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Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol
increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the
cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we
demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in
vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we
reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC
xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro
and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing
cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential
biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic

treatment for HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of the most leading causes
of cancer in the worldwide with high mortality rate [1]. Following
with the raised incidence of non-alcoholic fatty liver disease
(NAFLD) worldwide, NAFLD-associated HCC (NAFLD-HCC) was
increasingly recognized as the leading cause of HCC [2].
Increasing evidence demonstrates that abnormal lipid metabo-
lism is a vital reason for «cancer occurrence [3].
Epithelial-mesenchymal transition (EMT) plays an important role
in tumor metastasis, in which epithelial cells lose epithelial
characteristics and acquire mesenchymal phenotype [4]. EMT can
coordinate kinds of complementary cancer characteristics,
including tumor cell stemness, tumorigenicity, resistance to
therapy, and adaptation to variable microenvironment [5].
Though there are novel chemotherapeutic interventions and
target therapy, the overall prognosis of patients with HCC is still
poor owe to the high rates of intrahepatic and distal metastasis [6,
71. Previous studies have reported that EMT can be regulated to
promote metastasis in HCC. Cancer stem cells own infinite
differentiation potential and self-renewal properties, which lead
to cell growth, distant and metastasis in HCC [8, 9]. Therefore,
exploring the molecular mechanism of regulating the EMT in HCC
cells has great significance for inhibiting the HCC metastasis and
improving the poor prognosis of patients.

Cholesterol is an essential lipid of plasma membrane and
supports the requirements of cell proliferation growth and
structure [10]. Reprogramming cholesterol metabolism such as

accelerated synthesis and abnormal uptake are closely related to
the development of HCC [11, 12]. In the tumor microenvironment,
cholesterol metabolism is usually enhanced to support cancer
progression. Squalene epoxidase (SQLE) induced the develop-
ment of NAFLD-HCC via promoting the biosynthesis of cholesterol
esters [13]. Cholesterol uptake through the low-density lipopro-
tein receptor (LDLR) is vital for the growth of ALK+ anaplastic
large cell lymphoma cells and patient-derived xenografts [12]. In
addition, dietary cholesterol has been proved to promote NAFLD-
HCC [14]. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR)
expression was up-regulated in human HCC along with enhanced
mitochondrial ~ cholesterol  content  [15].  3-hydroxy-3-
methylglutaryl CoA synthase (HMGCS) can convert acetyl coen-
zyme A into HMG-CoA, which plays an important role in the
process of cholesterol synthesis [16]. CSN6 stabilizes HMGCS1
protein by preventing SPOP-mediated HMGCS1 ubiquitination
and degradation [17]. Cholesterol drives the development of HCC
by regulating the distribution of IncRNA SNHG6 between
organelles [18]. Cholesterol and its metabolites also effect
immune microenvironment of tumor. Oxysterols, a cholesterol
oxidation product, regulates transcription factors (SREBP2 and
LXR) related to cholesterol metabolism, which in turn leads to T
cell dysfunction [19]. Therefore, targeting cholesterol metabolism
reprogramming could regulate the genesis and metastasis in HCC.

Sterol O-acyltransferases (SOAT), also known as ACAT, has two
isoforms in mammals, SOAT1 and SOAT2. SOAT1, localized on the
endoplasmic reticulum, performs catalytic functions as dimers or
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tetramers and could esterify cholesterol to cholesterol ester [20].
Increasing evidence indicates that the suppression of SOAT1
blocked tumor growth, such as glioblastoma [21], pancreatic
cancer [22], colon cancer [23], and gastric cancer [24]. However,
the underlying mechanism whether SOAT1 promotes EMT in HCC
remains to be explored.

Terpenoids have been widely studied in vitro and in vivo due to
their unique anti-tumor biological characteristics [25]. Nootkatone,
a natural plant sesquiterpene ketone, exhibits pharmacological
activity on regulating inflammation, apoptosis, and autophagy
[26, 27]. Besides, nootkatone exerts anticancer effects on color-
ectal cancer [27] and non-small-cell-lung cancer [28]. And, it has
been reported that nootkatone has effect on hepatic fibrosis [29].
However, the inhibitive effect of nootkatone on HCC has not been
reported.

Recently, it has proved that SOAT1 promoted proliferation and
is associated with early-stage HCC [30]. However, whether SOAT1
promotes EMT in HCC has not been known yet. Here, we report a
direct correlation of increased expression of SOAT1 with EMT in
HCC. Our results indicate that SOAT1 promotes EMT in HCC
through maintaining cholesterol homeostasis and therapeutic
efficacy of nootkatone on NAFLD-HCC, which supports the critical
role of the metabolic microenvironment in HCC metastasis,
providing a new insight for the precision therapy on HCC.

MATERIALS AND METHODS

Bioinformatic analysis

Five gene expression profiles GSE99807 [31], GSE164760 [32], GSE50579
[33], GSE14520-GPL3921 [34], and GSE33006 [35] were obtained from Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). Differen-
tially expressed genes were screened through GEO2R. Then the up-
regulated and down-regulated DEGs were, respectively, intersected via
Venn analysis (https://bioinformatics.psb.ugent.be/webtools/Venn/) to
obtain mutual DEGs. The Gene Ontology (GO) annotations and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
of DEGs were performed using DAVID 2021 software (https://
david.ncifcrf.gov/). The interaction between DEGs were confirmed by
STRING database (https://cn.string-db.org/). Representative IHC pictures of
SOAT1 were obtained from The Human Protein Atlas (THPA) (https://
www.proteinatlas.org/). SOAT1 expression data and clinical data were
extracted from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). SOAT1 expression in HCC cells was obtained from
Cancer Cell Line Encyclopedia (CCLE) (https://sites.broadinstitute.org/ccle/
datasets).

HCC sample analysis

Twenty-two cases of HCC samples were collected from Liaocheng People’s
Hospital, which was individually examined by certified pathologists for
Edmondson-Steiner (ES) grade and microvascular invasion (MVI) grade
according to the WHO published standardizations. This study has been
approved by the Ethics Committee of Liaocheng People’s Hospital and
Tianjin University of Science and Technology. The sample collection has
obtained informed consent from all participants. Immunohistochemistry
(IHC) analyzed the expression level of SOAT1 and its correlation with ES
and MVI grade.

Cell culture

HepG2 and PLC/PRF/5 cells were purchased from Cell Bank of Shanghai
Institutes for Biological Sciences (Shanghai, China). Cells were cultured in
DMEM medium (Gibco) with 10% FBS (YEASEN) and 1% antibiotics (100 U/mL
penicillin and 10 pg/mL streptomycin, YEASEN) at 37 °C in an atmosphere of
5% CO,.

Plasmid construction and transfection

pcDNA3.1-3xFlag-SOAT1 and pRNAT-U6.1/Neo was purchased from
YouBio. Small hairpin RNA (shRNA) targeting human SOAT1 was
constructed into pRNAT-U6.1/Neo. The sequence of shSOAT1 was as
follows:  (5-TGGTCCATGACTGGCTATATTCTCGAGAATATAGCCAGTCATG-
GACCATTTTTT-3').
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Cells were transfected with plasmids DNA at 70-95% confluence using
Hieff Trans TM Liposomal transfection Reagent (YEASEN) in accordance
with the manufacturer’s instructions.

Western blot analysis

Cells or tissues were washed by precooling PBS and lysed with cold RIPA
buffer (Beyotime) containing protease inhibitor cocktail (MCE) in ice for
30 min, followed by centrifugation at 12,000 rpm for 10 min. The super-
natant was collected, and protein concentrations were determined using
the BCA Protein Assay Kit (Beyotime). Total protein was separated by SDS-
PAGE and transferred onto PVDF membrane (Millipore) and the
membranes were blocked with 5% non-fat milk for 1h. Then, the
membrane was incubated over night at 4°C with the following primary
antibodies: rabbit anti-SOAT1 (ABclonal, 1:1000), rabbit anti-E-cadherin
(Bioss, 1:1000), rabbit anti-Occludin (Proteintech, 1:10,000), rabbit anti-
Vimentin (Bioss, 1:1000), rabbit anti-Twist1 (Proteintech, 1:2000), rabbit
anti-N-cadherin  (Proteintech, 1:5000), rabbit anti-Slug (Proteintech,
1:10,000), rabbit anti-Snail1 (Proteintech, 1:800), rabbit anti-Fibronectin
(Proteintech, 1:10,000), rabbit anti-SREBP2 (ABclonal, 1:1000), rabbit anti-
LDLR (Proteintech, 1:2000), rabbit anti-ITGB4 (Proteintech, 1:600), rabbit
anti-ITGAV (Abbkine, 1:1000), rabbit anti-AFP (Proteintech, 1:1500), mouse
anti-GAPDH (Proteintech, 1:25,000). Then, the membranes were washed
three times with TBST for 10 min at room temperature and incubated with
secondary antibody (YEASEN, 1:5000) at room temperature for 1h. The
bands were visualized using SuperKine™ ECL (Abbkine) with Chemilumi-
nescent Imaging System (Image Quant LAS 4000).

Immunofluorescence

HepG2 and PLC/PRF/5 cells with different treatments were fixed with 4%
paraformaldehyde for 20 min at room temperature and blocked with 5%
BSA for 30 min. Cells were incubated at temperature with E-cadherin
(Proteintech, 1:200) and Vimentin antibody (Bioss, 1:100) at room
temperature for 1 h. Then the cells were treated with secondary antibodies
(YEASEN, 1:100) at room temperature for 1 h. The cells were washed twice
with PBS and every time for 5 min in each step. Cell slides were sealed with
anti-fluorescence quenching sealer with DAPI (YEASEN) and the fluores-
cence was detected with Laser scanning confocal microscope (ZEISS).

Scanning electron microscope (SEM)

HepG2 and PLC/PRF/5 cells with different treatments were fixed,
dehydrated in gradient concentration of ethanol and dried with the
gradient concentration of acetonitrile. Then cells were dried again by
vacuum freeze dryer. Gold-plated cells were photographed through
scanning electron microscopy (JEOL).

Wound healing assay

HepG2 or PLC/PRF/5 with different treatments were inoculated in wells for
12 h at 37 °C. The pipettor tips were used to remove part cells in each well.
The floating cells were washed off with PBS and then serum-free medium
was added. Immediately after, the wound was photographed, which was
regarded as 0h wound distance. After 24 and 48 h of cell culture, the
wound was recorded. The migration of cells was analyzed by comparing
the wound distance ratio at 0 h.

Invasion assay

Invasion assays were performed using transwell plates (8um pore filter,
Corning). HepG2 or PLC/PRF/5 cells with different treatments were seeded
in top chamber inserts added with Matrigel (BD Biosciences). The upper
chamber was added with 200 pL of the cell suspension (2 x 10° cells/mL) in
serum-free medium. The bottom chamber was filled with 700 uL of
medium containing 20% FBS. After 24 h of incubation, cells located on the
lower surface of the chamber were fixed for 10 min with cool methanol.
Then cells were stained with crystal violet for 10 min. After being cleaned
with PBS, the cells were photographed under the microscope and counted
using ImageJ software.

Cell counting kit-8 (CCK-8) assay

After transfection for 24 h, HepG2 or PLC/PRF/5 cells were seeded in a 96-
well plate with a density of 2x 10%/mL in each well. Then cell medium
(each well 100 pL) and CCK-8 reagent (Beyotime) were added to detect cell
proliferation at 24, 48, and 72 h. The absorbance (A) was measured at
450 nm. Five parallel wells were set in each group, and the mean value was
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obtained. Cell survival rate was calculated using the following formula: cell
survival rate (%) = (Aexperimental group/AcontroI group) % 100%.

Oil red staining

Cells with different treatment were fixed with 4% paraformaldehyde for
10 min. Fresh-frozen tissue sections (8um) were performed. All staining
procedures were carried out according to Modified Oil Red O Staining Kit
(Beyotime). Nucleus were stained with hematoxylin (Proteintech) 5s.
Samples were rinsed three times with PBS and photographed by Microscope
(Olympus). Quantitative analysis was performed by Image) software.

BODIPY 493/503 staining

Cells with different treatment were fixed with 4% paraformaldehyde for
20 min. After being cleaned with PBS, lipid droplets were stained by 5 uM
BODIPY 493/503 (GLPBIO) for 30 min and visualized by Laser scanning
confocal microscope (ZEISS). Quantitative analysis was performed by
ImageJ Pro software.

Free cholesterol/cholesterol ester concentrations

Cells (5 x 10°) or tissues (50 mg) were harvested and treated according to
kit instructions. Free cholesterol concentrations were detected by Free
Cholesterol (FC) Quantification Kit (Abbkine). Total cholesterol (TC)
concentrations were detected by Total Cholesterol Quantification Kit
(Abbkine). Cholesterol esters concentration was the difference between TC
concentration and FC concentration.

Filipin 1l staining

Cells were fixed with 4% paraformaldehyde for 15 min and incubated with
1.5 mg/mL Glycine for 30 min. Wash cells three times with PBS. Cells were
incubated with 12.7 uM Filipin Il (GLPBIO) for 2 h. The fluorescence was
detected with Laser scanning confocal microscope (ZEISS).

Molecular docking

The 3D structure of SOAT1 was downloaded from the PDB database (PDB
code 6VUM). The 3D structure of nootkatone (NK) was drawn by
ChemDraw 2D 20.0 and transformed by Chem 3D. Molecular docking of
nootkatone and SOAT1 protein was completed by AutoDockTools [36, 37].
The docking result was beautified through PyMOL.

Xenograft tumor model

Male BALB/c nude mice (5-6 weeks old) purchased from SPF (Beijing)
Biotechnology Co., Ltd were randomly divided into Control, SOATI,
shSOAT1, NK, and SOAT1 + NK groups (n=6 per group). Mice were
subcutaneously injected with PLC, PLC-SOAT1, PLC-shSOATT1 cells (1 x 10%).
When the tumor size was up to 0.2 cm [3], the mice in NK and SOAT1 + NK
group were given nootkatone (dissolved in 0.5% CMC-Na) by gavage at
200 mg/kg/day for 18 days. Other groups were given the same volume of
0.5% CMC-Na gastric irrigation. Tumor size was tested and calculated every
3 days according to the standard formula. All mice were sacrificed at the
28th day post inoculation, and the tumor tissues were collected,
photographed, and weighted.

Pulmonary metastasis model

Male BALB/c nude mice (5-6 weeks old) were randomly divided into
Control, SOAT1, shSOAT1, NK, and SOAT1 + NK groups (n =6 per group).
Mice were injected with PLC, PLC-SOAT1, PLC-shSOAT1 cells (2 x 10%) via
tail vein. The mice in NK and SOAT1 + NK groups were given nootkatone
(dissolved in 0.5% CMC-Na) by gavage at 200 mg/kg for total 4 weeks.
Other groups were given the same volume of 0.5% CMC-Na gastric
irrigation. After eight weeks, lungs were collected, photographed and
metastatic nodules were counted.

NAFLD-HCC model

Male C57BL/6J (2-week-old) mice were purchased from SPF (Beijing)
Biotechnology Co., Ltd. Husbandry was conducted following standard
guidelines. After the accommodation, mice were divided randomly into
four groups (n =6 per group): control group that fed with normal chow;
model group that injected once a week with 25 mg/kg Diethylnitrosamine
(DEN, N0258, Sigma) for 2 weeks and then fed with high-fat/high-
cholesterol diet (HFHC, TP28522, containing 40% fat and 0.5% cholesterol),
lasting 20 weeks. At 19 weeks of age, nootkatone (dissolved in 0.5% CMC-
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Na) was given by gavage at 100 mg/kg/day (NK-L group) and 200 mg/kg/
day (NK-H group). At the same time, model group was given an equivalent
volume of 0.5% CMC-Na. At 24 weeks of age, serum and liver tissue were
obtained for further analysis. Moreover, part of liver was fixed in 10%
neutral formalin for histological analysis. Animal studies were carried out
according to the Guidelines of Animal Experimentation Ethics Committee,
Tianjin University of Science and Technology.

Biochemical analysis
Contents of total cholesterol (TC) was quantified by commercial Kkits
(Jiancheng Biotech). Serum AFP was detected with mouse-AFP ELISA kits
(mlbio). The levels of hepatic free cholesterol (FC) and cholesterol ester (CE)
were determined using FC Quantification Kit (Abbkine) and TC Quantifica-
tion Kit (Abbkine).

Serum alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) in mice were detected by biochemical analyzer (Hitachi 7020).

Histological analysis

Frozen sections were stained with Oil red O to visualize lipid droplets. The
fixed liver tissue embedded in paraffin were sliced (3um). After dewaxing,
tissue samples were stained with hematoxylin-eosin (H&E). Fibrosis was
assessed by Sirius Red staining (G-CLONE). All slices were observed using a
microscope (Olympus).

Immunohistochemistry (IHC) staining

Paraffin sections of liver tissue (3 um) were dewaxed and rehydrated. After
being blocked with 3% H,0, for 10 min, sections were sealed with goat
serum (Proteintech) for 20 min. Then sections were incubated with the
following primary antibodies overnight at 4°C: SOAT1 (BOSTER, 1:200),
mouse anti-E-cadherin (Proteintech, 1:200), rabbit anti-Vimentin (Bioss,
1:400). The primary antibody in negative group was replaced by PBS. After
washing, horseradish peroxidase-polymer anti-mouse/rabbit (Maixin Bio-
tech) was added in all sections for 1 h at room temperature. Lastly, tissues
were stained with 3,3'-diamino-benzidine-tetrahydrochloride and counter-
stained with hematoxylin (Maixin Biotech). All sections were observed with
microscope (Olympus). The IHC score was calculated by multiplying the
intensity (negative =0, canary yellow =1, claybank =2, brown = 3) and
the positive cell percentage scores (<25% =1, 25-50% =2, 51-75% =3,
>75% = 4).

Real-time quantitative reverse transcription PCR

Total RNA in liver tissue was extracted by Trizol Reagent (TIANGEN Biotech)
and converted into cDNA with Reverse Transcription Kit (TIANGEN Biotech).
The method of RT-PCR was according to the manufacturer’s instructions
and previously described protocol [38]. GAPDH expression was regarded as
standard.

mRNA sequencing and bioinformation analysis

Total RNA was extracted, purified, and used to constructed cDNA libraries
for sequencing with the lllumina NovaSeq 6000 sequencer at Shanghai
Majorbio Bio-pharm Biotechnology Co., Ltd. (Shanghai, China). Clean reads
were separately aligned to mouse reference genomes by HISAT2. The raw
count of genes in each sample were assembled by StringTie. The counts
matrix was normalized by DESeq2. Cluster analysis, GO, KEGG, and Gene
Set Enrichment Analysis (GSEA) were used to analyze gene expression and
related pathways in each group.

Statistical analysis

Data were analyzed by GraphPad Prism 9.0 software (GraphPad Software,
USA). Student’s t test was used to compare two groups of data. One-way
analysis of variance (ANOVA) was used to compare multiple groups of data.
Two-way ANOVA was used to compare data including multiple groups
with two or more variation. Data from each experiment were presented as
the means+SD. P<0.05 was considered statistically significant and
depicted as follows: *P < 0.05, **P < 0.01.

RESULTS

SOAT1 promotes the malignant progression of human HCC
We selected five GSE profiles about human HCC tissues (including
tissues with NASH background) and normal or para-carcinoma

SPRINGER NATURE
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tissue to analysis the differential gene and related pathway. A total
of 378 up-regulated and 103 down-regulated differentially
expressed genes (DEGs) were determined (Fig. 1A). GO enrich-
ment analysis suggested that biological processes (cell migration,
angiogenesis, EMT and lipid metabolism regulation), cellular

SPRINGER NATURE

components (cell surface, nucleus, cell junction and endoplasmic
reticulum) and molecular functions (RNA binding, transcription
factor binding and integrin binding) significantly enriched in HCC
tissue (Fig. 1B). KEGG pathway analysis was correlated with lipid
metabolism and tumor-related pathway (Fig. 1C). STRING could
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Fig. 1 SOAT1 promotes the malignant progression of HCC. A Up-regulated and down-regulated differentially expression genes (DEGs) in
five mRNA expression profiles. B The GO category for DEGs. BP biological process, CC cellular component, MF molecular function. The color
represents the P value, and the size indicates the enrichment gene number of each pathway. C KEGG enrichment pathways of DEGs. EIP
Environmental Information Processing, CP Cellular Processes, OS Organismal Systems, GIP Genetic Information Processing, HD Human
Diseases, M Metabolism. D Protein—protein interaction network of DEGs. E Up-regulated gene expression of lipid metabolism and tumor
progression. F Representative images of IHC staining for SOAT1 of normal liver and HCC tissues cited from The Human Protein Atlas. G SOAT1
expression level in normal tissues and HCC tissues based on the TCGA dataset. H, | Analysis of the SOAT1 expression levels in TCGA HCC
samples based on the individual clinical stage (H) and pathological grade (I). J High SOAT1 expression is positively correlated with poor
survival (P =0.0175). K Representative images of positive and negative SOAT1 expression in different HCC tissues detected by IHC. L Analysis
of the expression levels of SOAT1 in HCC patient liver tissues based on ES grade and MVI grade.

predict proteins interactions including direct (physical) and
indirect (functional) interactions. STRING analysis was performed
on DEGs. The results showed that some DEGs are related to lipid
metabolism and tumor development (Fig. 1D). In depth, the
results showed that tumor related and lipid metabolism-related
genes such as cholesterol metabolism genes were increased,
including SOAT1 (Fig. 1E). To further explore the clinicopatholo-
gically relevant feature of SOATT, the LIHC data in the Human
Protein Atlas and TCGA database was analyzed. The result showed
that SOAT1 expression was higher in HCC tissues compared with
normal liver tissue (Fig. 1F, G). Besides, SOAT1 expression level
positively correlated with individual clinical stage (Fig. 1H) and
pathological grade (Fig. 11). The survival analysis showed that the
high SOAT1 mRNA expression level was associated with the poor
prognosis in HCC patients (Fig. 1J). We collected 22 cases of HCC
tissues and detected SOAT1 expression by immunohistochemistry
(IHQ). The results showed that SOAT1 exhibited significant high
expression in tissue with higher malignancy levels (Fig. 1K).
Further analysis showed that the level of SOAT1 expression was
positively correlated with the ES grade and MVI grade of HCC (Fig.
1L). Accordingly, these data demonstrated that SOAT1 expression
was positively correlated with malignant process.

SOAT1 promotes the EMT in HCC

SOAT1 expression was observed in different HCC cell lines through
CCLE public data analysis (Fig. 2A). The SOAT1 expression level
was detected in HepG2 and PLC/PRF/5 cell lines by western blot
(Fig. 2B). To evaluate the efficacy of SOAT1 expression on EMT,
SOAT1 was overexpressed in HepG2 and knocked down in PLC/
PRF/5. Western blot analysis revealed that SOAT1 remarkably
increased Vimentin, Twist1, N-cadherin, Snail1, Slug, and Fibro-
nectin, but decreased E-cadherin and Occludin expression in
HepG2 cells, and the opposite results were observed in PLC/PRF/5
cells with SOAT1 knocked down (Fig. 2C). Immunofluorescence
analysis suggested that E-cadherin expression was reduced, and
Vimentin expression was increased in SOAT1-overexpressing
HepG2 cells. Conversely, SOAT1 knockdown increased
E-cadherin expression but decreased Vimentin expression (Fig.
2D). Besides, the influence of SOAT1 in cell phenotypes was
observed through scanning electron microscopy. The pseudopo-
dia of cellular surface were increased, and cell morphology
changed from epithelial phenotype to mesenchymal phenotype in
SOAT1-overexpressing cells and epithelioid phenotype was
resumed after the SOAT1 knocked down (Fig. 2E). Moreover,
overexpressed SOAT1 promoted cell migration and invasion,
which was inhibited by SOAT1 knockdown (Fig. 2F, G). The cell
proliferation of HepG2 and PLC/PRF/5 cells with SOAT1 over-
expressed or knocked down was detected for 24, 48, and 72 h by
CCK-8 assay. The results showed that SOAT1 overexpression
promoted cell proliferation, whereas SOAT1 knockdown inhibit
cell proliferation (Fig. 2H). These results demonstrated that SOAT1
promoted EMT in HCC cells.

SOAT1 induces EMT via regulating cholesterol metabolism

SOAT1 was an essential modulator of cholesterol esters formation.
To further investigate how SOAT1 mediates EMT, lipid droplets
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were stained by Oil red O and BODIPY493/503. We observed that
lipid droplets highly increased in SOAT1 overexpressed groups
and decreased in SOAT1 silenced groups (Fig. 3A). Consistent
results were acquired through BODIPY staining in HepG2 and PLC/
PRF/5 cells with SOAT1 overexpressed or knocked down (Fig. 3B).
The accumulation of cholesterol esters was observed in SOAT1-
overexpressed cells, and cholesterol esters concentration
decreased in SOAT1 knockdown cells (Fig. 3C). SOAT1 over-
expression promoted cholesterol accumulation in plasmalemma,
and SOAT1 knockdown contributed to the accumulation of
intracellular cholesterol (Fig. 3D). Furthermore, we found that
SOAT1 overexpression increased the expression level of SREBP2
and LDLR. Besides, the expression level of ITGB4 and ITGAV,
integrin related to tumor metastasis, were also increased. The
contrary results were obtained in SOAT1 knocked down cells (Fig.
3E). These results revealed that SOAT1 may promote EMT by
regulating cholesterol level.

Nootkatone alleviates cholesterol metabolism disorder by
targeting SOAT1

To investigate SOAT1 inhibitor, some compounds from Medicine
Food Homology Compound Library were selected. Molecular
docking analysis demonstrated that nootkatone displayed highest
affinity with the catalytic pocket of SOAT1 protein (Fig. 4A). The
detailed docking result of nootkatone and SOAT1 is shown in Fig.
4B. The results showed that nootkatone had close contact with
His425, Tyr417, Met449, Val452, Phe453, and Asn487 of SOATT, in
which the carbonyl oxygen of nootkatone might form a hydrogen
bond with His425 of SOAT1 (Fig. 4B). Nootkatone inhibited cell
viability of HepG2 and PLC/PRF/5 cell lines (Fig. 4C). And,
Nootkatone has no significant effect on the proliferation of
normal liver cells (Fig. S1). To determine whether nootkatone is
responsible for maintaining cholesterol homeostasis, HepG2 and
PLC/PRF/5 cells were cultured in medium containing cholesterol
(200 pg/mL) for 24 h and then treated with nootkatone (150 and
300 uM). The Oil red O and BODIPY493/503 staining results
indicated that cholesterol promoted lipid accumulation in HCC
cells, while nootkatone alleviated accumulation of lipid droplets
induced by cholesterol (Fig. 4D, E). Cholesterol esters concentra-
tion markedly increased in the cholesterol-induced cells, which
was reversed by nootkatone (Fig. 4F). Moreover, nootkatone
decreased the effect of protein and mRNA expression level of
SOAT1 mediated by cholesterol (Fig. 4G, H). Together, these results
confirmed that nootkatone played a crucial role in regulating
cholesterol metabolism via targeting SOATT.

Nootkatone inhibits the EMT of HCC by targeting SOAT1

To further investigate whether nootkatone inhibits EMT by
targeting SOAT1, rescue experiments were conducted. BOD-
IPY493/503 staining results showed that nootkatone (300 uM)
counteracted lipid droplets accumulation facilitated by SOAT1
(Fig. 5A), which was verified by the cholesterol esters content of
cells in different groups (Fig. 5B). SOAT1 overexpression con-
tributed to cholesterol accumulation in cell membrane. Nootka-
tone promoted intracellular cholesterol accumulation, which is
similar to the result of SOAT1 knocked down. Also, nootkatone
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Fig.2 SOAT1 promotes the EMT in HCC cells. A SOAT1 expression level in different HCC cell lines cited from CCLE database. B Western blot
analysis of SOAT1 expression in HepG2 and PLC/PRF/5 cell lines. C Western blot analysis of EMT related markers in SOAT1 overexpressed or
knocked down cells. D Immunofluorescence assay of E-cadherin and Vimentin in cells treated with SOAT1 overexpression or shRNA vectors.
E Cell phenotype changes under SOAT1 overexpressed or knocked down treatment. F, G Migration (F) and invasion (G) of HepG2 cells
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treatment.

counteracted membrane cholesterol accumulation induced by
SOAT1 overexpression (Fig. 5C). Nootkatone inhibited cell invasion
and migration, and abolished the migration and invasion
mediated by SOAT1 overexpression (Fig. 5D, E). IF analysis
suggested that nootkatone decreased Vimentin and increased
E-cadherin expression, and eliminates the effect of Vimentin and
E-cadherin expression mediated by SOAT1 (Fig. 5F). SEM was used
to observe the effect of nootkatone on cell morphology, and the
results showed that nootkatone inhibited the mesenchymal
phenotype of cells (Fig. 5G). Western blot analysis further proved
that nootkatone eliminated the effect of SREBP2, LDLR, E-cadherin,
Occludin, Vimentin, Twist1, N-cadherin, Snail1, Slug, and Fibro-
nectin expression mediated by SOAT1 overexpression (Fig. 5H).
Overall, these results demonstrated that nootkatone inhibited EMT
by targeting SOAT1.

Nootkatone suppresses the oncogenic and metastatic effects
of SOAT1 in vivo

To validate the oncogenic effects of SOAT1 in vivo, nude mice
were subcutaneously implanted PLC/PRF/5 cells to establish
xenograft model. Compared with the mice in Control group,
SOAT1 promoted the tumor growth, and the opposite results were
obtained after silencing SOAT1 expression. Nootkatone
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administration inhibited tumor growth and eliminated the
stimulative roles of SOAT1 on tumor growth (Fig. 6A, B). Moreover,
the protein expression of SOAT1, SREBP2, LDLR and EMT related
markers in xenograft tumors were detected. The expression level
of SREBP2, LDLR and mesenchymal markers (Vimentin, Twist1, N-
cadherin, Snail1, Slug, and Fibronectin) were increased in SOAT1
overexpressed group and decreased in SOAT1 silenced group,
whereas the E-cadherin and Occludin showed the contrary trend.
Nootkatone restored the up-regulation of SREBP2, LDLR, Vimentin,
Twist1, N-cadherin, Snaill, Slug, and Fibronectin and down-
regulation of E-cadherin and Occludin induced by SOAT1 (Fig.
6C). The results of lung metastasis experiments showed that the
number of lung metastatic nodules increased in mice injected
with SOAT1 overexpressed PLC cells, whereas decreased in mice
of shSOAT1 and NK groups. Nootkatone administration reduced
the effect of SOAT1 on lung metastatic nodules (Fig. 6D). These
results manifested that SOAT1 played oncogenic and metastatic
role in HCC, which was suppressed by nootkatone treatment.

Nootkatone suppresses tumorigenesis and development of
NAFLD-HCC mice

Classical mice model of NAFLD-HCC induced by DEN injection and
HFHC feeding was established to verify that nootkatone inhibits
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EMT by targeting SOAT1 in NAFLD-HCC mice (Fig. 7A). The
respective liver macroscopic suggested that compared to the
control group, liver of model group mice displayed uneven surface
and tumor nodules (yellow arrow), indicating that NAFLD-HCC
model was successfully conducted. Nootkatone obviously
improved HFHC + DEN-induced NAFLD-HCC in mice (Fig. 7B).
Alpha fetoprotein (AFP) is one of the most widely accepted
detection markers of HCC. The results of AFP detection in serum
and liver tissue showed that the liver of the model group mice
underwent carcinogenesis, and nootkatone administration
reduced AFP levels (Fig. 7C). Besides, mice in model group
displayed enhanced body weight, liver weight, and liver-to-body
weight ratio (LW/BW ratio), which were improved by nootkatone
(Fig. 7D-F). Serum total cholesterol was significantly increased in
model mice, which were recovered by nootkatone treatment (Fig.
7G). In parallel, hepatic free cholesterol and cholesterol ester
content were increased in model mice, whereas nootkatone
significantly reduced the accumulation of hepatic free cholesterol
and cholesterol esters (Fig. 7H). Serum ALT and AST levels were
significantly increased in model mice compared with that in
control group, which were decreased by nootkatone supplemen-
tation (Fig. 7I). Lipid accumulation in liver was evaluated through
Oil red O staining. The wide distribution of large lipid droplets was
observed in liver of model mice, whereas nootkatone administra-
tion decreased lipid droplets distribution in liver. H&E staining
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results showed that DEN + HFHC-feeding resulted in balloon-like
structures and lipid deposition in liver tissue. Notably, nootkatone
supplementation effectively decreased the hepatocellular balloon-
ing and lipid deposition in liver. Moreover, model mice exhibited
fibrotic injury with increased collagen distribution, while nootka-
tone reduced hepatic collagen deposition to ameliorate liver
fibrosis (Fig. 7J). Furthermore, the expression of SOAT1, SREBP2,
LDLR and Vimentin, Twistl, N-cadherin, Snail1l, Slug, and
Fibronectin was increased, while E-cadherin and Occludin expres-
sion was decreased in liver tissues of model mice. Nootkatone
markedly reversed the expression in a dose-dependent manner
(Fig. 7K). IHC staining results suggested that compared with the
control group, reduced E-cadherin and increased vimentin
expression were observed in liver of model mice, while
nootkatone administration reversed their expression (Fig. S2).
These results indicate that the trend of NAFLD to HCC transition
induced by DEN + HFHC significantly increases SOAT1 expression
in liver tissue, resulting in the disruption of cholesterol home-
ostasis, and nootkatone can alleviate liver lesions.

To further explore the effects of nootkatone on cholesterol
metabolism and oncogenesis in the progression of NAFLD to HCC,
mRNA-Seq was performed with liver tissue of NAFLD-HCC mice.
The differently expression genes (DEGs) in Control, Model and NK
group are represented in Fig. 8A. GO analyzed the DGEs between
every two groups (Model vs Control and NK vs Model). In Model vs
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Control group, lipid metabolism related function (sterol synthetic,
cholesterol biosynthetic process, and lipid localization) and tumor-
related process (collagen fibril organization, cell matrix adhesion,
growth factor binding, and extracellular matrix) obviously
enriched (Fig. 8B). Nootkatone specially regulated lipid metabo-
lism (response to fatty acid, lipid biosynthetic process and lipid
metabolic process), tumor-related process (extracellular matrix,
actin cytoskeleton, and growth factor binding) and immune
response (B cell activation, leukocyte differentiation and immune
effector process) (Fig. 8C). KEGG pathway enrichment analysis
indicated that DEGs in Model vs Control group enriched in protein
digestion and absorption, lipid metabolism related pathway (fat
digestion and absorption, steroid biosynthesis) and tumorigenesis
and development related pathway (PPAR signaling pathway, focal
adhesion and PI3K/Akt signaling pathway) (Fig. 8D). It is
noteworthy that the DGEs in NK vs Model group enriched in
pathways including HCC, pathways in cancer, drug resistance and
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metabolism (Fig. 8E). Moreover, GSEA results suggested that
DEN + HFHC induction accelerated lipid and atherosclerosis, lipid
storage, NAFLD, and TNF signaling pathway (Fig. 8F). Nootkatone
suppressed cholesterol metabolism, lipid biosynthetic process,
HCC, and TNF signaling pathway (Fig. 8G). In detail, the
upregulated and downregulated lipid metabolism related genes
were analyzed, and nootkatone effectively maintained lipid
metabolism homeostasis (Fig. 8H). In addition, DEN + HFHC-fed
resulted in the increased expression of representative genes
related to tumorigenesis and development, whereas nootkatone
administration inhibited tumor-related genes expression (Fig. 8l).
In order to verify the mRNA sequencing results, we verified the
expression of cholesterol metabolism-related genes and tumor-
related genes in the liver tissue of the Control, Model, NK-L, and
NK-H groups by gRT-PCR. Compared with the Control group, the
MRNA expression of Srebf2, Scap, Hmgcr, Soat1, Npc1, Snai3, Twist1,
Itgav, Vegfc, and Tgfbrl has higher expression in model group,
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indicating that there is lipid metabolism disorder in model mice.
Nootkatone administration could inhibited the mRNA expression
to maintain lipid metabolism homeostasis (Fig. S3). Taken
together, these results demonstrated that DEN + HFHC drove
the process of NAFLD-HCC, while nootkatone could inhibit the
process.

DISCUSSION

EMT is a critical process contributing to cancer progression and
metastasis [39]. Increasing studies suggest that EMT is inextricably
linked to cholesterol metabolism [4, 40]. SOAT1, a key cholesterol
esterification enzyme, can transform supernumerary intracellular
cholesterol into cholesterol esters storing in lipid droplets.
Previous study has found that SOAT1 is a diagnostic marker and
therapeutic target for HCC [30]. Tumor suppressor P53 represses
ubiquitin-specific peptidase 19 (USP19) which deubiquitinate and
stabilize SOAT1, thereby inhibiting hepatocarcinogenesis [41].
However, the underlying mechanism that SOAT1 promotes EMT is
unclear in HCC. In this study, TCGA database and clinical specimen
information analysis showed that high SOAT1 expression is a risk
factor for survival of HCC patients. In vitro, we found that SOAT1
decreased the expression of epithelium protein marker (E-
cadherin and Occludin) and increased the expression of mesench-
ymal protein (Vimentin, Twist1l, N-cadherin, Snaill, Slug, and
Fibronectin), promoting invasion and migration of HCC cells. Of
note, SOAT2 shares high homologous to SOAT1 [42] but has lower
expression in HCC than normal liver tissues, which needs further
research.

Abnormal cholesterol metabolism accelerated the development
of HCC. SREBP2, is a master transcriptional regulator of cholesterol
biosynthesis pathway [43]. SCAP could regulated SREBP2 from the
endoplasmic reticulum (ER) by sensing and responding to ER
cholesterol fluctuations [44]. When SOAT1 were overexpressed, ER
membrane cholesterol is depleted, the SCAP-SREBP2 complex is
sorted into COPII vesicles and moves from the ER to the Golgi for
proteolytic activation of SREBP2, promoting the expression of
LDLR which related to cholesterol uptake [10]. In previous studies,
cholesterol synthesis mediated by SREBP2 promotes the caveolin-
dependent endocytosis of integrin 31, contributing to pathologi-
cal angiogenesis [45]. Besides, the cholesterol level of the plasma
membrane regulates receptors on the plasma membrane,
including integrins [46, 47]. Targeting cholesterol/lipid raft/
integrin B3/FAK pathway overcomes EMT-associated drug resis-
tance [48]. In our study, the results indicated that SOAT1
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overexpression promoted the accumulation of lipid droplets and
cholesterol esters. Moreover, SOAT1 overexpression promoted
cholesterol synthesis and uptake, accelerating the accumulation of
cholesterol in plasma membrane, which enhanced the integrins
(ITGAV and ITGB4) expression. When SOAT1 was knocked down,
the process of cholesterol into cholesterol ester was blocked,
leading to intracellular cholesterol accumulation. The xenograft
tumor and lung metastasis model in vivo revealed that SOAT1
accelerated tumor growth and metastasis.

NAFLD is closely linked to HCC development [49]. Cholesterol or
dietary cholesterol facilitates hepatocarcinogenesis [50, 51].
Increased serum lipid level and hepatic steatosis are remarkable
characteristic of NAFLD [52]. AFP, as a serum biomarker and tumor
antigen, is the most widely accepted detection indicator in HCC
[53]. Hepatic free cholesterol and cholesterol ester accumulation is
another feature in HCC [14, 41]. We conducted NAFLD-HCC mice
model to determine the mechanism that SOAT1 induced
hepatocarcinogenesis. DEN + HFHC feeding resulted in tumor
nodules and high level of AFP in serum and liver. Moreover, SOAT1
and mesenchymal markers were highly expressed in model mice,
while epithelium markers were decreased. Besides, abnormal
cholesterol metabolism was observed in NAFLD-HCC mice, which
was presented as increased cholesterol level in serum and liver
tissue, increased lipid droplets accumulation, higher protein and
MRNA expression of cholesterol metabolism-related genes. These
data demonstrated that SOAT1 was involved in the process of
tumor occurrence.

Notably, despite cholesterol metabolism is a frequent pathway
for the antitumor drugs, there are no specific targets and drugs for
clinical use. Previous study indicated that SOAT1 exhibits high
expression in the S-lll subtype of HCC, and knocked down SOAT1
inhibit tumor development [46]. Currently, some SOATT1 inhibitors
have been found, including avasmibe [7], pactimibe [54], PD-
122301 (nevanimibe) [42], and CI-976 [55]. Nootkatone, a natural
sesquiterpene ketone, was extracted from grapefruit peel. Pre-
views studies have confirmed that nootkatone ameliorates liver
fibrosis and inhibits tumor cells proliferation, such colorectal
cancer and non-small-cell lung cancer [27-29]. However, the
therapeutic effect of nootkatone on HCC has not been reported.
The molecular docking results showed that the binding site
between nootkatone and SOAT1 (His425, Tyr417, Met449, Val452,
Phe453, Asn487 residues) is close to the binding site between
Oleoyl-CoA, a cholesterol esterified substrate, and the cytosolic
tunnel TM7 of SOAT1. Therefore, we speculate that nootkatone, as
a possible competitive inhibitor, might inhibit SOAT1 activity by
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Fig. 7 Nootkatone suppresses tumorigenesis and development of NAFLD-HCC mice. A Schematic illustration of experimental procedure.
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hindering the loading of substrate into the catalytic center. The
binding mechanism between nootkatone and SOAT1 needs
further exploration. We further investigated that nootkatone
inhibited EMT by targeting SOAT1-induced cholesterol metabo-
lism in vitro. In addition, nootkatone treatment significantly
inhibited the xenograft tumor growth and pulmonary metastasis
via targeting SOAT1. Moreover, nootkatone supplementation
reduced the expression of SOAT1, alleviated hepatic steatosis

Cell Death and Disease (2024)15:325

and pathological injuries damage, which suppressed tumorigen-
esis and development of NAFLD-HCC. So, we hold that nootkatone
might inhibit EMT by targeting SOAT1.

Our studies confirmed that SOAT1 accelerated the EMT
procession of HCC by regulating cholesterol metabolism in vitro
and in vivo. Nootkatone, a natural medicine food homology
compound, inhibited EMT via targeting SOAT1. These findings
reveal that SOATT is a potential anti-tumor metastasis target in
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Fig. 8 mRNA-seq analysis verifies that nootkatone inhibits tumorigenesis and development of NAFLD-HCC mice. A Heatmap of the
hierarchical clustering DEGs from liver tissue in different groups (log,FC > 2, P < 0.01). Red represents up-regulated genes and blue represents
down-regulated genes. B, C GO enrichment of DEGs in Model vs Control (B) and NK vs Model (C) groups. BP biological process, CC cellular
component, MF molecular function. The color represents the P value, and the size indicates the enrichment gene number of each pathway.
D, E KEGG pathway enrichment of DEGs in Model vs Control (D) and NK vs Model (E) groups. HD Human Diseases, EIP Environmental
Information Processing, CP Cellular Processes, M Metabolism, OS Organismal Systems. F, G GSEA of Model vs Control (F) and NK vs Model (G)
groups. H Up-regulated and down-regulated DEGs of lipid metabolism in Model vs Control and NK vs Model groups. | Up-regulated DEGs

associated with tumorigenesis and development in Model vs Control and NK vs Model groups.
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HCC, providing the reference for targeted cholesterol metabolism
to cure HCC. Importantly, our investigation provides new insights
into the anti-cancer mechanism of sesquiterpene and demon-
strates that the natural compound nootkatone might be valuable
as a potential drug for cancer therapy.

DATA AVAILABILITY
The data that support the findings of this study are available from this manuscript
and the corresponding author upon reasonable request.
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