
Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has profoundly impacted countries 
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ABSTRACT

Objectives: The coronavirus disease 2019 (COVID-19) pandemic continues to pose significant 
challenges to the public health sector, including that of the United Arab Emirates (UAE). The 
objective of this study was to assess the efficiency and accuracy of various deep-learning 
models in forecasting COVID-19 cases within the UAE, thereby aiding the nation’s public health 
authorities in informed decision-making. 
Methods: This study utilized a comprehensive dataset encompassing confirmed COVID-19 cases, 
demographic statistics, and socioeconomic indicators. Several advanced deep learning models, 
including long short-term memory (LSTM), bidirectional LSTM, convolutional neural network 
(CNN), CNN-LSTM, multilayer perceptron, and recurrent neural network (RNN) models, were 
trained and evaluated. Bayesian optimization was also implemented to fine-tune these models. 
Results: The evaluation framework revealed that each model exhibited different levels of predictive 
accuracy and precision. Specifically, the RNN model outperformed the other architectures even 
without optimization. Comprehensive predictive and perspective analytics were conducted to 
scrutinize the COVID-19 dataset. 
Conclusion: This study transcends academic boundaries by offering critical insights that 
enable public health authorities in the UAE to deploy targeted data-driven interventions. The 
RNN model, which was identified as the most reliable and accurate for this specific context, 
can significantly influence public health decisions. Moreover, the broader implications of this 
research validate the capability of deep learning techniques in handling complex datasets, thus 
offering the transformative potential for predictive accuracy in the public health and healthcare 
sectors. 
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worldwide, including the United Arab Emirates (UAE). The 
UAE has faced significant challenges in controlling the spread 
of the virus and in managing its consequences. The accurate 
forecasting of pandemic dynamics is vital for effective 
decision-making and resource allocation by healthcare 
organizations, governments, and policymakers. In recent 
years, deep learning models have demonstrated remarkable 
performance in solving various challenges in the fields of 
healthcare, image processing, text recognition, and natural 
language processing [1]. These models have been successfully 
applied to a range of COVID-19 forecasting tasks and their use 
in predicting the progression of the pandemic in the UAE is 
of particular interest. This literature review examines the 
application of advanced deep learning models for COVID-19 
forecasting in the UAE and provides a comparative analysis 
of their performances [2,3]. 

Several studies have used deep learning models to predict 
the progression of the UAE pandemic. For example, some 
studies have applied multi-input, multi-output convolutional 
neural network (CNN) models to forecast COVID-19 cases 
in multiple countries, including the UAE [4–6]. Their results 
indicated that CNN models could effectively capture local 
patterns in the data and provide accurate forecasts. Similarly, 
other studies have explored the use of long short-term 
memory (LSTM) and bidirectional LSTM (Bi-LSTM) models 
for COVID-19 forecasting in the region, demonstrating their 
ability to capture complex temporal dependencies in the data 
and provide reliable predictions [7–11]. The deep learning 
models discussed in this review include LSTM, Bi-LSTM, 
CNN, CNN-LSTM hybrid, recurrent neural network (RNN), 
and multilayer perceptron (MLP) models [6,12–15]. These 
models have been employed in various studies to forecast 
COVID-19 cases, deaths, and recoveries as well as to predict 
the impact of different government interventions and public 
health measures. The models were used in the context of 
UAE to find the best-performing model with and without 
Bayesian optimization, which was selected as one of the best 
available optimization parameters that could be applied 
to all the selected models in this study. This study aimed to 
determine the best model to predict COVID-19 in the UAE. 
The paper is further divided into Section 2, which provides a 
detailed background of the COVID-19 pandemic in the UAE; 
Section 3, which provides information on common models; 
Section 4, which provides details on preprocessing; Section 5, 
which provides results and discussion; and Section 6, which 
presents recommendations, conclusions, and future work. 

Contributions to Existing Studies 
This study offers several distinct contributions to the academic 
community and public health policymakers. 

Analysis of advanced deep-learning models 
This research is among the first to conduct a comprehensive 
analysis of multiple deep learning models, including LSTM, Bi-
LSTM, CNN, CNN-LSTM, MLP, and RNN models, specifically for 
predicting COVID-19 cases in the UAE. 

Data integration 
Unlike previous studies that have focused on a singular 
aspect, such as confirmed cases, this research incorporates 
a more comprehensive dataset, including demographic 
information and socioeconomic indicators, thereby providing 
a holistic overview for more accurate predictions. 

Optimization technique 
Utilizing Bayesian optimization, this study goes a step further 
in fine-tuning the models, which has not been commonly 
carried out in similar studies. This optimization substantially 
increased the reliability and accuracy of the predictive 
models.  

Impact on policymaking  
This research not only serves academic purposes, but also 
has substantial real-world applications. It directly aids public 
health decision-making, enabling authorities to implement 
targeted and data-driven interventions, which is particularly 
crucial when pandemics occur. 

Future-readiness 
Our models, especially the RNN model, which showed the 

HIGHLIGHTSHIGHLIGHTS

•  This study offers a comprehensive evaluation of 
various advanced deep-learning models for predicting 
COVID-19 cases in the United Arab Emirates (UAE), 
employing a robust dataset that includes demographic 
and socioeconomic factors.

•  A recurrent neural network model emerged as the most 
accurate and reliable forecasting tool, even without 
optimization, which has significant implications for 
public health policy.

•  All participants had high COVID-19 vaccine confidence.

•  This research goes beyond academic interest, providing 
actionable insights that empower UAE public health 
authorities to develop targeted, data-driven interventions, 
demonstrating the potential of deep learning in managing 
complex healthcare datasets.
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best performance without any prior optimization, can serve 
as a framework for predicting not only COVID-19 cases, but 
also cases of other infectious diseases, thus having broader 
implications for healthcare. It has often been pointed out 
that RNNs have issues of interpretability that can slow down 
decision-making and may require additional resources 
to validate the model performance, but this was resolved 
by developing hybrid models to ensure timely decision-
making. 

Predictive and perspective analytics 
This study is one of the few that uses both predictive and 
perspective analytics to provide a multidimensional analysis 
of COVID-19 trends and patterns, thereby adding a layer of 
depth to data interpretation. 

Background 
The principal motivation for employing a comparative study 
of advanced deep learning models lies in the unpredictable 
nature of the pandemics. Traditional epidemiological 
models have shown limitations in capturing the dynamic 
variables that affect virus transmission, such as behavioral 
changes and policy interventions. By leveraging deep 
learning, this study aims to offer a more adaptive and 
accurate framework for COVID-19 forecasting in the UAE. 

COVID-19 pandemic in the UAE 
Since the first reported case in January 2020, the UAE has 
implemented strict measures to control the spread of the 
virus. The country’s response evolved over time, adapting 
to the changing landscape of the pandemic. Some of the 
key aspects of the UAE’s response include lockdowns, travel 
restrictions, mass vaccination campaigns, healthcare 
infrastructure expansion, and testing and tracing capacities. 
This section elaborates on these aspects to provide a more 
comprehensive understanding of the COVID-19 pandemic in 
the UAE [16]. 

Lockdowns and travel restrictions 
In the early stages of the pandemic, the UAE imposed 
strict lockdowns and curfews to minimize the spread of 
the virus. These measures included closing nonessential 
businesses, suspending schools and universities, and 
restricting movement. The UAE has also implemented 
travel restrictions, including banning flights from high-
risk countries, imposing quarantine measures for inbound 
travelers, and requiring negative polymerase chain reaction 
(PCR) tests for international passengers [17]. 

Mass vaccination campaigns 
The UAE has been proactive in securing COVID-19 vaccines 
and in initiating mass vaccination campaigns. The country 
initiated its vaccination program in December 2020, 
prioritizing healthcare workers, elderly citizens, and people 
with chronic diseases. Since then, the UAE has expanded its 
vaccination efforts to include the general public with several 
available vaccines, including Sinopharm, Pfizer-BioNTech, 
and AstraZeneca. By September 2021, the UAE had one of 
the world’s highest vaccination rates, with more than 90% 
of its population having received at least 1 dose. Currently, 
the UAE accounts for 100% of all vaccinated residents [18]. 

Healthcare infrastructure expansion 
To effectively combat the COVID-19 pandemic, the UAE invested 
significantly in expanding its healthcare infrastructure. 
The country established numerous field hospitals, isolation 
centers, and testing facilities to accommodate the increasing 
number of cases. In addition, the UAE increased its healthcare 
workforce by recruiting more medical professionals and 
support staff to meet the demand. This expansion not 
only helped manage the pandemic, but also improved the 
country’s overall healthcare capabilities [19]. 

Testing and tracing capacities 
An essential aspect of the UAE’s response to the COVID-19 
pandemic was its focus on ramping up the testing and 
tracing capacities to detect and contain the virus. The country 
implemented widespread testing, including drive-through 
testing centers, home testing services, and rapid PCR tests at 
airports. In addition to testing, the UAE employed advanced 
contact-tracing methods using smartphone applications and 
AI-driven tools to identify and isolate individuals who have 
been exposed to the virus. These efforts played a crucial role 
in controlling the spread of COVID-19 in the UAE [20,21]. 

Challenges in COVID-19 forecasting 
Predicting the spread of COVID-19 is a complex task owing to 
various factors, including the evolution of the virus, variable 
human behavior, and the impact of policy interventions. 
Moreover, data related to COVID-19 cases can be noisy, 
incomplete, or inconsistently reported, which further 
complicates the forecasting process. This section delves into 
these challenges and provides a deeper understanding of the 
difficulties involved in COVID-19 forecasting in general [22]. 

Evolving nature of the virus 
COVID-19 has mutated over time, resulting in the development 
of new variants with distinct characteristics. Some of these 
variants, such as Delta and Omicron strains, have shown 
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increased transmissibility and potential resistance to vaccines. 
These evolving dynamics make it challenging to predict 
the spread of the virus, because new variants may alter the 
infection trajectory and require changes in public health 
measures [23]. 

Variable human behavior 
Human behavior plays a crucial role in the spread of 
COVID-19, as individual actions and collective responses can 
significantly impact the transmission of the virus. Additionally, 
mask-wearing—as an important factor that plays a role in 
adherence to social distancing guidelines—and vaccination 
rates can affect the course of the pandemic. Furthermore, 
human behavior is influenced by various factors such as 
socioeconomic conditions, cultural norms, and public sentiment, 
making it difficult to predict and model accurately [24,25]. 

Impact of policy interventions 
Governments and healthcare organizations have implemented 
numerous policy interventions to mitigate the COVID-19 
pandemic’s effects. These interventions included lockdowns, 
travel restrictions, vaccination campaigns and public health 
messages. The timing, scale, and effectiveness of these 
interventions can significantly affect the spread of the virus 
and add complexity to the forecasting process. Additionally, 
policy interventions can vary across regions and countries, 
further complicating the creation of accurate models [26]. 

Data quality and availability 
The quality and availability of data related to COVID-19 
can pose challenges for forecasting. Data may be noisy, 
incomplete, or inconsistently reported, owing to variations 
in testing rates, reporting standards, and healthcare system 
capacities. In some cases, under-reporting or delays in 
reporting can lead to data inaccuracies, making it difficult 
to develop reliable forecasting models. Furthermore, the 
availability of demographic, economic, and social data related 
to the pandemic may be limited, constraining the potential of 
more sophisticated modeling approaches [27,28]. 

Model selection and evaluation 
Selecting appropriate models and evaluation techniques for 
COVID-19 forecasting can be challenging, given the complex 
nature of the pandemic and the various factors influencing 
its spread. Accurate COVID-19 forecasting will help researchers 
and the community overcome this challenge in the past 
100 years and prepare for the future. However, the data 
are rapidly changing, with daily updates [11]. Researchers 
must consider several aspects, such as model complexity, 

interpretability, and generalizability, when developing and 
evaluating forecasting models. These models can be used 
for similar pandemics and ongoing COVID-19 cases in the 
future. Additionally, the rapidly changing dynamics of the 
pandemic necessitate continuous model adaptation and 
evaluation, because models that perform well at one point 
in time may become less accurate as the situation evolves. 
Despite these challenges, advanced deep learning models 
have shown promise in capturing complex patterns in 
data and providing accurate forecasts. By understanding 
the challenges and intricacies of COVID-19 forecasting, 
researchers can continue to develop and refine models, 
ultimately aiding informed policymaking, optimal resource 
allocation, and effective public health interventions [29]. 

The initiative behind our comparative study is not merely 
to create another forecasting model, but also to engineer a 
model specifically fine-tuned to navigate the complexities of 
COVID-19 data in the UAE. This distinct focus arises from a 
thorough understanding of general forecasting challenges, 
as discussed earlier in this section. Our use of recurrent 
architectures, such as LSTM and Bi-LSTM, is not arbitrary. 
These are designed to be highly adaptive, which is a critical 
feature when dealing with the ever-evolving nature of 
COVID-19. Their ability to “learn” from new patterns makes 
them uniquely suited for this task [30]. 

To deal with variable human behavior, our models 
integrate additional layers of data, such as mobility trends 
and vaccination rates. These are not mere add-ons, but 
are crucial elements that increase the model’s forecasting 
sensitivity to societal variables. Deep-learning models such 
as CNN-LSTM can learn complex spatiotemporal features, 
making them particularly responsive to abrupt shifts in 
data trends owing to government interventions. This is a 
unique problem-solving feature of our approach that aims 
to make forecasts more reliable in a rapidly changing policy 
environment. Our preprocessing strategy is exceptionally 
comprehensive and involves a multilayered data validation 
process against official records to rectify issues arising from 
poor data quality or availability. This is in contrast to models 
that rely heavily on raw or less-validated data [31]. Finally, 
the generalizability of findings from a study conducted in the 
UAE to other regions depends on several factors, particularly 
when RNNs or other machine learning techniques are 
involved. This depends on the availability of similar data 
to countries other than model scalability and adaptability 
issues. Each country’s healthcare policies, practices, and 
socioeconomic, environmental, and technological factors 
impact model evaluation and selection.  
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Deep learning literature  

LSTM-based models 
LSTM networks, a type of RNN, have gained considerable 
attention in time-series forecasting owing to their ability 
to capture long-range dependencies and model complex 
sequential patterns. Various studies have demonstrated 
the effectiveness of LSTM-based models in predicting 
cases, hospitalizations, and deaths. This section provides an 
expanded overview of key studies applying LSTM models 
for COVID-19 forecasting [32] to the daily data of confirmed 
cases, recovered cases, and deaths to forecast COVID-19 
cases [2,33]. A model was trained on data from January 31 to 
April 6, 2020, and its performance was evaluated using the 
mean average error (MAE) and mean average percentage 
error (MAPE) metrics. The LSTM model was able to accurately 
predict short-term trends in the number of cases, with an 
MAE of 24.34 and a MAPE of 0.8%. This study highlights the 
potential of LSTM models to assist policymakers in decision-
making and resource allocation during the pandemic. 
Other studies used LSTM-based models to forecast various 
scenarios [34,35]. 

Other studies [1,36,37] applied LSTM models to forecast 
cases and fatalities in 10 different countries, including the 
United States, Italy, Spain, and Germany. Those studies used 
time-lagged features derived from confirmed cases, deaths, 
and recovery data to train the models. The approach used 
for model training the model included a rolling window 
approach. The authors found that the LSTM model provided 
accurate short-term forecasts (1–3 days ahead), with a root-
mean-square error (RMSE) ranging from 2.13% to 8.17% for 
confirmed cases and from 3.21% to 8.73% for deaths [38]. 

These studies suggests that LSTM models could be useful 
tools for monitoring and predicting the evolution of the virus in 
different countries. Santangelo et al. [39] investigated the use 
of an LSTM model to predict cases. Their approach involved 
training the LSTM model on daily confirmed cases, recovered 
cases, and death data from March 11 to June 8, 2020. The 
authors compared the LSTM model’s performance with other 
traditional time-series models, including a Holt-Winters 
exponential smoothing state-space model and a seasonal 
ARIMA (SARIMA) model. The LSTM model outperformed 
traditional models in terms of prediction accuracy, 
demonstrating the potential of deep learning methods as 
pioneers in predicting COVID-19 cases. By capturing the 
complex, nonlinear temporal dependencies in the data, 
LSTM models can provide valuable insights for decision-
makers and public health officials [26,40,41]. 

Gated recurrent unit-based models 
Gated recurrent units (GRUs) are a type of RNN that has 
gained popularity owing to their simplicity and computational 
efficiency compared to LSTMs, while still achieving comparable 
performance in many tasks. GRU-based models have been 
used in several forecasting tasks, with promising results. 
This section delves deeper into key studies involving GRU 
models in COVID-19 forecasting. Mohimont et al. [6] explored 
the potential of a GRU model for forecasting cases in India, 
a country that faced significant challenges during the 
pandemic. They compared the performance of the GRU model 
with that of ARIMA, STL, and ETS models. The study used 
daily confirmed cases, recovered cases, and death data from 
January 30, 2020, to August 31, 2020, for model training and 
evaluation. It was evident that the GRU model provided the 
best outcome compared to the classical time-series models 
in terms of prediction accuracy. The authors attributed this 
superior performance to the ability of the GRU model to 
capture complex temporal patterns in data. In addition, the 
GRU model provides more stable forecasts during periods 
of high case growth, highlighting its usefulness in rapidly 
changing situations [9,10]. Other studies have employed a 
GRU-based model for predicting recoveries, and deaths in 
multiple countries, including the United States, Italy, and 
Iran [7,8]. 

Their model incorporated various features, such as 
government interventions, population demographics, and 
economic factors, to improve prediction accuracy. The 
authors compared a GRU model with decision trees and a 
support vector machine (SVM) model. The GRU performance 
was better than that of the SVM and decision tree-based 
models [42]. This demonstrates its capability to capture 
the complex relationships between the input features and 
target variables. The authors also noted that the GRU model’s 
performance improved with the inclusion of additional 
features, emphasizing the importance of incorporating 
diverse data sources into COVID-19 forecasting [43–46]. 

Kerr et al. [47] and Lv et al. [48] applied GRU models to cases 
in Saudi Arabia, which faced considerable challenges during 
the pandemic. The authors compared the performance of the 
GRU model with other deep learning models such as LSTMs 
and feed-forward neural networks. This study also highlights 
the computational efficiency of the GRU model, which is 
an important consideration when dealing with large time-
series datasets. These studies underscored the potential of 
GRU-based models for accurate COVID-19 forecasting. By 
effectively capturing the intricate temporal patterns in the 
data and offering computational efficiency, GRU models 
have proven to be valuable tools for decision-makers and 
public health officials during pandemics [49,50]. 
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CNN-based models 
CNNs, which were originally used for image recognition 
tasks, have recently been adapted for time-series forecasting 
owing to their ability to detect local patterns and hierarchies 
in the data. Several studies have explored the potential 
of CNN models in predicting cases, hospitalizations, and 
deaths. This section provides an expanded overview of the 
key studies involving CNN models for COVID-19 forecasting. 
Sarker et al. [51] developed a multi-input multi-output 
(MIMO) CNN model to forecast cases in different countries. 

Their model incorporated various input features such as 
daily confirmed cases, recoveries, deaths, and government 
intervention measures.  The authors compared the 
performance of the MIMO-CNN model with that of ARIMA 
and ETS models. The results indicated that the MIMO-CNN 
model outperformed the traditional time-series models in 
terms of prediction accuracy, particularly for short-term 
forecasts. The authors attributed this superior performance 
to the ability of the CNN model to effectively capture local 
patterns in the data and to generalize these patterns across 
different countries [12–15]. The study highlighted that 
CNN can be used to provide accurate forecasts for critical 
decision-making during a pandemic. Satu et al. [15] and 
Shastri et al. [52] employed 1-dimensional (1D) CNN models 
to predict COVID-19 cases in India, a country that faced 
significant challenges during the pandemic. Their models 
used daily recoveries, confirmed cases, and deaths to compare 
with the SVM, linear regression, and decision trees. 

The study outcomes were based on the 1D-CNN model, 
which achieved the highest prediction accuracy among 
the compared models. The authors also noted that the 
CNN model was computationally efficient and required 
less training time than other deep learning models such as 
LSTMs and GRUs. In 2 other studies [14,53], the use of CNN 
models to forecast hospitalization was explored. The authors 
developed hybrid CNN-LSTM-based models that combined 
both CNNs and LSTMs to capture both local and long-range 
patterns. They used various features such as daily confirmed 
cases, hospitalizations, and demographic data. The results 
demonstrated that the hybrid CNN-LSTM models provided 
accurate forecasts of hospitalizations, outperforming other 
deep learning and traditional time-series models. Those 
studies demonstrated the potential of combining CNNs with 
other deep learning models to enhance prediction accuracy 
in pandemic forecasting tasks [54,55]. 

Deep learning models for COVID-19 forecasting: brief 
comparative studies 
Various studies have conducted comparative analyses based 
on deep-learning models to determine their performance 

in pandemic case prediction. These studies provide valuable 
insights into the relative strengths and weaknesses of 
different deep-learning approaches for predicting cases, 
hospitalizations, and deaths. This section provides an 
expanded overview of key comparative studies involving 
deep learning models for COVID-19 forecasting [56–59] 
conducted a comprehensive comparison of GRU, LSTM, and 
CNN models for forecasting cases. The authors used daily 
recoveries, confirmed cases, and deaths as input features for 
the models and evaluated their performance using metrics, 
such as MAE and RMSE. 

This study aimed to determine which deep learning model 
could best capture complex temporal patterns in the data and 
provide accurate forecasts. The results indicated that both 
LSTM and GRU models outperformed CNN models in terms 
of prediction accuracy [35,60]. The authors attributed this 
finding to the LSTM and GRU models’ ability to capture long-
range dependencies in time-series data, which was crucial for 
accurately predicting the trajectory of the pandemic. These 
studies highlight the importance of selecting appropriate 
deep-learning models for forecasting tasks and demonstrate 
the potential of LSTM and GRU models for predicting the 
spread of the pandemic. 

Several previous studies [56,59,61–63] compared LSTM, 
GRU, and transformer models to predict COVID-19 cases. 
They used features similar to those used in previous studies 
based on daily cases, deaths, and confirmed cases. They used 
evaluation metrics such as the MAE, RMSE, and MAPE. Those 
studies aimed to determine the best deep learning model for 
identifying the complex nature of the relationship between 
different features. In addition, the transformer model provided 
the best performance. The authors attributed this finding 
to the self-attention mechanism of the transformer model, 
which allows it to capture complex dependencies in the data 
more effectively than LSTM and GRU models. Additionally, 
the transformer model demonstrated faster training times 
and better scalability than other models, making it a more 
practical choice for large-scale COVID-19 forecasting tasks. 
Another set of studies [64–66] compared LSTM-, GRU-, and 
CNN-based models to predict cases in various countries. 
The authors used daily confirmed cases as input features, 
evaluated the performance of the models using MAE and 
RMSE, and study found that the LSTM and GRU models 
outperformed the CNN models, emphasizing the importance 
of selecting appropriate deep learning models for pandemic 
evolution prediction. Dutta and Bandyopadhyay [67] compared 
LSTM, GRU, and 1D-CNN-based models to predict the cases. 
The models used features and evaluation metrics similar to 
those used in the previous studies. The results showed that 
GRU provided the best overall performance, demonstrating 
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the potential of GRU models for predicting cases. Other studies 
[68–72] conducted comparative research focusing on LSTM, 
GRU, and CNN models. The authors used features similar 
to those of previous researchers and evaluation metrics 
based on MAE and RMSE. They highlighted the importance 
of selecting appropriate deep-learning models. Another 
set of studies [23,35,73] compared LSTM, GRU, and Prophet 
models for forecasting cases. Their evaluation metrics 
included the MAE and RMSE. They found that the LSTM and 
GRU models outperformed other models such as Prophet. 
Still other research [16,40,71] compared LSTM, GRU, and 
1D-CNN models. The authors used daily confirmed cases, 
recoveries, and deaths as input features, and MAE, RMSE, 
and MAPE to evaluate model performance. The GRU model 
performed the best on the given data. Comparative studies 
[43,44,74] have also focused on LSTM, GRU, and CNN models. 
The authors used features similar to those of previous 
researchers and metrics such as MAE and RMSE. The GRU 
model achieved the highest prediction accuracy. Kerr et al. 
[47] and Sinha et al. [13] compared LSTM, GRU, and CNN 
models. They used MAE, RMSE, and MAPE, with features 
similar to those used in previous studies. The LSTM model 
exhibited the best performance. Other comparative studies 
[3,71,72,75] evaluated LSTM, GRU, and 1D-CNN models. The 
authors used features and evaluation metrics similar to 
those used in the previous studies. The LSTM model achieved 
the highest prediction accuracy [38]. 

These comparative studies highlight the importance of 
selecting the most suitable deep learning model for decoding 
pandemic evolution. Although LSTM and GRU models 
have succeeded in capturing long-range dependencies in 
time-series data, CNN models have also been effective in 
certain cases. The choice of a deep learning model should be 
based on the specific requirements and constraints of the 
forecasting task at hand, as well as the available data and 
computational resources [76]. Furthermore, these studies 
highlight the importance of using deep learning models to 
provide accurate and reliable forecasts, which can assist 
decision-makers and public health officials in mitigating 
the impact of the pandemic [39]. The process of selecting 
appropriate models and evaluation methods for forecasting 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) can be challenging because of the pandemic’s 
complex nature and the various factors that influence its 
transmission. Researchers must carefully consider several 
factors such as model complexity, interpretability, and 
generalizability when developing and evaluating forecasting 
models. Additionally, the constantly changing dynamics of 
the pandemic require continuous model adaptation and 
assessment, because models that perform well at one point 

may become less accurate as the situation evolves. Despite 
these challenges, deep-learning models have demonstrated 
the potential to capture complex data patterns and provide 
accurate forecasts. By understanding the complexities 
of SARS-COV-2 forecasting, researchers can persist in 
developing and refining models, ultimately contributing to 
informed policymaking, strategic resource allocation, and 
efficient public health interventions in Malaysia and the UAE. 

Computational costs 
The complexity of implementing deep learning models, 
particularly those requiring extensive hyperparameter tuning 
through Bayesian optimization, may present computational 
challenges. This requires substantial resources and may limit 
the efficiency of the model training and evaluation. Training 
an LSTM network with large datasets can be time-consuming, 
requiring significant computational power and efficient 
algorithms. Cost scales with the number of LSTM cells. Bi-
LSTM models have 2 layers and are definitely more expensive 
than LSTM models in terms of computational cost. In contrast, 
CNN costs are dependent on the complexity of the layers, 
and CNN-LSTM costs are the same. MLP is a feed-forward 
neural network that is dependent on the number of layers and 
neurons, which makes it computationally expensive. RNNs are 
expensive in terms of their computational costs. In general, 
the use of deep learning requires extensive computational 
calculations depending on each factor. 

Materials and Methods 

This section provides an overview of the materials and 
methods used in a comparative study of advanced deep-
learning models for the accurate forecasting of pandemic 
dynamics in the UAE. The study involved data collection 
and preprocessing, model selection, model training and 
evaluation, and performance comparison. 

Data Collection and Preprocessing 

Data collection 
This study utilized different types of COVID-19 data from 
the UAE. This included epidemiological data from the 
World Health Organization and UAE Ministry of Health 
and Prevention. These included daily confirmed cases, 
recoveries, and deaths. The data were verified for consistency 
and cross-validated using data from official government 
communication. The timing, scale, and nature of the measures 
were considered for this purpose. The data selected for this 
study were collected between January 2020 and June 2023. 
Figure 1 illustrates the proposed framework, which outlines 
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the primary activities of this study and systematically 
aligns its objective. The process commences by testing the 
stationarity and normality of the COVID-19 data to ensure 
that it adheres to the underlying assumptions of the deep 
learning models, which is accomplished through statistical 
methods, such as stationarity and normality tests. Following 
this, the data were normalized to a range of 0 to 1 using min–
max scaling to improve model accuracy. 

The framework culminates in the interpretation of results, 
providing insights, policy implications, and directions 
for future research encapsulated within conclusions, 
recommendations, and potential improvements. Additionally, 
the research includes a dissemination stage aimed at 
sharing research findings with relevant stakeholders and 
the scientific community through various channels such as 
academic publications, conference presentations, and public 
engagement. Overall, the framework provides a concise yet 
comprehensive roadmap encompassing primary research 
activities, from statistical testing to performance evaluation 
and the dissemination of results. It should be highlighted 
that the results will differ based on the selected dataset and 
variables. 

Data preprocessing, exploratory data analysis, and feature 
selection 
The collected data were preprocessed to ensure compatibility 
with the deep learning models. The preprocessing steps are 
as follows: (1) Data cleaning: (i) Missing values were substituted 
by the mean or median of the respective column depending 
on the data distribution. (ii) Outliers were identified through 
box-plot methods and were either capped or transformed. 
(iii) Data from multiple sources were checked for consistency 

with official publications and cross-validated. (2) Feature 
engineering: (i) Additional features, such as moving averages 
and growth rates, were created to capture relevant patterns 
in the data. (ii) 7-day and 14-day moving averages were 
calculated to smoothen the data. (iii) Daily and weekly growth 
rates were used to determine the rate of change in various 
variables. (3) Data normalization: The features were scaled 
to lie within a given range, often 0–1, to ensure that the 
gradients do not explode during the backpropagation process. 
(4) Sequence generation: Time-series data were transformed 
into input-output sequences with a specified window length 
for training the models. (5) Several Python libraries were used, 
including Numpy, Matplotlibm SkLearn, Kera, Scipy, and 
TensorFlow. (6) Exploratory data analysis was performed to 
identify anomalies and graphical visualizations. (7) K-fold 
cross-validation was used to assess model performance on 
individual datasets. 

Model Selection 
Six deep learning models were selected for the comparative 
study. (1) LSTM, (2) Bi-LSTM, (3) CNN, (4) CNN-LSTM, (5) 
RNN, (6) multilayer perceptron (MLP). These models were 
chosen based on their demonstrated performance in 
previous COVID-19 forecasting studies and their ability to 
capture complex patterns and dependencies in time series 
data. 

Model Training and Evaluation 

Model training 
LSTM, Bi-LSTM, CNN, CNN-LSTM, RNN, and MLP models 
were trained on the preprocessed data using a standard 

Data set

Feature scaling

Model evaluation (MAE, MSE, R2)

Preprocessing  
(selecting the features including active 
cases, recovered, vaccination, death, 

mobility, etc.)

Dataset splitting (training/testing)

Best model prediction

Exploratory data analysis based on 
different features

Model selection

Figure 1. Proposed model approach. 
MAE, mean absolute error; MSE, mean square 
error.
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architecture, loss function, and optimization algorithm. The 
hyperparameters of the models, including the number of 
layers, hidden units, and learning rate, were tuned using a 
grid search or a random search approach. A 3-way split was 
used. We used a training set for the initial fitting of the model, 
a validation set for fine-tuning the hyperparameters, and a 
testing set to assess the final model performance. To create 
the testing and validation sets from the COVID-19 series 
data, a time-based split was used rather than a random split 
because of the temporal nature of the data. 

These models were selected based on their proven 
performance in previous COVID-19 forecasting studies and 
their capacity to capture intricate patterns and dependencies 
in time-series data. Further, Bayesian optimization was used 
to select the best possible hyperparameters for the dataset 
for each of the algorithms, and the models were evaluated 
again to determine the best accuracy. The initial parameters 
used in each algorithm are listed in Table 1. 

It is worth noting that each algorithm works differently with 
a change in the parameters, as with data. We further used a 
batch size of 1 and trained over 100 epochs for each model. 

These parameters were further hyper-tuned using Bayesian 
optimization. 

Bayesian Optimization 
Bayesian optimization is not just another tool in the plethora 
of optimization algorithms; it occupies a unique position in 
the landscape of optimization techniques due to its theoretical 
rigor and practical utility. Emerging as a formidable method, 
especially in scenarios where objective function evaluations 
are expensive, Bayesian optimization has been hailed as a 
watershed moment in the evolution of optimization theory. 
The intellectual and computational efficacy of Bayesian 
Optimization is predominantly due to its reliance on Bayesian 
inference. This form of statistical reasoning is based on Bayes’ 
theorem, which enables us to update probabilities based on 
new evidence. In the context of optimization, particularly 
hyperparameter tuning, Bayesian inference has emerged 
as a robust method for intelligently navigating the solution 
space. 

The selection of Bayesian optimization as the primary 
optimization tool for this study is grounded in its unique 
ability to efficiently handle the high-dimensional and complex 
hyperparameter tuning required for the deep-learning models 
in question. Unlike more traditional optimizers, Bayesian 
optimization operates on a probabilistic model that is adept 
at navigating through hyperparameter spaces with greater 
efficiency and less computational expense. This is particularly 
advantageous when dealing with the unpredictable nature 
of COVID-19 data, which often exhibit nonlinear and complex 
patterns. The effectiveness of Bayesian optimization lies in its 
capacity to explore the hyperparameter space systematically 
and intelligently, quickly converging on optimal solutions 
that might be overlooked or take significantly longer to 
identify using other methods. This strategic choice is not 
just about optimization efficiency; it is about achieving a 
higher level of model-tuning precision, which is essential 
for the accurate prediction of COVID-19 trends. In this study, 
the application of Bayesian optimization for tuning deep-
learning models in COVID-19 case prediction presents a 
novel contribution. The innovation lies not only in the use 
of Bayesian optimization, but also in how it is specifically 
designed, adapted, and applied to address the unique 
challenges of pandemic data from the UAE. This approach 
extends beyond conventional applications in several ways. 

The Bayesian optimization process was specially crafted 
to incorporate cutting-edge deep learning models, such as 
LSTM and CNN. This customization was specifically carried out 
to tackle the unpredictable and fluctuating nature of COVID-19 
data, which is a novel approach not commonly found in 
the existing literature. The Bayesian model was iteratively 

Table 1. Model parameters

Model Parameter

Long short-term memory Units: 50
Activation: relu
Optimizer: adam
Loss function: mean_squared_error

Bidirectional long short-term 
memory

Units: 50
Activation: relu
Optimizer: adam
Loss function: mean_squared_error

Convolutional neural network Filters: 64
Kernel size: 1
Activation: relu
Pool size: 2
Optimizer: adam
Loss function: mean_squared_error

Convolutional neural network-
long short-term memory

Filters: 64
Kernel size: 1
LSTM units: 50
Activation: relu
Optimizer: adam
Loss function: mean_squared_error

Recurrent neural network Units: 50
Activation: relu
Optimizer: adam
Loss function: mean_squared_error

Multilayer perceptron Hidden units: varies (10, 20, 50, 100, 
200)

Activation: relu
Optimizer: adam
Loss function: mean_squared_error
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refined through each round of optimization, representing 
a dynamic and adaptive approach to model tuning. This 
ongoing refinement process, especially in the context of 
evolving pandemic data, demonstrates the flexibility and 
adaptability that are crucial for accurate forecasting in rapidly 
changing circumstances. This study systematically evaluated 
improvements in model performance after optimization. 
This evaluation not only confirmed the real-world utility of 
Bayesian optimization, but also uncovered novel insights into 
the influence of various hyperparameter combinations on 
model accuracy when applied to epidemiological data. 

Performance Comparison 
The performances of 6 deep learning models (LSTM, Bi-
LSTM, CNN, CNN-LSTM, RNN, and MLP) were compared 
based on evaluation metrics and visualizations. The models 
were ranked according to their forecasting accuracy, with 
the best- performing model being recommended for 
future COVID-19 forecasting tasks in the UAE. The strengths 
and weaknesses of each model are discussed, along with 
potential improvements and future research directions. 
Through the up-to-date processes discussed in the Materials 
and Methods section, the study now reflects a new set of deep 
learning models and provides a comprehensive comparison 
of their performance in forecasting COVID-19 dynamics in 
the UAE. 

Results and Discussion 

Here, we present the outcomes of the study, including the 
performance of each deep learning model (LSTM, Bi-LSTM, 
CNN, CNN-LSTM, RNN, and MLP) in forecasting the COVID-19 
dynamics in the UAE. The results were summarized using 
tables and graphs to illustrate the performance of the models 
based on the evaluation metrics (MAE, R2, RMSE, MAPE, and 
mean standard error [MSE]) and to visually compare their 
predictions with the actual data. The visualization provides a 
snapshot of the predictions that fit the scaling area.  

Model Performance Metrics  
Table 2 provides a summary of the evaluation metrics for 
each model without optimization. 

Model Performance Without Optimization 
Figure 2 shows a comparison of the actual cases in the 
UAE with the predictions made by the LSTM model. This 
visual representation allows an intuitive understanding of the 
forecasting accuracy of each model. Both the predicted and 
actual data lines depict an ascending trend, suggesting a steady 
rise in COVID-19 cases throughout this period. In the initial 

Table 2. Model evaluation metrics without optimization

Model MAE MAPE MSE R
2

RMSE

LSTM 0.046 1.081 2.18 0.004 0.722
Bi-LSTM 0.0043 1.071 1.88 0.76 0.0043
CNN 0.0062 1.14 3.93 0.55 0.0062
CNN-LSTM 0.0062 1.011 3.93 0.55 0.0062
RNN 0.0017 1.064 3.49 0.96 0.0018
MLP 1,075 0.102 1,291,309 0.98 1,136

MAE, mean average error; MAPE, mean average percentage error; MSE, 
mean standard error; RMSE, root-mean-square error; LSTM, long short-term 
memory; Bi-LSTM, bidirectional LSTM; CNN, convolutional neural network; 
RNN, recurrent neural network; MLP, multilayer perceptron.

months, the proximity of the 2 lines indicated high accuracy 
of the predictive model. However, a noticeable divergence 
emerges after November, with the model seemingly 
underpredicting the cases until a slight convergence reappears 
in later months. 

Figure 3 provides a comprehensive visual analysis of the 
actual versus predicted COVID-19 cases in the UAE based 
on the outputs of the Bi-LSTM model. Both the predicted 
and actual trajectories exhibit an upward trend, indicating a 
consistent increase in the number of cases. The beginning of 
the graph reveals an impressively close alignment between 
the predicted and actual data, suggesting that the Bi-LSTM 
model had high accuracy during this timeframe. As time 
progressed, there was a discernible deviation between the 
2 lines, with the model slightly underestimating the surge. 
However, the model’s predictions appeared to be more 
congruent with actual cases, demonstrating adaptability. 
This visual representation underscores the significance 
of continuous model training and validation using real-
time data, highlighting the areas of precision and potential 
improvement in the predictive algorithm. 

Figure 4 offers an insightful representation of COVID-19 
case trajectories in the UAE by comparing the actual data 
with the predictions made by the CNN model. From the 
outset, there is a noticeable proximity between the predicted 
and actual data lines, indicating the commendable initial 
accuracy of the model. As time advances, divergence is 
observed, and the model seems to slightly underestimate 
the actual cases. This discrepancy widens as we transition 
into the new year, with actual cases consistently surpassing 
the model’s predictions. The 2 trajectories again come closer, 
suggesting possible recalibration or changes in data patterns. 
The overarching trend for both lines remained upward, 
reflecting the ongoing challenges of the pandemic. 

Figure 5 provides a detailed visual analysis of the COVID-19 
case trends in the UAE, in contrast with the actual observed 
data with forecasts made using the CNN-LSTM model. 
The actual and predicted trajectories were closely aligned, 
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Figure 2. Long short-term memory model performance.
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Figure 3. Bidirectional long short-term memory model performance.

thereby demonstrating the initial accuracy of the model. 
A minor deviation emerges in which the model seems 
to modestly undervalue the actual number of cases. This 
pattern persisted until March 2023, when the predicted 
curve began to closely shadow the actual case trajectory. 
By April 2023, both curves ascended in a relatively parallel 
manner, indicating potential stabilization of the predictive 
capability of the model. The persistent upward trend on 

both lines emphasizes the continued escalation of the 
pandemic during this period. Overall, while the CNN-LSTM 
model exhibited commendable forecasting proficiency, the 
discrepancies, albeit minor, underscore the dynamic nature 
of the pandemic. 

Figure 6 offers a comprehensive visual analysis contrasting 
the actual reported cases of COVID-19 against predictions 
made by the RNN model. The graph displays a notable degree 
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of alignment between the actual and predicted trajectories, 
particularly during the initial months. However, a slight 
divergence was observed, where the predictions of the RNN 
model marginally underestimate the actual case count. This 
underestimation continues until March 2023, after which 
the predicted values appear to align closely with the actual 
data, suggesting an adaptation or improved accuracy of the 
model. Throughout the study period, both curves exhibited 

an upward trajectory, reflecting the persistent rise in the 
pandemic. While the RNN model demonstrated appreciable 
predictive accuracy, the visible discrepancies reiterate the 
inherent complexities of forecasting dynamic scenarios 
such as the evolution of a pandemic.  

Figure 7 provides a visual representation of the performance 
of the MLP model for predicting COVID-19 cases. The trends in 
both the predicted and actual cases showed a steady increase 

1.07

1.06

1.05

1.04

1.03

1.065

1.060

1.055

1.050

1.045

1.040

1.035

1.030

N
o.

 o
f c

as
es

N
o.

 o
f c

as
es

1e6

1e6

Time

Time

Oct 2
022

Oct 2
022

Nov 2022

Nov 2022

Dec 2022

Dec 2022

Jan 2023

Jan 2023

Feb 2023

Feb 2023

Mar 2
023

Mar 2
023

Apr 2
023

Apr 2
023

May 2023

May 2023

Jun 2023

Jun 2023

Predicted
Actual

Predicted
Actual

COVID-19 case predictions vs. actual

COVID-19 case predictions vs. actual

Figure 4. Convolutional neural network model performance.

Figure 5. Convolutional neural network-long short-term memory model performance.
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over time. In the early stages, the MLP model predictions 
appear to be tightly aligned with the actual cases, suggesting 
high accuracy during this period. As the timeline progresses, 
a slight deviation can be observed from February 2023 
onwards, where the predicted values seem to surpass the 
actual figures, indicating a slight overestimation by the model. 
This discrepancy highlights the challenges associated with 
the precise prediction of disease propagation, particularly 

over longer timeframes. Nonetheless, the overall congruence 
between the 2 curves demonstrates the MLP model’s 
considerable proficiency in forecasting while also underlining 
the need for periodic model adjustments to cater to evolving 
pandemic dynamics. 

Model Performance Without Optimization 
We used Bayesian optimization based on the parameters 
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Figure 6. Recurrent neural network model performance.
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Figure 7. Multilayer perceptron model performance.
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listed in Table 1. The optimizer was provided chosen values 
of “adam,” “sgd,” “rmsprop," “nadam,” “ftrl,” “adagrad,” and 
“adadelta.” The tuner was set to a random search with a 
maximum of 50 trials and the execution per trial was equal 
to 2. This makes each model optimization trial approximately 
100. This is an extensive search for the best parameters and 
optimization of the models. We wanted to ensure that the 
models were thoroughly tested before the results were 
finalized. Table 3 provides a summary of the evaluation 
metrics for each model with optimization. 

Figure 8 shows the performance of the LSTM model with 
Bayesian optimization and its predictions for the COVID-19 
cases. From the initial stages, the forecasted values from the 
optimized LSTM model appear to adhere closely to the actual 
cases, suggesting a marked improvement in the predictive 
accuracy during this interval. The curves progressed in a 

near-parallel fashion, highlighting the heightened alignment 
between the predicted and actual values. Notably, the 
divergence between the 2 sets of data was minimal, even in 
the later months, demonstrating the efficacy of Bayesian 
optimization in refining the forecasting capability of the 
LSTM model. This superior congruence underscores the 
value of incorporating optimization techniques to increase 
the precision of predictive models, particularly in the context 
of public health forecasting, where accuracy can have 
profound implications. 

Figure 9 shows the performance of the Bi-LSTM model in 
predicting the total COVID-19 cases in the UAE. The graph 
contrasts the model’s forecasted values, represented by the 
dotted line, with the actual number of cases, portrayed by 
the solid line. A meticulous examination of the graphical 
representation revealed a closely intertwined pattern 
between the actual and predicted values throughout the 
timeline. Especially noteworthy is the manner in which 
the Bi-LSTM model’s predictions emulate the trend of the 
actual cases, maintaining remarkably close proximity and 
accurately capturing the inflection points. It is evident that 
the optimized Bi-LSTM model achieved a reasonable degree 
of accuracy, as indicated by the minimal discrepancies 
between its forecasts and real data. The near-congruence 
throughout the period under review is emblematic of the 
model’s robust predictive capabilities. 

Figure 10 shows the performance of a CNN in predicting 
the total COVID-19 cases in the UAE. Upon detailed scrutiny, it 
became evident that the CNN model exhibited a high degree 

Table 3. Model evaluation metrics with optimization

Model MAE MAPE MSE R
2

RMSE

LSTM 0.00023 1.028 7.2045 0.9991 0.00268
Bi-LSTM 0.00028 1.026 1.0681 0.9988 0.00032
CNN 0.00024 1.025 8.1078 0.9990 0.00028
CNN-LSTM 0.00026 1.024 9.4537 0.9988 0.00030
RNN 0.00015 1.022 2.9128 0.9996 0.00017
MLP 0.00017 1.028 3.4843 0.9995 0.00018

MAE, mean average error; MAPE, mean average percentage error; MSE, 
mean standard error; RMSE, root-mean-square error; LSTM, long short-term 
memory; Bi-LSTM, bidirectional LSTM; CNN, convolutional neural network; 
RNN, recurrent neural network; MLP, multilayer perceptron.
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Figure 8. Long short-term memory model performance with optimization.

https://doi.org/10.24171/j.phrp.2023.0287

AI-powered COVID-19 forecasting

128



of alignment between predicted and actual trajectories. The 
forecasted values remained in close agreement with the 
observed data, and the 2 curves followed a largely parallel 
course. There were subtle areas in which the predicted 
line veered slightly from the actual trend. However, these 
divergences were minimal and did not detract from the 
overall veracity of the model’s predictions. The congruity 
displayed between the forecasted and observed datasets 

emphasizes the ability of the CNN model to capture the 
underlying dynamics of the pandemic's spread in the UAE. 
The capacity of the CNN model to generate such reliable 
predictions after using Bayesian optimization is invaluable, 
as it offers stakeholders a more precise tool for devising 
informed interventions and health policies.  

Figure 11 shows the prediction capabilities of a combined 
CNN-LSTM model with respect to the progression of COVID-19 
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Figure 9. Bidirectional long short-term memory (Bi-LSTM) model performance with optimization. UAE, United Arab Emirates.
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in the UAE. Upon meticulous observation, close congruence 
can be noted between the model’s predictions and the actual 
data. For the most part, the forecasted values closely shadow 
the actual counts, indicating commendable predictive 
accuracy. Although minor deviations can be observed at 
specific intervals, they are nuanced and do not detract 
from the overarching trend captured by the model. This 
harmonization between the forecasted and observed data 
underscores the efficacy of integrating the CNN and LSTM 
architectures. This optimized hybrid approach strengthens 
the model’s capability to predict the intricate dynamics of the 
pandemic’s progression, providing an invaluable asset for 
informed policymaking and strategic health interventions. 

Figure 12 shows the predictive performance of an optimized 
RNN model for the progression of COVID-19 in the UAE. 
Upon close examination, noteworthy adherence between 
the model’s predicted trajectory and the number of genuine 
cases becomes evident. Although the optimized model’s 
predictions display minor oscillations from the actual values 
at certain junctures, they align impressively with the true 
case trajectory, signaling notable predictive precision. 
The proximity of the forecasted values to the actual data 
underscores the utility of RNNs in capturing the temporal 
patterns in a sequence of data. Given the dynamic and 
evolving nature of the spread of a pandemic, an RNN’s 
inherent architecture, designed to recognize patterns over 
time, provides a robust mechanism for understanding and 
predicting the trajectory of infectious diseases, making it 

an indispensable tool in epidemiological modelling and 
planning. 

Figure 13 shows the predictive performance of an optimized 
MLP model for the evolution of the COVID-19 total cases in the 
UAE. The genuine case counts, depicted by the solid line, are 
juxtaposed with the model forecasts, which are represented 
by the dashed line. Upon meticulous observation, one can 
discern a remarkable congruence between the model’s 
forecasted progression and the actual number of cases. The 
predicted values from the MLP model commendably traced 
the trajectory of the actual data, highlighting the nuanced 
understanding of the underlying patterns. 

This striking alignment between the actual and predicted 
cases is a testament to the success of the MLPs in grasping 
complex nonlinear relationships in the datasets. The model’s 
capacity to closely mirror the true progression of COVID-19 
affirms its efficacy as a robust forecasting tool, especially in 
scenarios in which historical patterns play a pivotal role in 
shaping future outcomes. 

Comparison of Best-Performing Models with or 
without Optimization 
First, we analyzed each model without optimization based on 
the results shown in Table 2 and Figures 1–6. Subsequently, 
the results obtained using Bayesian optimization are shown 
in Table 3 and Figures 7–12. A comparison of the results is as 
follows: 
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LSTM 
Without optimization, the LSTM model exhibited a relatively 
mid-level performance among the other models in terms of 
MAE, MAPE, MSE, and RMSE. It performed better than the 
CNN and CNN-LSTM models. After optimization, it exhibited 
excellent performance. Although the MSE and RMSE values 
were on average, the predictions were very close to the actual 
values. 

BI-LSTM 
Without optimization, the Bi-LSTM model performed better 
than the LSTM model, with a lower MAE, MAPE, MSE, and 
RMSE and a higher R2 value. This was the second-best 
performing model. After optimization, the model showed 
a noticeable improvement in performance compared to 
the LSTM model. Although the MAE was slightly higher 
than that of the LSTM, the MSE and RMSE values decreased 
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Figure 12. Recurrent neural network (RNN) model performance with optimization. UAE, United Arab Emirates.

Figure 13. Multilayer perceptron (MLP) model performance with optimization. UAE, United Arab Emirates.
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significantly. This indicates that the variance and errors 
were reduced. 

CNN 
Without optimization, the performance of the CNN model 
was the worst among the models, with the highest MAE, 
MAPE, MSE, RMSE, and lowest R2 values. After optimization, 
it stands out well with similar metric outcomes to the LSTM 
model. The R2 value was lower than those of the LSTM and 
BI-LSTM models. However, the MAE, MSE, and RMSE 
values were higher, possibly indicating more errors in the 
prediction. 

CNN-LSTM 
Without optimization, the CNN-LSTM model exhibited 
similar performance to that of the CNN model, showing 
that a particular LSTM combination did not perform better 
than the LSTM model itself. After optimization, it performed 
better than the CNN model only. The prediction errors were 
significantly reduced and the predictions were closer to the 
actual values. 

RNN 
Without optimization, the RNN model exhibited the best 
performance among all the models. After optimization, the 
RNN remained the best among all models, with the smallest 
prediction errors. 

MLP 
Without optimization, the MLP model had a very high R2, 
indicating a good model fit. However, with higher values of 
other parameters, the model might not perform well. After 
optimization, the MLP model was the second-best performer 
and had lower values than LSTM, Bi-LSTM, CNN, and CNN-
LSTM. 

Overall, the RNN model performed best on all metrics 
without optimization, as well as with Bayesian optimization. 
This shows that the model provided accurate predictions 
than the other models investigated in this study. The second-
best was the Bi-LSTM model without optimization, whereas 
the MLP model was the second-best with optimization. In 
addition, all the models performed well according to the 
values after optimization, meaning that optimization is 
necessary for model improvement. 

Limitations of the Study and Ethical Considerations 
Despite these promising results, this study had several 
limitations. First, data quality and completeness may affect 
model performance. Future studies could explore alternative 
data sources or use data imputation techniques to address 

potential data-quality issues. Second, other deep learning 
models or hybrid models can be investigated to further improve 
the forecasting accuracy. For example, the transformer model, 
which has demonstrated promising results in several studies, 
can be included in future comparisons. In addition, larger 
trials require more time to run tests and experiments. 

Finally, incorporating additional features such as 
demographic information, mobility data, and information 
about government interventions may improve the model’s 
predictive capabilities. Future research could explore various 
feature-engineering techniques to identify the most relevant 
features for COVID-19 forecasting. Ethical considerations 
underpin the scope of this study from data collection to 
model usage. Given that the data utilized involves public 
health information, it is imperative to ensure the privacy 
and anonymity of individuals. All datasets were anonymized 
and aggregated to eliminate markers that could identify 
individuals. In addition to privacy concerns, the issues of data 
integrity and representativeness were diligently addressed to 
avoid any form of bias, such as socioeconomic or geographic 
bias, that could skew the forecasting models. The chosen 
deep-learning models were scrutinized for any inherited 
biases that might inadvertently perpetuate existing health 
inequities. While the algorithms themselves are neutral, 
the data that inform them may not lead to biased policy 
recommendations. Furthermore, the ethical dimensions 
of automated decision-making in public health were 
considered. Although these models can forecast with high 
accuracy, human oversight is vital for interpreting these 
predictions in a broader ethical and societal context. This 
approach ensures that model-based recommendations 
do not inadvertently disadvantage any subgroup of the 
population or lead to ethical dilemmas such as resource 
allocation in scarce settings. Finally, transparent reporting 
and open-source sharing of the models used in this study 
underscore our commitment to ethical rigor, enabling peer 
review and the potential for widespread application under 
ethically sound parameters. 

Recommendations for Future Research 
Future research could explore alternative feature selection 
and preprocessing techniques to improve the model 
performance. The optimization of the models showed a 
significant improvement over the non-optimized model. 
This indicates that optimization plays an important role 
in improving model outcomes. The findings show that all 
the models can perform at their best once they have been 
improved. This also depends on the number of trials and 
execution steps. A larger number of execution trials may 
overfit the data, whereas a smaller number may underfit 
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the data. This requires constant updating of the settings for 
the models in order to select the best outcome for training. 

Our study sets the stage for several significant avenues of 
future research. First, considering the evolving nature of SARS-
CoV-2, subsequent investigations could focus on increasing 
model adaptability to account for new viral variants, potentially 
incorporating real-time learning capabilities. Additionally, 
because human behavior substantially influences the spread 
of the virus, embedding more granular behavioral variables, 
such as mobility patterns and public health compliance 
rates, could provide richer insights. Regional variability in 
the impact of policy interventions also opens the door for 
developing geographically tailored models or those that 
include spatial variables. The exploration of multi-objective 
optimization methods, allowing for the balancing of multiple 
conflicting objectives, such as predictive accuracy and model 
interpretability, also presents a promising area for future 
work. Future research should aim to integrate additional 
types of data, such as vaccination rates and healthcare 
infrastructure availability, to construct more comprehensive 
and reliable models. Comparative studies that evaluate the 
performance of deep-learning models against traditional 
epidemiological or hybrid models that incorporate elements 
of both would add depth to our understanding of pandemic 
forecasting methods. Finally, the real-world application of 
these models, accompanied by a continuous feedback loop 
for model refinement, served as a robust validation of their 
practical utility. 

Our findings have practical implications for policymakers 
and public health officials involved in the management of the 
COVID-19 pandemic. Beyond the academic realm, the broader 
impact of this study is manifold, particularly in shaping 
effective public health policy and strategy. First, it provides 
an empirically validated framework for forecasting COVID-19 
dynamics, a tool that can be invaluable to health departments 
and governmental bodies. By utilizing the deep learning 
models presented in this study, specifically RNN and MLP, 
policymakers can achieve a more nuanced understanding of 
how the virus might spread under various conditions. This 
insight could be instrumental in the planning and allocation 
of critical healthcare resources such as ventilators, personal 
protective equipment, and medical personnel. Furthermore, 
the findings of this study could inform the design of more 
targeted and efficient public health interventions, such 
as lockdowns or vaccine distribution strategies, thereby 
optimizing the balance between health protection and 
economic impact. In the context of ongoing vaccination 
drives, the models can potentially be adapted to forecast 
vaccine efficacy over time, helping fine-tune vaccination 
policies. Finally, since the core methodology is not specific 

to COVID-19, the findings of this study have the potential 
for application in managing future public health crises, 
thus laying the groundwork for a more robust and proactive 
healthcare system. 

Conclusion 

By using the best-performing models (RNN and MLP) to 
predict new cases, more informed decisions could be made 
regarding resource allocation, public health measures, 
and vaccination strategies. Furthermore, optimization can 
significantly improve model performance. Additionally, our 
study contributes to the growing body of research using 
deep learning models for pandemic forecasting, which 
can be applied to future public health crises. The accurate 
forecasting of COVID-19 dynamics is crucial for informed 
policymaking and resource allocation. The performance 
of the optimized model can provide valuable insights for 
public health officials and decision-makers in the UAE. By 
leveraging these models, authorities can better anticipate the 
trajectory of the pandemic, implement timely interventions, 
and allocate resources efficiently to mitigate the impact of 
the virus on the population. The discussion section highlights 
the performance of the deep learning models, compares the 
findings with those of previous studies, acknowledges the 
limitations, and suggests future research directions. It also 
emphasizes the implications of the study’s findings on public 
health policy and decision-making in the UAE. 
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