration equipped with an i7 10700KF processor and

an RTX3060TI-8G AD OC graphics card. Python was used as the primary programming lan-

guage, along with common scientific computing libraries and machine learning frameworks

such as NumPy and Scikit-learn. These tools provided convenience for implementing the

experiments and analyzing the results. As for the operating system, we chose the common

Windows 10.

2.5 Performance evaluation of models

To evaluate the final classification results and facilitate comparison with other models, we used

four commonly used metrics in bioinformatics research, including accuracy, recall, precision,

and F1-score. The specific formulas for calculating these measurements are as follows:

Accuracy ¼
TP þ TN

TPþ TN þ FPþ FN
ð3Þ

Recall ¼
TP

TP þ FN
ð4Þ

Precision ¼
TP

TP þ FP
ð5Þ

Fl� score ¼
2TP

2TPþ FPþ FN
ð6Þ

Where TN represents true negatives, TP represents true positives, FN represents false nega-

tives, and FP represents false positives.

3 Results

Recently, Synthetic Minority Over-sampling Technique (SMOTE) has been widely used as a

preprocessing technique to rebalance the proportion of positive and negative samples before

constructing the classifier. In SMOTE, in order to prevent information loss, instead of under-

sampling the majority class, it performs over-sampling by generating synthetic samples of the

minority class from nearest neighbor samples.

To assess whether SMOTE improves antimicrobial peptide (AMP) classification, we incor-

porated SMOTE as part of the cross-validation procedure. In this process, the training set data

is rebalanced by SMOTE, and the constructed classifier is then used to test the samples in the

test set.

As shown in Fig 3, the E-CLEAP model with SMOTE significantly outperforms the

E-CLEAP model without SMOTE, with a notably larger AUC value. Moreover, performance

metrics such as Accuracy, Recall, Precision, and F1-score are all superior in the E-CLEAP

model with SMOTE compared to the one without SMOTE, as indicated in Table 1. Therefore,

we consistently utilize the E-CLEAP model with SMOTE in our subsequent data processing.

3.1 Results of five-fold cross-validation on the training set

This paper selects 3000 samples as the training set, extracts the first 20 dimensions of AAC and

PseAAC features separately, forming a training vector of dimensions 3000×20.
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3.1.1 Results of Amino Acid Composition (AAC) feature. Fig 4 displays the ROC curves

and AUC values of different models obtained from five-fold cross-validation on the training

set using the AAC feature. Our proposed E-CLEAP model achieved the highest AUC value,

surpassing the other models. Additionally, the average F1-score of the E-CLEAP model was

significantly higher than the other models, with a margin of 0.0139 compared to the second-

ranked K-NN model. Although the Precision value of the E-CLEAP model was not the highest,

it achieved the highest average accuracy of 0.9173 when the recall rate was 1 (Table 2).

3.1.2 Results of Pseudo Amino Acid Composition (PseAAC) feature. By performing

five-fold cross-validation on the training set using the PseAAC feature, we compared our pro-

posed E-CLEAP model with other models. By observing the average Accuracy, Recall, Preci-

sion, and F1-score metrics, we found that the E-CLEAP model achieved an average accuracy

of 95.53%. Considering the other metrics, we concluded that the E-CLEAP model performed

significantly better compared to the other models, with the K-NN model being the second-

best performer and the Bayes model being the least effective (Table 3).

Fig 3. Performance comparison of the E-CLEAP model before and after applying the SMOTE algorithm

(A-E-CLEAP-AAC, B-E-CLEAP-PseAAC, C-E-CLEAP with SMOTE-AAC, D- E-CLEAP with

SMOTE-PseAAC).</ Figure_Caption>

https://doi.org/10.1371/journal.pone.0300125.g003

Table 1. Comparison of metrics before and after applying SMOTE algorithm to the E-CLEAP model.

Method Accuracy (%) Recall (%) Precision (%) F1-score (%)

E-CLEAP (AAC) 0.900 0.922 0.887 0.904

E-CLEAP (PseAAC) 0.760 0.618 0.919 0.739

E-CLEAP with SMOTE

(AAC)

0.973 0.987 0.962 0.974

E-CLEAP with SMOTE

(PseAAC)

0.760 0.575 0.958 0.719

https://doi.org/10.1371/journal.pone.0300125.t001
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Fig 5 presents the ROC curves and AUC values of the four classical machine learning meth-

ods along with the E-CLEAP model on the training set using the PseAAC feature. Compared

to the performance of the E-CLEAP model, the AUC values of the four classical machine learn-

ing algorithms based on the training set (PseAAC) are relatively lower. This supports the out-

standing generalization and superior ability of the E-CLEAP model in screening antimicrobial

peptides.

Fig 4. Validate the performance of different models (A-E-CLEAP,B-SVM,C-Bayes,D-KNN,E-DT) through cross-

validation on the training set (AAC features) .

https://doi.org/10.1371/journal.pone.0300125.g004

Table 2. Comparison of our model with the existing methods through cross-validation on the training set (AAC features).

Method Accuracy (%) Recall (%) Precision (%) F1-score (%)

SVM 93.93±0.79 97.60±0.90 90.94±1.34 94.15±0.74

Bayes 93.50±0.70 93.53±0.87 93.48±1.17 93.50±0.68

Knn 94.27±1.39 92.73±1.88 95.66±1.26 94.17±1.43

DT 91.73±1.11 92.40±2.05 91.18±1.10 91.78±1.16

E-CLEAP 95.53±1.00 96.20±1.58 94.93±1.02 95.56±1.01

https://doi.org/10.1371/journal.pone.0300125.t002
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3.2 Results on the testing set

We selected 500 samples as the test set, extracting the first 20 dimensions of AAC and PseAAC

features separately, forming a test vector of dimensions 500×20.

3.2.1 Results of Amino Acid Composition (AAC) feature. To test the specific perfor-

mance of the E-CLEAP model in antimicrobial peptide recognition, we applied both the

E-CLEAP model and four classical machine learning models to identify antimicrobial peptide

sequences based on the AAC feature. Firstly, we plotted their ROC curves and calculated the

Table 3. Comparison of our model with the existing methods through cross-validation on the training set (PseAAC features).

Method Accuracy (%) Recall (%) Precision (%) F1-score (%)

SVM 83.39±2.03 97.40±0.90 76.11±2.31 85.44±1.57

Bayes 80.76±2.14 78.59±2.93 82.15±2.03 80.32±2.30

Knn 87.33±1.74 93.53±0.48 83.23±2.37 88.07±1.49

DT 87.49±2.28 93.13±1.84 83.71±2.54 88.16±2.09

E-CLEAP 87.63±0.86 93.13±1.36 83.90±1.08 88.27±0.81

https://doi.org/10.1371/journal.pone.0300125.t003

Fig 5. Validate the performance of different models (A-E-CLEAP, B-SVM, C-Bayes, D-KNN, E-DT) through cross-

validation on the training set (PseAAC features).

https://doi.org/10.1371/journal.pone.0300125.g005
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corresponding AUC values, as shown in Fig 6. By observing the ROC curves and AUC values

in the figure, it is evident that the AUC value of the E-CLEAP model is significantly higher

than the other four classical machine learning models, indicating its superior performance in

antimicrobial peptide recognition. We can conclude intuitively that the E-CLEAP model per-

forms better in antimicrobial peptide recognition.

To further validate the classification performance of the E-CLEAP model, we also calcu-

lated the Accuracy, Recall, Precision, and F1-score for the five models in the antimicrobial

peptide recognition task. The relevant results are shown in Table 4. From the table, it is

Fig 6. Validate the performance of different models (A-E-CLEAP, B-SVM, C-Bayes, D-KNN, E-DT) on the test set

(AAC features).

https://doi.org/10.1371/journal.pone.0300125.g006

Table 4. Comparison of our model with the existing methods on the test set (AAC features).

Method Accuracy (%) Recall (%) Precision (%) F1-score (%)

SVM 91.00 98.00 85.96 91.59

Bayes 88.00 86.27 89.80 88.00

Knn 90.00 86.27 93.62 89.80

DT 88.00 93.75 83.33 88.24

E-CLEAP 97.33 98.68 96.15 97.40

https://doi.org/10.1371/journal.pone.0300125.t004
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evident that the E-CLEAP model outperforms the other models in all the metrics, which fur-

ther confirms the excellent performance of the E-CLEAP model in antimicrobial peptide

recognition.

3.2.2 Results of Pseudo Amino Acid Composition (PseAAC) feature. Based on the

comparative analysis of the recognition models using the PseAAC feature, the E-CLEAP

model exhibits a higher AUC value of 0.9216 (Fig 7), and its Accuracy, Recall, Precision, and

F1-score metrics are significantly higher than those of the other models (Table 5). We can con-

clude that the E-CLEAP model demonstrates superior performance in the antimicrobial pep-

tide recognition task compared to the other models. These results provide not only intuitive

evidence from the perspective of ROC curves and AUC values but also strong support from

the comprehensive evaluation of metrics such as Accuracy, Recall, Precision, and F1-score.

Our research findings indicate that the E-CLEAP model holds great potential in the field of

antimicrobial peptide recognition and provide a solid foundation for further research and

application.

Fig 7. Validate the performance of different models (A-E-CLEAP, B-SVM, C-Bayes, D-KNN, E-DT) on the test set

(PseAAC features).

https://doi.org/10.1371/journal.pone.0300125.g007
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3.3 Interpreting E-CLEAP using Local Interpretable Model-agnostic

Explanations (LIME)

Understanding the biological relevance of the extracted features is challenging. Machine learn-

ing models are sometimes referred to as "black box models" due to their complex internal

mechanisms. Understanding the contribution of each feature to the model has been consid-

ered a challenging aspect of machine learning. SHAP and LIME are commonly used to assess

feature importance. LIME and SHAP explore and utilize the characteristics of local interpret-

ability to develop alternative models for black-box machine learning algorithms, providing

interpretability.

The E-CLEAP model used in this study consists of four MLP models. Since MLP is a non-

tree-based model and the support for the ’shap’ library in Python is weaker for non-tree mod-

els, the ’lime’ library, suitable for interpreting non-tree models, is adopted to evaluate the con-

tribution of extracted features.

Local Interpretable Model-agnostic Explanations (LIME) analysis explains the contribution

of individual features to the overall prediction. The assumption of LIME is that every complex

model has a linear or explainable relationship in the local space of the dataset. By slightly alter-

ing the feature matrix, it is possible to fit a simple model around a sequence. In LIME, a simi-

larity matrix measuring the distance between a query sequence and several permutations is

constructed. In Fig 8, the interpretation of the prediction results of the E-CLEAP model is

shown, presenting a bar chart of the top 6 most important features. Red is highly correlated

with antimicrobial peptides, while green is highly correlated with non-antimicrobial peptides.

4 Discussion

The aim of this work was to develop an efficient and accurate antimicrobial peptide recogni-

tion model. By utilizing different feature extraction methods and machine learning algorithms,

we constructed the E-CLEAP model and evaluated it on a large experimental dataset. The

highlight of this study is the introduction of the E-CLEAP model and the demonstration of its

outstanding performance in antimicrobial peptide recognition.

The remarkable performance of the E-CLEAP model can be attributed to its well-designed

model architecture and the utilization of the MLP classifier. Firstly, the E-CLEAP model incor-

porates multiple features such as the AAC and PseAAC features, capturing the comprehensive

information of antimicrobial peptides through a multi-feature fusion strategy. Secondly, the

MLP classifier, with its multi-layer structure and non-linear transformation capabilities, can

effectively capture the complex features of antimicrobial peptides. The multi-layer structure of

the MLP model enables it to learn and represent more intricate patterns, while the non-linear

transformations handle the non-linear relationships in antimicrobial peptide classification.

Additionally, the MLP classifier offers parameter tunability and optimization capabilities, fur-

ther enhancing the model’s accuracy and stability. In summary, the design of the E-CLEAP

Table 5. Comparison of our model with the existing methods on the test set (PseAAC features).

Method Accuracy (%) Recall (%) Precision (%) F1-score (%)

SVM 63.00 80.39 60.29 68.91

Bayes 76.00 74.00 77.08 75.51

Knn 80.00 86.05 72.55 78.72

DT 79.00 85.11 74.07 79.21

E-CLEAP 84.00 87.65 83.53 85.54

https://doi.org/10.1371/journal.pone.0300125.t005
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model and the application of the MLP classifier enable efficient and accurate identification of

antimicrobial peptides, with broad prospects for application.

The E-CLEAP model, utilizing four MLP models, exhibits significant advantages over tradi-

tional SVM, DT, KNN, and Bayes classifiers in antimicrobial peptide identification tasks. By

integrating the predictive results of multiple MLP models, our model accurately captures com-

plex nonlinear relationships, thereby improving predictive performance. Moreover, MLP

models demonstrate relative efficiency during training, and E-CLEAP further shortens the

training time by averaging the results of multiple MLP models. This provides a viable solution

for efficient antimicrobial peptide recognition.

This research holds significant implications for future drug screening. Antimicrobial pep-

tides, as biologically active peptide segments with wide-ranging applications, possess potential

antimicrobial properties. By establishing an efficient and accurate antimicrobial peptide recog-

nition model, we can swiftly predict peptide segments with antimicrobial activity in the early

stages of drug screening, providing robust support for drug development. The application of

the E-CLEAP model can greatly reduce the drug screening cycle and costs, allowing research-

ers to focus their efforts and resources on peptide segments with higher potential. Further-

more, the E-CLEAP model offers new insights and methods for the discovery of novel

antimicrobial drugs. Through in-depth exploration of the features and activities of antimicro-

bial peptides, new structural and sequence patterns can be discovered, providing guidance for

Fig 8. LIME interpretable feature contribution plot (A-AAC features,B-PseAAC features).

https://doi.org/10.1371/journal.pone.0300125.g008
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the design and development of more effective antimicrobial drugs. Therefore, this research

holds practical value and significance for future drug screening and antimicrobial drug devel-

opment, accelerating the drug development process, reducing costs, and providing new oppor-

tunities for innovation in the field of antimicrobial drugs.

Despite the achievements made in this work, there are limitations that need to be consid-

ered. Firstly, this study lacks experimental validation and is solely based on theoretical model-

ing. Further experimental verification is necessary to ensure the reliability and stability of the

model. Secondly, the dataset used in this study is relatively small, which may limit the gener-

alizability of the model. In future research, efforts should be made to collect larger datasets for

validation and improvement. Lastly, this study treats random peptides as negative samples, but

they may include some peptides with antimicrobial activity, which could potentially impact

the accuracy of the model. In subsequent studies, more accurate negative sample selection and

processing methods should be considered to enhance the accuracy and reliability of the model.

5 Conclusion

In this study, we proposed an antimicrobial peptide recognition method based on the

E-CLEAP model. This method incorporates both the AAC and PseAAC features of antimicro-

bial peptides and utilizes an MLP classifier to handle the complex features of peptide

sequences, thereby improving recognition accuracy and generalization ability. The E-CLEAP

model exhibited excellent performance in antimicrobial peptide recognition tasks, outper-

forming major machine learning models including SVM, Bayes, K-NN, and DT. The

E-CLEAP model provides an effective means for the recognition of antimicrobial peptides,

enabling fast and efficient identification. This approach offers important support for drug

screening, disease research, and the development of biotechnology, and provides new avenues

and methods for exploring novel antimicrobial peptide candidates and designing customized

antimicrobial peptides. However, this study also has limitations, such as the lack of experimen-

tal validation, which limits the reliability of the model in practical applications. In the future,

we will further improve the E-CLEAP model by incorporating larger training datasets, intro-

ducing more features and information, and conducting experimental validations to enhance

the performance and reliability of the model.
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