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Abstract

Background and aims: Transdermal alcohol content (TAC) data collected by wearable alcohol 

monitors could potentially contribute to alcohol research, but raw data from the devices are 

challenging to interpret. We aimed to develop and validate a model using TAC data to detect 

alcohol drinking.

Design: Model development and validation

Setting: Indiana, USA

Participants: In March-April 2021, we enrolled 84 college students who reported drinking at 

least once a week (Median age=20 years, 73% white, 70% female). We observed participants’ 

alcohol drinking behavior for one week.

Measurements: Participants wore BACtrack® Skyn monitors (TAC data), provided self-reported 

drinking start times in real-time (smartphone app), and completed daily surveys about their 

prior day of drinking. We developed a model using signal filtering, peak detection algorithm, 

regression, and hyperparameter optimization. The input was TAC and outputs were alcohol 

drinking frequency, start time, and magnitude. We validated the model using daily surveys 

(internal validation) and data collected from college students in 2019 (external validation).
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Findings: Participants (N=84) self-reported 213 drinking events. Monitors collected 10,915 

hours of TAC. In internal validation, the model had a sensitivity of 70.9% (95% confidence 

interval 64.1%−77.0%) and a specificity of 73.9% (68.9%−78.5%) in detecting drinking events. 

The median absolute time difference between self-reported and model detected drinking start 

times was 59 minutes. Mean absolute error (MAE) for the reported and detected number of drinks 

was 2.8 drinks. In an exploratory external validation among five participants, number of drinking 

events, sensitivity, specificity, median time difference, and MAE were 15, 67%, 100%, 45 minutes, 

and 0.9 drinks, respectively. Our model’s output was correlated with breath alcohol concentration 

data [Spearman’s correlation (95% confidence interval): 0.88 (0.77, 0.94)].

Conclusion: This study, the largest of its kind to date, developed and validated a model for 

detecting alcohol drinking using transdermal alcohol content data collected with a new generation 

of alcohol monitors. The model and its source code are available as supplementary materials.

INTRODUCTION

Background

In young adults, alcohol use is a preventable risk factor for all-cause deaths (1). For years, 

compared to non-college-attending peers, college students report more frequently engaging 

in excessive alcohol drinking (2, 3). In 2017, about 54% of American full-time college 

students aged 18–22 years reported past-month drinking, 35% reported binge drinking, and 

10% reported heavy drinking (4). Each of these rates are higher than those of non-college-

attending-peers (4, 5). Alcohol use is linked to multiple problematic outcomes in the US, 

including 1,519 unintentional injury deaths (6), 696,000 assaults, and 97,000 sexual assaults 

(7) each year. Further, excessive alcohol use can cause many clinical disorders such as liver 

disease, diseases of the central nervous system, and cancer (8).

To study alcohol use among this high-risk population, it is important to have accurate data. 

However, traditional approaches of alcohol use data collection are imperfect, especially 

because they cannot easily facilitate continuous measurement. Common tools for collecting 

alcohol use data include self-report and breathalyzers (9). Both these measurement tools are 

considered reliable and are widely used in alcohol research. However, self-reports, while 

often cost-effective and useful for large scale prevalence studies, are also prone to recall 

bias, social desirability bias, and other types of measurement errors that might influence 

validity (10). Breathalyzers theoretically produce more objective data, but mouth alcohol 

and shallow breaths may cause inaccurate data (11). Further, breathalyzers cannot be used 

to produce continuous data due to their active data collection demands (11). A plausible 

alternative to both approaches is measurement of transdermal alcohol concentration (TAC) 

to collect objective and continuous alcohol use data passively and unobtrusively. However, 

devices to measure TAC remain nascent and need validation. In particular, they need to be 

validated against current commonly used measurement tools.

After each drink, around 1% of ingested alcohol is excreted through the skin and sweat 

glands (12). This can be measured as TAC and is hypothesized to correspond to blood 

alcohol content (BAC). While early TAC sensors were large and sometimes obtrusive 

(13), newer, small, wearable alcohol monitors have been designed to be worn on the wrist 
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and can potentially collect reliable continuous data for research purposes and for personal 

feedback (13, 14). Wearable devices that detect TAC allow passive, objective, real-time, and 

continuous measurement of alcohol use (9, 15). Because the data are collected passively and 

objectively, measurement errors originating from participants (e.g., recall bias or missing 

data) are theoretically removed or minimized (16). Other potential advantages of such 

devices include compliance, comfort, high acceptability, and power efficiency (13). Yet, 

these wrist-worn alcohol monitors have a limited history of application in the real world, 

and even fewer instances of use among college student populations at high risk for extreme 

drinking events. Moreover, the TAC data they collect is in the form of a timeseries signal 

with “noise,” by which we mean unwanted fluctuations and disturbances in TAC signal that 

do not correspond to a change in drinking status (Figure S1). Noise might be present in the 

signal, for instance, when individuals wear perfumes or use hand sanitizers. Hence, TAC 

data cannot readily be translated to commonly used alcohol use measures, such as alcohol 

use frequency and magnitude, using currently available approaches. Validation research and 

development of generalizable data processing procedures and models that can translate TAC 

data are needed.

Further hindering the transition to broader use of next-generation TAC monitors, nearly 

all TAC monitor validation studies have been conducted in laboratory settings using older 

monitors (i.e., SCRAM) which collect quasi-continuous data or suffer from high failure rates 

(17–20). TAC data produced by the new generation of wearable alcohol monitors is different 

in dimension from that produced by older devices. Models and rules developed for older 

devices are not applicable to the newer ones. While a small number of validation studies 

have been conducted using newer wrist-worn alcohol monitors, those studies were mainly 

conducted using early prototypes and in laboratory settings (13, 21), with fewer studies 

conducted in the field (22). Two recent studies have developed models for finding drinking 

start time (23) and breath alcohol concentration (BrAC) (24) based on TAC data produced 

by newer devices. Both models are yet to be validated for use with TAC data collected in 

the field and among general populations, such as college students, though one pilot field 

validation study found promising results for the latter model (22).

No model has been developed and validated to simultaneously capture drinking frequency, 

start time, and magnitude using TAC data collected with newer devices. Model development 

and validation studies on new wearable alcohol monitors in naturalistic drinking 

environments and among college students are required before researchers can reliably use 

these devices to better understand alcohol use in and develop alcohol interventions for 

college students (13, 21, 22), especially those who have high-risk drinking patterns (4, 6).

Objectives

We aimed to 1) develop a model that uses TAC data produced by the new generation of 

wearable alcohol monitors to detect alcohol drinking event start time, drinking frequency, 

and drinking magnitude, and to 2) evaluate the performance of this model relative to 

established alcohol use data collection tools.

Kianersi et al. Page 3

Addiction. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS

We followed relevant items from the STARD (25, 26) and TRIPOD (27, 28) guidelines when 

reporting our findings. The protocol for this study was approved by the Indiana University 

Bloomington (IUB) institutional review board (Protocol #2012949660). Participants 

provided electronic consent before participating in the study.

Study design

The study was conducted on the IUB campus, a large Big Ten state school in Monroe 

County, Indiana, with more than 33,000 undergraduate students. In this model development 

and validation study, we used a weeklong longitudinal prospective study design to collect 

alcohol use data.

Participants

Inclusion criteria were aged 18 years or older, enrollment in IUB courses in Spring 2021, 

living in Monroe County, IN, self-reported alcohol consumption at least once a week, and 

good general health. Additionally, because the study’s alcohol sensors connected only to 

iPhones, non-iPhone users were excluded during recruitment.

Sampling: We used two sampling techniques; 1) one-stage random cluster sampling 

where clusters were IUB Spring 2021 classes and 2) a network sampling technique known 

as acquaintance sampling (sampling the friends of randomly selected individuals) (29). 

Potential participants were contacted via email. Owing to complexity, sampling is fully 

described in supplemental materials (see Sampling in Supplement Material).

Study procedures

In an online survey (REDCap), participants provided electronic informed consent, filled out 

a baseline survey about demographics and alcohol use history, and scheduled a baseline 

visit. Baseline visits took place on the IUB campus in March-April 2021. Participants 

used four tools to collect alcohol use data: wearable alcohol monitors, daily surveys, 

an ecological momentary assessment (EMA) methodology, and breathalyzers (Figure 1). 

Participants learned about study procedures in a baseline visit. We asked participants to 

wear their alcohol monitors most of the time and only take them off/turn them off when 

showering or charging the device. To efficiently use our alcohol monitor supply, we divided 

participants into three groups and collected data in three consecutive weeks, one week of 

data collection per group.

Wearable alcohol monitor

We used BACtrack® Skyn (firmware version 2.0.8) to collect TAC data (30). Skyn was 

the first-prize winner of National Institute on Alcohol Abuse and Alcoholism (NIAAA) 

Wearable Alcohol Biosensor Challenge in 2016 (31). Skyn is an alcohol monitor with 

sensors that collect TAC data in near real-time. The TAC data are indexed in time order 

and are stored in secure HIPAA-compliant servers. The device is worn on the wrist with 

the sensor on the palm side and connects to an iOS companion app on the user’s iPhone 

via Bluetooth. This allows for the wireless transfer of the data from the monitor to the 
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servers. Skyn collects one TAC [unit= μg/L(air)] data point every 20 seconds. The data can 

be downloaded from the server as a CSV file. We sent prompts to participants to sync and 

transfer the TAC data every two days and charge the devices whenever necessary.

Reference standard tests

We evaluated the accuracy of TAC data collected with Skyn relative to the data collected 

with three separate tools, some of which are arguably the reference standard tests (i.e., the 

best available method) in the field (26): daily surveys, an EMA methodology developed 

specifically for the current study, and breathalyzers.

Daily Survey—Every day at noon, participants completed an online survey about their 

previous day’s drinking, drinking start time, and number of standard drinks consumed 

(Figure S2). A standard drink was defined as a drink that contains 14 grams (0.6 fluid 

ounces) of alcohol (32). A picture of common standard drinks was included in the daily 

survey. To improve the response rate, we sent SMS reminders to non-responders throughout 

the day. The validity and reliability of alcohol use data collected in daily surveys have been 

established (33, 34), with caveats (as described in the Background) that are mitigated by the 

triangulation of reference data collection.

EMA methodology—The EMA methodology was a timesheet survey created on REDCap 

(35, 36) to collect real-time drinking start times (37). Each participant worked with the 

research team to set up the survey so that the bookmark looked like an app on participants’ 

phone Home screen. Opening the app revealed a “Now” button that recorded the current 

timestamp when pressed. Just before drinking every new alcoholic beverage, participants 

opened the app and clicked on the “Now” button to capture the drinking start time for that 

beverage. In an internal validation study, this EMA approach performed well relative to both 

retrospective self-reports and BrAC data (37). Every timestamp in the EMA app dataset 

indicated consumption of one standard drink. Timestamps within 5 hours of each other were 

coded as one drinking event and the earliest one of these timestamps was coded as the 

drinking event start time.

Breathalyzers—To assess the recall bias of self-reports in our study, we collected 

objective BrAC data from a random subsample of 25 participants. This random sample 

was selected using the Pandas package in Python; the breathalyzer was given to the next 

participant if the randomly selected individual missed their baseline visit appointment. We 

used smart, portable BACtrack® C6™ keychain breathalyzers that estimate BrAC level 

through exhaled breath and used an iPhone app to store the BrAC readings on the user’s 

phone via Bluetooth. We asked participants to record their BrAC readings four times 

following their last drink and/or meal, once every 20–30 minutes. The maximum value 

among these readings was coded as the event BrAC level.

Covariates

In the baseline survey, we collected data on sex at birth (female/male), age (18 to ≥21 

years), race (white/other), residence (off-campus/on-campus), year in school (1st to 4th and 

5th), Greek membership (yes/no), annual income (≥$25,000 vs. <$25,000), and alcohol 
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use history (frequency, magnitude, estimated BrAC level after a typical night of drinking). 

We used the validated self-report version of USAUDIT questionnaire to measure high-risk 

alcohol drinking at baseline (38–40). Higher USAUDIT scores show higher risk. We used a 

USAUDIT score of 7 for female and 8 for male participants as the cut-off point for high-risk 

drinking. Body mass index (BMI) was measured at baseline visit using a scale and tape 

measure (<18.5, 18.5–24.9, 25–29.9, and ≥30).

Model development (index test)

We developed a model that uses TAC data collected by Skyn to capture alcohol drinking 

frequency, start time, and magnitude. Our model consists of three consecutive procedures, 

1) TAC data processing, 2) peak detection algorithm, and 3) regression analysis (Figure S3). 

We used the EMA app data as a reference standard test when developing the model.

In procedure one, we recoded negative TAC values as zero, and implemented median filter 

and moving average consecutively on recoded TAC data to remove the signal noise. Each 

peak in the processed TAC signal potentially represents a drinking event. However, a peak 

does not always correspond to an alcohol drinking event and could be due to environmental 

alcohol exposure, such as cleaning products or even alcohol drink spills. These naturally 

occurring environmental exposures provide an important justification for validating these 

procedures outside of a lab setting. We expected that the shapes of drinking event peaks 

would be different from those of other peaks. Thus, in procedure two, we used a peak 

detection algorithm to detect drinking events in the processed TAC data based on peak 

properties (e.g., prominence and width) (41). For each detected peak, the algorithm returned 

three time points: 1) Left base (which we defined as drinking start time), peak maximum 

(point with the maximum TAC value), and right base (last point in the peak timeseries). 

Lastly, for each detected peak, we calculated the area under the curve (AUC) from left base 

to right base of the detected peak using the composite Simpson’s rule.

In procedure three, we used peak maximum and peak AUC to predict number of standard 

drinks consumed in each drinking event. This procedure was only conducted on the true 

positive drinking events detected with the peak detection algorithm (i.e., peaks that were 

validated with self-report).

Hyperparameter optimization

A parameter that is used for improving the performance of an algorithm is called a 

hyperparameter. The process of identifying a good value for hyperparameters is known 

as hyperparameter optimization (42, 43). The optimization is mainly done with machine 

learning techniques based on pre-determined performance scores. The best hyperparameters 

are the ones that result in the best performance score.

Our model had multiple hyperparameters. We performed hyperparameter optimization using 

random grid search (also known as randomized parameter optimization) and finetuning 

(42, 43). In random grid search, we used group 5-fold cross-validation, an internal 

validation technique [GroupKFold (44)], which ensured the same participants were not 

included in both training and test sets. Hyperparameter optimization of procedures I and 

II was conducted simultaneously. Here, we used the balanced accuracy score, which is the 
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arithmetic mean of sensitivity and specificity of the model in detecting drinking events. 

Balanced accuracy score prevents inflated performance in imbalanced datasets (45), such as 

that in our study. For procedure III, we conducted a hyperparameter optimization to select 

the best regression technique and its best hyperparameters out of four different commonly 

used regression techniques (regression technique was itself a hyperparameter in procedure 

III). To quantify performance of procedure III in predicting number of standard drinks in 

a drinking event we used mean absolute error (MAE) for the paired measures of EMA 

app recorded and model predicted number of standard drinks consumed in a drinking 

event. Annotated source code and details on model development are available as a Jupyter 

Notebook as well as an HTML file in supplemental materials (see Model Development 

Source Code.ipynb).

We used Python (version 3.9.1, Python Software Foundation, Beaverton, OR, US) when 

developing our model (46). SciPy was used in peak detection (47). We developed our 

estimator class for conducting procedures I and II to be compatible with scikit-learn (48). 

All machine learning procedures, including hyperparameter optimization, were conducted 

in scikit-learn (49). The final model is available as Python code in supplemental materials 

(Final model.ipynb).

Sample size

In pre-hoc power analyses, we estimated the minimum required number of participants to 

be 64 in validation analyses and 118 in correlation analyses (see Sample Size Calculation in 

Supplemental Material).

Model validation and statistical analysis

In internal validation analyses, we calculated the model performance relative to daily survey 

data in 1) detecting drinking events, 2) drinking event start times, and 3) drinking magnitude 

(i.e., number of standard drinks consumed in a drinking event).

To quantify model performance in detecting drinking events we reported sensitivity and 

specificity measures along with balanced accuracy. Each model-detected peak was counted 

as one drinking event in the index dataset. For a detected peak to be considered a true 

positive, its left base (start of the peak) needed to be within 5 hours of the self-reported 

drinking start time on the daily survey. Participants could report one drinking event start 

time in daily surveys. However, more than one peak might form in TAC data when 

participants drink intermittently throughout the day. Therefore, in cases where more than 

one peak was detected in a drinking day, all peaks in that day were counted as one drinking 

event (this occurred for 35 out of 146 accurately detected drinking days). We calculated 

sensitivity/specificity and the 95% exact CIs using SAS software, Version 9.4 of the SAS 

System for Windows 10 (Cary, NC, USA).

We calculated the absolute time difference between model-detected drinking event start time 

and the start time reported in the daily surveys to evaluate model performance in detecting 

drinking event start time. This comparison variable could range from 0 to 300 minutes (5 

hours), with a value of 0 indicating that the start time in both data collection tools (Skyn 

alcohol monitors and daily survey) matched exactly with less than 1 minute of variability.
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To quantify model performance in detecting drinking magnitude we calculated mean 

absolute error (MAE) for the paired measures of daily survey self-reported number of 

consumed standard drinks in a drinking event and model-predicted number of standard 

drinks consumed in a drinking event. We estimated the Spearman’s correlation coefficient 

(50) for the continuous measures (number of drinks in daily surveys, peak maximum and 

AUC, and BrAC). We used complete case analysis; we included days where ≥1 TAC data 

points were collected, and the corresponding daily surveys were completed.

Exploratory external validation: In 2019, our team had collected alcohol use data from five 

IUB students, selected with convenience sampling, using study procedures similar to that 

of the current study (51). These five students wore earlier prototypes of Skyn wearable 

alcohol monitors and simultaneously reported their alcohol use with daily surveys for five 

consecutive days (EMA app and BrAC data were not collected). In a sensitivity analysis, 

using this small dataset collected in our 2019 study, we explored our model’s external 

validity on TAC data.

RESULTS

Participants

Overall, N=84 students participated in our study, n=46 from the random cluster sample 

(Figure S5) and n=38 from the Friends sample (Figure S6). Participants were ages 18 to 

22 with a median age of 20 years (IQR=2 years). Participants were mostly white (73%), 

female (70%), off-campus residents (70%), first year students (32%), non-Greek affiliated 

(70%), normal weight (60%), and had an income of less than $25,000 annually (88%). Most 

demographics and alcohol use patterns were similar to the general undergraduate population 

and to other larger studies among IUB undergraduate students (Table 1) (52).

Descriptive results

Skyn: Alcohol monitors collected 1,964,713 TAC data points (10,915 hours), out of a 

maximum possible 2,492,640 (13,848 hours) TAC data points that could have been collected 

if the devices were never turned off. Participants wore the monitors for 79% of the data 

collection week. On average, each participant provided 23,389 TAC data points (~130 hours) 

[Median: 25,553 (142 hours); IQR: 7,602 (105 hours)]. The mean TAC value was 11.17 

μg/L(air) (Median: −0.43, IQR: 5.63).

Daily surveys: Out of the 84 participants who completed the baseline visit, three participants 

completed their baseline visits on the third day of their data collection week. One participant 

opted out of the study on day four of their data collection week, contributing their data 

until day three. Out of the 577 daily surveys that we sent out to the participants, 568 

(response rate = 98.4%) were completed. Participants self-reported 213 drinking events. On 

average, participants self-reported 2.5 drinking events in the data collection week (Median: 

2.5, IQR: 1). Five participants self-reported no drinking event and two had 6 drinking events. 

The mean value for the total consumed standard drinks by each participant at the end of 

data collection week was 13.2 (Median: 9.3, IQR: 12.1). Further, on average, participants 
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self-reported consumption of 5.2 (Median: 4, IQR: 5) standard drinks in each of the 213 

drinking events.

EMA app: Six participants did not record any drinking event using the EMA app. Overall, 

78 participants recorded 206 drinking events. On average, participants recorded 2.6 drinking 

events in the data collection week (Median: 3, IQR: 1). Six participants had more than one 

drinking event in a day (drinks more than 5 hours apart). The mean value for the total 

consumed standard drinks recorded in the EMA app by each participant at the end of data 

collection week was 11.0 (Median: 8.0, IQR: 10.5). The mean value for the number of 

standard drinks recorded in each of the 206 drinking events was 4.2 (Median: 3, IQR: 3).

Breathalyzer: A total of 142 BrAC readings were recorded by 25 participants in 52 

drinking events. On average, breathalyzers recorded a maximum BrAC level of 0.066% 

(Median: 0.042%, IQR: 0.082%). The mean for the maximum recorded BrAC levels in each 

drinking event was 0.090% (Minimum=0.008%, Median: 0.080%, IQR: 0.099%, Maximum: 

0.237%).

Correlation analyses

Spearman’s correlation coefficient between number of standard alcohol drinks consumed 

in a drinking event self-reported in daily surveys and AUC for the peaks detected with 

our model was moderate and significant [rs (95% CI): 0.57 (0.45, 0.67)]. Maximum BAC 

level in a drinking event was recorded for 32 of the detected drinking events. Among these 

32 drinking events, Spearman’s correlation coefficient between the maximum BAC level 

recorded using breathalyzers and AUC for the drinking events detected with the model was 

strong and significant [rs (95% CI): 0.88 (0.77, 0.94)] (Figure 2).

Model performance

Model apparent performance: Relative to EMA app data, the best-balanced accuracy score 

in the model development phase was 84% for procedures I and II (true negatives=2064, true 

positives=148, false positive=170, and false negative=47). The best MAE score in procedure 

III was 2.2 standard drinks.

Model performance relative to daily surveys: Participants wore Skyn monitors and collected 

one or more TAC data points on 620 days. Each participant completed at least one daily 

survey. Overall, both daily survey and TAC data (≥1 TAC readings) were available for 

543 days. Under the assumption that the self-reported data accurately represented real 

drinking events, there were 146 true positives, 249 true negatives, 88 false positives, and 

60 false negatives detected by the alcohol monitors (Figure 3). Relative to daily surveys, 

the sensitivity of our model in detecting drinking events in TAC data collected by Skyn 

alcohol monitors was 70.9% (64.1%−77.0%). Specificity was slightly higher, 73.9% (68.9%

−78.5%), which equals a balanced accuracy score of 72.4%.

Model performance varied at the individual level. Both sensitivity and specificity were 

100% for 16 out of 84 (19%) participants. Both sensitivity and specificity were ≥80% for 

n=21 (25%) participants. Sensitivity or specificity was <80% for n=60 (71%) participants. 

Sensitivity was zero for 10 (12.0%) participants.
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Drinking start times: This analysis was conducted only on observations with a drinking 

event self-reported and detected by the alcohol monitor. The average absolute time 

difference between daily survey self-reports and model-detected drinking event start times 

was 79 minutes (Median: 59, Q1: 31, Q3: 109 minutes).

Drinking magnitude: Overall, 146 out of the 206 self-reported drinking events were detected 

(i.e., the true positives). Our model predicted number of standard drinks consumed in each 

of these detected 146 drinking events. The MAE was 2.8, meaning on average the absolute 

difference between the self-reported and predicted number of standard drinks consumed in 

each of the drinking events was 2.8 drinks.

Model performance (exploratory external validation)

The mean age of participants in the prior study used for external validation was 21.6 

years (51). During the five days of data collection, we sent out 25 daily surveys, one per 

participant per data collection day. All 25 daily surveys were completed. However, one 

participant was not wearing the device for one of the data collection days (no TAC data were 

collected) and consequently we removed that daily survey from validation analysis. In the 

remaining 24 daily surveys, participants reported drinking at least one drink on 15 days and 

no drinking on 9 days.

The overall sensitivity of our mode in detecting drinking events in the exploratory external 

validation dataset was 66.7%, and the overall specificity in not detecting any peak for a day 

when participants reported no drinking in that day was 100%. Sensitivity was 100% for three 

participants, 50% for one participants, and 0% for one participant. Specificity was 100% 

for all participants. Mean absolute time difference between the detected and self-reported 

drinking event start times for the 10 true positive values was 66 minutes (Median: 45 

minutes, Q1: 22 minutes, Q3: 80 minutes). The MAE was 0.91.

DISCUSSION

We developed a model to identify drinking events, drinking event start time, and drinking 

magnitude using a large TAC dataset collected with Skyn alcohol monitors among a sample 

of undergraduate students. We developed the model using EMA data as our benchmark. The 

model’s outputs were moderately and strongly correlated with alcohol use data collected 

with daily surveys and breathalyzers, respectively. Model performance was comparable 

to daily surveys. Similar performance results were obtained in the exploratory external 

validation analyses.

Limitations

First, our sample size was small, we did not reach our calculated sample size for correlation 

analyses, and BrAC data were available only for 25 participants. However, the sample size 

was larger than other similar studies on wearable alcohol monitors (21, 23, 24, 53) and 

exceeded minimum sample size recommendations for validation studies (28). Second, data 

collected with our EMA app, daily surveys, or breathalyzers were prone to measurement 

error. This could have biased the model performance estimates in either direction. However, 

correlation and performance measures were similar when comparing the model to any of 
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the reference standard tests. Third, participants could have changed their alcohol drinking 

patterns because they knew that their drinking behavior was being observed. However, 

alcohol use history reported on the baseline survey and drinking patterns captured using the 

reference standard tests in the data collection week were similar, suggesting participants did 

not change their alcohol drinking behavior in the week of data collection.

Fourth, more daily surveys were missing on the days when our model detected peaks 

compared to days that it did not detect any peaks. This could have biased the true sensitivity 

of our model towards worse values. Fifth, Skyn wrist-worn alcohol monitors need to be 

worn tightly to produce reliable data. Even though we asked participants to wear the 

Skyn monitors snugly, it is possible that they could not comply with this study procedure 

all the time, especially given the longer period of our study. This could have caused an 

underestimation of the true model performance. Sixth, we did not collect data on compliance 

and the compliance proxies that Skyn collects (temperature and motion) are yet to be 

validated. Lastly, external validation analysis was exploratory with a small sample size. The 

Skyn monitors used in the external validation study were earlier prototypes and different in 

firmware from the ones used in the current study. Larger external validation studies using the 

more recent version of the device are needed to better understand the external validity of our 

findings.

Interpretation

We conducted the first model development and validation study using TAC data produced 

by a new generation of wearable alcohol monitors in naturalistic drinking environments. 

We identified two other developed models that use TAC data produced by Skyn monitors 

to measure alcohol use, 1) changepoint detection model (CPDM) (23) and 2) TSFRESH 

and Extra-Trees model (24). When used with TAC dataset, the CPDM model finds the 

timestamp(s) when TAC value changes abruptly. The detected timestamp is a potential 

alcohol drinking event start time. This model has been used in laboratory setting (21). 

However, its performance in detecting drinking events has not been measured in field 

studies.

Developed by Fairbairn et al. (24), the TSFRESH and Extra-Trees model was built in Python 

programming language on TAC data collected by earlier prototypes of Skyn devices. The 

MAE between predicted and true BrAC values was small (MAE: 0.010%) (24) but increased 

in an external validation field pilot study (MAE: 0.041%) (22). Our model does not predict 

BrAC; instead, it predicts number of standard drinks. Nonetheless, assuming each standard 

drink could roughly increase BrAC level by 0.020%, our model accuracy in predicting 

drinking magnitude was similar and slightly better than the TFRESH and Extra-Tress model. 

Compared to our model, the TSFRESH and Extra-Trees model seemed to have a higher 

sensitivity, though the definitions for true/false negative/positive values were different from 

that in our study (24). Similar to the strong Pearson correlation between predicted and true 

BAC values in Fairbairn et al. study (r=0.9) (24) and an external validation pilot field study 

(r=0.8) (22), the correlations between detected AUC and BrAC values in our study were 

strong (r=0.88). At the time of our study, we could not evaluate the external validity of the 
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TSFRESH and Extra-Trees model in our TAC dataset because this model is not currently 

publicly available.

Our model is unable to detect alcohol use at the time participants start drinking because 

a peak needs to be formed before our model can detect it. A peak forms hours after 

drinking start time. Detecting alcohol use at drinking start time is important particularly 

when developing just-in-time adaptive interventions (54) or EMIs (55). With the use of 

advanced machine learning approaches (56) it might be possible to improve our model and 

account for this limitation by predicting formation of a peak before it is actually formed, 

and then use our peak detection model to detect the predicted peak (drinking event) at the 

drinking start time. Our model, in its current form, could be used by other researchers when 

they aim to passively collect objective and real-time (i.e., EMA) alcohol use data among 

their study participants.

Even though we found similar results in a small external validation analysis among five IUB 

undergraduate students, the accuracy of our model in other settings and populations remains 

unknown. It is possible to include more features (covariates such as BMI, sex, or mealtime) 

to improve model’s performance potentially further. Researchers can use our model with 

their data or even recalibrate our model to fit their data collection needs. For example, if 

specificity of detecting drinking events is more important than sensitivity, researchers can 

increase the prominence hyperparameter value in the peak detection algorithm to increase 

the model’s specificity.

Conclusion

BACTrack® Skyn wearable alcohol monitors provide high frequency TAC data. We 

developed and validated a model to translate the raw TAC data into measures that 

approximate commonly known alcohol use measures. Our model can be used for ecological 

momentary assessment/intervention of alcohol use, at this time, it cannot be used for EMIs 

that aim to deliver an intervention at the time of alcohol drinking. Additionally, it is possible 

to recalibrate the model to adjust the model performance. More external validation studies 

are needed to better understand the validity of our model and to replicate our findings in 

other populations. The developed model is included in supplementary materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

I (SK) am deeply grateful to my PhD mentor, Dr. Molly Rosenberg, for her invaluable guidance and support 
throughout my PhD program. The current study was part of SK’s dissertation in his PhD program (57). SK 
was a pre-doctoral trainee of an NIH/NIAAA funded program while working on this study [NIAAA grant # 
R25DA051249, 2021]. NIAAA had no role in the design, analysis, interpretation, or publication of this study. The 
content is solely the responsibility of the authors. Prevention Insights at the Indiana University Bloomington School 
of Public Health (Big Idea Challenge, awarded to SK) provided part of the research expenses. The BACtrack® 

Skyn devices were provided by Research Equipment Funding through the IU Office of the Vice Provost for 
Research to MR and CL.

Kianersi et al. Page 12

Addiction. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Role of Funding Source:

JA (co-author) is the Deputy Director for Research at Prevention Insights, which provided funding for parts of 
this study through a competitive grant opportunity for students at Indiana University. Prevention Insights is a 
translational research center within the Indiana University School of Public Health and issued the grant opportunity 
(the “Big Idea Challenge”) in 2019 as a means of supporting and collaborating with innovative student scholars.

REFERENCES

1. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes 
of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk 
factors. PLoS Med. 2009;6(4):e1000058. [PubMed: 19399161] 

2. Merrill JE, Carey KB. Drinking Over the Lifespan: Focus on College Ages. Alcohol Res. 
2016;38(1):103–14. [PubMed: 27159817] 

3. Carter AC, Brandon KO, Goldman MS. The college and noncollege experience: A review of the 
factors that influence drinking behavior in young adulthood. Journal of studies on alcohol and 
drugs. 2010;71(5):742–50. [PubMed: 20731981] 

4. Substance Abuse and Mental Health Services Administration. Key substance use and mental health 
indicators in the United States: Results from the 2018 National Survey on Drug Use and Health 
(HHS Publication No. PEP19–5068, NSDUH Series H-54). Rockville, MD: Center for Behavioral 
Health Statistics and Quality. Substance Abuse and Mental Health Services Administration. 2019.

5. National Institute on Alcohol Abuse and Alcoholism. Fall Semester—A Time for 
Parents To Discuss the Risks of College Drinking 2019 [cited 20020 01.21.2020]. 
Available from: https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/time-for-parents-
discuss-risks-college-drinking.

6. Hingson R, Zha W, Smyth D. Magnitude and trends in heavy episodic drinking, alcohol-impaired 
driving, and alcohol-related mortality and overdose hospitalizations among emerging adults of 
college ages 18–24 in the United States, 1998–2014. Journal of studies on alcohol and drugs. 
2017;78(4):540–8. [PubMed: 28728636] 

7. Hingson R, Heeren T, Winter M, Wechsler H. Magnitude of alcohol-related mortality and morbidity 
among US college students ages 18–24: Changes from 1998 to 2001. Annual review of public 
health. 2005;26.

8. Centers for Disease Control and Prevention. Alcohol & Substance Misuse 2018 
[updated February 1, 2018. Available from: https://www.cdc.gov/workplacehealthpromotion/health-
strategies/substance-misuse/index.html.

9. Leffingwell TR, Cooney NJ, Murphy JG, Luczak S, Rosen G, Dougherty DM, et al. Continuous 
objective monitoring of alcohol use: twenty‐first century measurement using transdermal sensors. 
Alcoholism: Clinical and Experimental Research. 2013;37(1):16–22. [PubMed: 22823467] 

10. Weissenborn R, Duka T. Acute alcohol effects on cognitive function in social drinkers: their 
relationship to drinking habits. Psychopharmacology. 2003;165(3):306–12. [PubMed: 12439627] 

11. Luczak SE, Rosen IG. Estimating Br AC from Transdermal Alcohol Concentration Data 
Using the Br AC Estimator Software Program. Alcoholism: clinical and experimental research. 
2014;38(8):2243–52. [PubMed: 25156615] 

12. Swift R Direct measurement of alcohol and its metabolites. Addiction. 2003;98 Suppl 2:73–80. 
[PubMed: 14984244] 

13. Wang Y, Fridberg DJ, Leeman RF, Cook RL, Porges EC. Wrist-worn alcohol biosensors: Strengths, 
limitations, and future directions. Alcohol. 2019;81:83–92. [PubMed: 30179709] 

14. Campbell AS, Kim J, Wang J. Wearable Electrochemical Alcohol Biosensors. Curr Opin 
Electrochem. 2018;10:126–35. [PubMed: 30859141] 

15. Bond JC, Greenfield TK, Patterson D, Kerr WC. Adjustments for drink size and ethanol content: 
new results from a self-report diary and transdermal sensor validation study. Alcohol Clin Exp 
Res. 2014;38(12):3060–7. [PubMed: 25581661] 

16. Piasecki TM. Assessment of alcohol use in the natural environment. Alcoholism: clinical and 
experimental research. 2019;43(4):564–77. [PubMed: 30748019] 

Kianersi et al. Page 13

Addiction. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/time-for-parents-discuss-risks-college-drinking
https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/time-for-parents-discuss-risks-college-drinking
https://www.cdc.gov/workplacehealthpromotion/health-strategies/substance-misuse/index.html
https://www.cdc.gov/workplacehealthpromotion/health-strategies/substance-misuse/index.html


17. Karns-Wright TE, Roache JD, Hill-Kapturczak N, Liang Y, Mullen J, Dougherty DM. Time Delays 
in Transdermal Alcohol Concentrations Relative to Breath Alcohol Concentrations. Alcohol 
Alcohol. 2017;52(1):35–41. [PubMed: 27522029] 

18. Dougherty DM, Hill-Kapturczak N, Liang Y, Karns TE, Lake SL, Cates SE, et al. The Potential 
Clinical Utility of Transdermal Alcohol Monitoring Data to Estimate the Number of Alcoholic 
Drinks Consumed. Addict Disord Their Treat. 2015;14(3):124–30. [PubMed: 26500459] 

19. Hill‐Kapturczak N, Lake SL, Roache JD, Cates SE, Liang Y, Dougherty DM. Do variable 
rates of alcohol drinking alter the ability to use transdermal alcohol monitors to estimate peak 
breath alcohol and total number of drinks? Alcoholism: clinical and experimental research. 
2014;38(10):2517–22. [PubMed: 25335857] 

20. Dougherty DM, Charles NE, Acheson A, John S, Furr RM, Hill-Kapturczak N. Comparing the 
detection of transdermal and breath alcohol concentrations during periods of alcohol consumption 
ranging from moderate drinking to binge drinking. Exp Clin Psychopharmacol. 2012;20(5):373–
81. [PubMed: 22708608] 

21. Fairbairn CE, Kang D. Temporal Dynamics of Transdermal Alcohol Concentration Measured via 
New-Generation Wrist-Worn Biosensor. Alcohol Clin Exp Res. 2019;43(10):2060–9. [PubMed: 
31469451] 

22. Ariss T, Fairbairn CE, Bosch N. Examining new-generation transdermal alcohol biosensor 
performance across laboratory and field contexts. Alcohol Clin Exp Res. 2023;47(1):50–9.

23. Killick R, Fearnhead P, Eckley IA. Optimal detection of changepoints with a linear computational 
cost. Journal of the American Statistical Association. 2012;107(500):1590–8.

24. Fairbairn CE, Kang D, Bosch N. Using machine learning for real-time BAC estimation from 
a new-generation transdermal biosensor in the laboratory. Drug and Alcohol Dependence. 
2020;216:108205. [PubMed: 32853998] 

25. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: 
an updated list of essential items for reporting diagnostic accuracy studies. Clinical chemistry. 
2015;61(12):1446–52. [PubMed: 26510957] 

26. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 
guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 
2016;6(11):e012799.

27. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement. 
Circulation. 2015;131(2):211–9. [PubMed: 25561516] 

28. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent 
Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): 
explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73. [PubMed: 25560730] 

29. Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks and 
populations. Phys Rev Lett. 2003;91(24):247901. [PubMed: 14683159] 

30. BACtrack. WEARABLE ALCOHOL BIOSENSOR BACtrack Skyn Track your alcohol 
level directly from your wrist, in near real-time 2022 [1.25.2020]. Available from: https://
skyn.bactrack.com/.

31. National Institute of Health. NIAAA selects winners of its Wearable Alcohol Biosensor Challenge 
2016 [Available from: https://www.nih.gov/news-events/news-releases/niaaa-selects-winners-its-
wearable-alcohol-biosensor-challenge.

32. National Institutes of Health. What’s a “standard” drink? [Available 
from: https://www.rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much/what-counts-as-a-
drink/whats-A-Standard-drink.aspx.

33. Del Boca FK, Darkes J. The validity of self‐reports of alcohol consumption: state of the science 
and challenges for research. Addiction. 2003;98:1–12.

34. Ekholm O Influence of the recall period on self-reported alcohol intake. Eur J Clin Nutr. 
2004;58(1):60–3. [PubMed: 14679368] 

35. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap 
consortium: Building an international community of software platform partners. J Biomed Inform. 
2019;95:103208. [PubMed: 31078660] 

Kianersi et al. Page 14

Addiction. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://skyn.bactrack.com/
https://skyn.bactrack.com/
https://www.nih.gov/news-events/news-releases/niaaa-selects-winners-its-wearable-alcohol-biosensor-challenge
https://www.nih.gov/news-events/news-releases/niaaa-selects-winners-its-wearable-alcohol-biosensor-challenge
https://www.rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much/what-counts-as-a-drink/whats-A-Standard-drink.aspx
https://www.rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much/what-counts-as-a-drink/whats-A-Standard-drink.aspx


36. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture 
(REDCap)—a metadata-driven methodology and workflow process for providing translational 
research informatics support. Journal of biomedical informatics. 2009;42(2):377–81. [PubMed: 
18929686] 

37. Kianersi S, Parker M, Christina L, Agley J, Rosenberg M. Introduction and validation of an 
ecological momentary assessment methodology to measure alcohol use among college students. in 
submission. 2022.

38. Higgins-Biddle JC, Babor TF. A review of the Alcohol Use Disorders Identification Test (AUDIT), 
AUDIT-C, and USAUDIT for screening in the United States: Past issues and future directions. The 
American journal of drug and alcohol abuse. 2018;44(6):578–86. [PubMed: 29723083] 

39. Control CfD, Prevention. Planning and implementing screening and brief intervention for risky 
alcohol use: A step-by-step guide for primary care practices. Atlanta: Centers for Disease Control 
and Prevention. 2014.

40. Babor T, Higgins-Biddle J, Robaina K. The alcohol use disorders identification test, adapted 
for use in the United States: a guide for primary care practitioners. Geneva: World Health 
Organization. 2014.

41. SciPy developers. Numpy and Scipy Documentation 2021 [Available from: https://
docs.scipy.org/doc/.

42. Hutter F, Lücke J, Schmidt-Thieme L. Beyond manual tuning of hyperparameters. KI-Künstliche 
Intelligenz. 2015;29(4):329–37.

43. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. Journal of machine 
learning research. 2012;13(2).

44. scikit-learn. 3.1. Cross-validation: evaluating estimator performance [Available from: https://scikit-
learn.org/stable/modules/cross_validation.html.

45. scikit-learn. 3.3. Metrics and scoring: quantifying the quality of predictions [Available from: 
https://scikit-learn.org/stable/modules/model_evaluation.html.

46. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

47. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: 
fundamental algorithms for scientific computing in Python. Nature methods. 2020;17(3):261–72. 
[PubMed: 32015543] 

48. scikit-learn. Developing scikit-learn estimators [Available from: https://scikit-learn.org/stable/
developers/develop.html.

49. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine 
learning in Python. the Journal of machine Learning research. 2011;12:2825–30.

50. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. 
Anesthesia & Analgesia. 2018;126(5):1763–8. [PubMed: 29481436] 

51. Rosenberg M, Ludema C, Kianersi S, Luetke M, Jozkowski K, Guerra-Reyes L, et al. 
Wearable alcohol monitors for alcohol use data collection among college students: feasibility and 
acceptability in a pilot study. medRxiv. 2021:2021.02.17.21251959.

52. Kianersi S, Ludema C, Macy JT, Colato EG, Chen C, Luetke M, et al. A Cross-Sectional Analysis 
of Demographic and Behavioral Risk Factors of Severe Acute Respiratory Syndrome Coronavirus 
2 Seropositivity Among a Sample of US College Students. Journal of Adolescent Health. 2021.

53. Wang Y, Fridberg DJ, Shortell DD, Leeman RF, Barnett NP, Cook RL, et al. Wrist-worn alcohol 
biosensors: Applications and usability in behavioral research. Alcohol. 2021;92:25–34. [PubMed: 
33609635] 

54. Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, et al. Just-in-Time 
Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for 
Ongoing Health Behavior Support. Ann Behav Med. 2018;52(6):446–62. [PubMed: 27663578] 

55. Heron KE, Smyth JM. Ecological momentary interventions: incorporating mobile technology into 
psychosocial and health behaviour treatments. British journal of health psychology. 2010;15(1):1–
39. [PubMed: 19646331] 

56. Fairbairn CE, Bosch N. A new generation of transdermal alcohol biosensing technology: 
practical applications, machine -learning analytics and questions for future research. Addiction. 
2021;116(10):2912–20. [PubMed: 33908674] 

Kianersi et al. Page 15

Addiction. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/developers/develop.html


57. Kianersi S Accuracy of Skyn Wearable Alcohol Monitors in Measuring Alcohol Consumption in 
Naturalistic Drinking Environments: A Network Sampling Approach: Indiana University; 2022.

Kianersi et al. Page 16

Addiction. Author manuscript; available in PMC 2024 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Study procedures

EMA: Ecological Momentary Assessment

*Following the baseline visit scheduler, participants from the random cluster sample 

provided names and contact information of 2–3 friends.

Index test: the measurement tool under evaluation (26).

Reference standard test: “the best available method for establishing the presence or absence 

of the target condition” (25).

TAC monitoring, EMA app data collection, and breathalyzer readings were conducted in 

parallel.
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Figure 2. Correlation analysis: model compared to daily surveys and breathalyzers
-Red line shows the linear regression between the x and y axes and its 95% CI. Darker 

circles indicate overlapping data points.
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Figure 3. STARD flow diagram (model validation)
Reference Standard test: Daily survey, index test: developed model

* By study design, participants could have TAC data on the endline visit days. However, we 

did not send daily surveys for these days. Therefore, the maximum number of days that TAC 

data could have been collected (672 days) was larger than the maximum number of days 

daily surveys could have been collected (588 days).

- For daily survey, the unit of analysis was day.
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Table 1.

Participants’ baseline characteristics collected in an online baseline survey, spring 2021

Covariate Completed baseline visit
N = 84

IUB Undergraduate population, Spring 
2021
N=31,364a

IU Serosurvey Study
N = 1,267b

Categorical variables: n (%)

Age

 18 years 15 (19.2)
11,818 (37.7)

254 (22.2)

 19 years 22 (28.2) 258 (22.6)

 20 years 20 (25.6) NA 258 (22.6)

 21–22 years 21 (26.9) NA 374 (32.7)

 Missing 6

Female 59 (70.2) 15,673 (50.0) 800 (63.4)

White 61 (72.6) 21,640 (69.0) 975 (77.3)

Year in school

 1st 27 (32.1) 4,824 (15.4) 286 (22.7)

 2nd 27 (32.1) 7,434 (23.7) 284 (22.5)

 3rd 20 (23.8) 7,455 (23.8) 306 (24.3)

 4th-5th 10 (11.9) 11,377 (36.3) 384 (30.5)

Off-campus 59 (70.2) NA 850 (67.4)

Greek members (missing = 2) 25 (30.5) NA 303 (24.1)

Income <$25,000 (missing = 1) 73 (88.0) NA NA

Body mass index

 Underweight (BMI <18.5) 3 (3.6) NA NA

 Normal weight (18.5≤BMI≤24.9) 50 (59.5) NA NA

 Overweight (25≤BMI≤29.9) 25 (29.8) NA NA

 Obesity (BMI≥30) 6 (7.1) NA NA

Continuous variables: mean (SD)

BrAC after a typical night of drinking >0.08 51 (60.7) NA NA

High-risk drinking based on USAUDIT 72 (85.7) NA 394 (47.6)c,d

Heavy drinking 53 (63.1) NA NA

No. of days in a week drinking alcohol 2.5 (1.1) NA 2.3 (1.2)c

No. of drinks consumed in a drinking night 5.1 (3.1) NA 4.1 (2.3)c

Total number of drinks consumed in a week 13.7 (12.9) NA NA

Total USAUDIT score 13.1 (5.6) NA 8.1 (4.3)c

a.
Data in this column were retrieved from the following official IU website: https://uirr.iu.edu/facts-figures/enrollment/index.html

b.
Data obtained from references (52). This study used a random sample of IUB undergraduate population and was conducted in Fall 2020.

c.
Among students who reported drinking at least once a week (i.e., one of the inclusion criteria of the current dissertation study).

d.
Measured with AUDIT (AUDIT≥8 vs. AUDIT<8)
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IUB: Indiana University Bloomington, NA: Not available
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