Skip to main content
. 2024 Apr 23;16(18):23932–23947. doi: 10.1021/acsami.4c03369

Table 2. Effect of Light Intensity on Conversion of MA during Eosin Y-Mediated ATRP from PVDF-CTFEa.

no. light intensity at 520 nm (mW/cm2) temperature (°C) time (h) conv.b (%) Mnth (kDa) Mnrelc (kDa) Đc GD per chaind DPth DPNMRe Iefff
1 6.20 ± 0.71 25.6 0.6 7.9 121 N.A. N.A. N.A. 1.6 N.A. N.A.
2 6.20 ± 0.71 25.6 1 13.8 130 83.4 2.40 5.3 2.8 49 5.7%
3 11.8 ± 1.5 26 0.6 19.3 139 N.A. N.A. N.A. 3.9 N.A. N.A.
4 11.8 ± 1.5 26 1 44.0 178 200 2.70 11 8.8 63 14.0%
5 23.8 ± 2.0 28.2 0.6 53.4 193 283 1.87 N.A. 10.7 N.A. N.A.
6 23.8 ± 2.0 28.2 1 73.8 226 266 2.16 15.6 14.8 85 17.4%
control 23.8 ± 2.0 28.2 1 <1 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
a

MA/Cl/CuCl2/Me6TREN/EY·Na2 = 5000/250/1/12/0.1, [MA] = 2 M, [PVDF-CTFE] = 0.116 g/mL, [Cu]/[M] = 200 ppm, DMSO/DMF = 8/2, v/v.

b

Conversion determined from NMR.

c

Number-averaged molecular weight and dipersity determined from DMF GPC with calibration against PMMA.

d

Grafting density determined from NMR.

e

PMA degree of polymerization determined from NMR.

f

Initiation efficiency determined as DPth/DPNMR*100%, control was carried out without PVDF-CTFE. Calculations were carried out according to NMR spectra given in Figures S15–S17 (details in captions).