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Simple Summary: The low developmental efficiency of cloned pig embryos limits the application of
the pig cloning technique. In this study, a small molecule drug called CPI was added to the culture
medium of nuclear donor cells to enhance the developmental capacity of subsequent cloned pig
embryos. CPI treatment of nuclear donor cells changed the cellular energy metabolism status from
oxidative phosphorylation to glycolysis, and significantly improved the developmental competence of
subsequent cloned pig embryos. This study provides a simple approach to facilitate the development
and application of pig cloning technology.

Abstract: Somatic cell nuclear transfer (SCNT) technology holds great promise for livestock industry,
life science and human biomedicine. However, the development and application of this technology
is limited by the low developmental potential of SCNT embryos. The developmental competence
of cloned embryos is influenced by the energy metabolic status of donor cells. The purpose of this
study was to investigate the effects of CPI, an oxidative phosphorylation inhibitor, on the energy
metabolism pathways of pig fibroblasts and the development of subsequent SCNT embryos. The
results showed that treatment of porcine fibroblasts with CPI changed the cellular energy metabolic
pathways from oxidative phosphorylation to glycolysis and enhanced the developmental ability of
subsequent SCNT embryos. The present study establishes a simple, new way to improve pig cloning
efficiency, helping to promote the development and application of pig SCNT technology.

Keywords: SCNT; CPI; oxidative phosphorylation; glycolysis

1. Introduction

Somatic cell nuclear transfer (SCNT), also called cloning, enables the development
of reconstructed embryos into complete individuals possessing identical nuclear genetic
material to that of their donor cells. This technology holds significant application value in
animal husbandry, life sciences, and human biomedicine. SCNT can be used to propagate
excellent breeding stock, including top bulls [1], Duroc boars [2], Pietran boars [3], and
help to save endangered animals such as European argali [4], African wildcats [5], and
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eastern Guangdong black pigs. SCNT is also employed to generate various genetically
modified animals for use as human disease models [6,7], human xenotransplantation organ
donors [8,9], and drug synthesis bioreactors [10,11]. Moreover, SCNT technology facilitates
the generation of nuclear transfer embryonic stem cells (ntESC) for applications in human
therapeutic cloning [12,13].

Nevertheless, the current efficiency of SCNT technology remains very low. Specifically,
the development of pig SCNT embryos into blastocysts under in vitro culture conditions
achieves an efficiency of approximately 20–30% [14–16], while in cattle, this efficiency
ranges from 20% to 50% [17–19]. Furthermore, the full-term developmental rate of cloned
pig embryos after transplantation into the reproductive tract of surrogate mothers is ap-
proximately 0.5–3% (calculated as the number of cloned animals born divided by the
number of 1–2 cell stage cloned embryos transplanted) [20]. Cattle SCNT embryos exhibit a
slightly higher efficiency, with a birth rate of about 10% (calculated as the number of cloned
animals born divided by the number of blastocyst stage embryos transplanted) [21]. These
considerably low developmental rates pose limitations to the development and application
of SCNT technology.

The energy utilization status of donor cells affects the subsequent development of
SCNT embryos. Different cell types rely on different metabolic pathways to generate
energy. Embryonic stem cells (ESCs) induced pluripotent stem cells (iPSCs), pluripotent
stem cells (PSCs), and highly proliferative cells (such as endothelial cells, epithelial cells,
and immune cells) predominantly depend on aerobic glycolysis for energy supply [22,23].
Notably, cells in early embryos, being stem cells, also primarily employ glycolysis to
generate ATP for cell survival and proliferation [24]. In contrast, other types of somatic
cells typically utilize mitochondrial oxidative phosphorylation as the primary source of
energy production [25]. Evidence indicates that the transition of cellular energy metabolism
pathways from oxidative phosphorylation to glycolysis is essential for reverting cells to
an undifferentiated state and maintaining stemness [26]. Comparative analyses of the
transcriptome of human iPSCs and fibroblasts reveal upregulation of glycolysis-related
enzymes, and a shift of energy metabolism towards glycolysis in iPSCs [27]. The process of
reprogramming mouse fibroblasts into totipotent stem cells also involves a switch from
oxidative phosphorylation to glycolysis, resulting in reduced cellular oxygen consumption
and increased lactate production [28].

The alterations in energy metabolism pathways are typically concomitant with the
reprogramming of cell fates [29]. The changes in donor cell metabolism pathways have
the potential to enhance the subsequent developmental efficiency of cloned pig embryos.
A study has demonstrated that buffalo fetal fibroblasts with elevated expression levels
of glycolytic enzyme genes exhibit a higher cloning efficiency [30]. Furthermore, treating
buffalo fetal fibroblasts with glycolysis inducer PS48 resulted in the increased production
of intracellular lactic acid and a consequential enhancement in the development of cloned
embryos [30]. The treatment of porcine fibroblasts with 100 µM CoCl2 (a glycolysis inducer)
led to the increased expression of glycolytic enzyme genes and the enhanced development
of cloned embryos [31].

To investigate the influence of modifying donor cell energy metabolism pathways on
the subsequent development of pig SCNT embryos, this study employed the oxidative
phosphorylation inhibitor CPI to treat porcine fetal fibroblasts (PFFs), donor cells for
cloned embryos. The energy metabolic status and global gene expression pattern were
compared between CPI-treated and solvent-incubated negative control (NC) PFFs. The
developmental competence of SCNT embryos generated from CPI-treated and NC PFFs
was also compared.
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2. Materials and Methods
2.1. Porcine Fetal Fibroblast Culture and Passaging

PFFs were obtained from Livestock Germplasm Resource Center, South China Agri-
cultural University (Catalog No. B13XEHTF020200109, small-eared flower breed). The cells
were cultured in a 37 ◦C, 5% CO2 thermostatic incubator. Upon achieving a cell growth
confluence of 80~90%, the cells were ready for passaging. A 1 mL solution containing
0.25% Trypsin-EDTA was added, and the cells were incubated for 2 min. The digestion
process was terminated by adding 2 mL of complete medium. Subsequently, centrifugation
at 800 rpm for 5 min was performed, the supernatant was discarded, and the cells were
transferred to two 100 mm culture dishes for ongoing cultivation.

2.2. CPI Treatment of Donor Cells

The concentration of CPI used for incubating donor cells was chosen according to a
previously reported study [32]. Five mg of CPI (MedChem Express Biotechnology, Inc.,
Monmouth Junction, NJ, USA, item number 95809-78-2) was dissolved in 1.2867 mL of
DMSO, preparing a mother liquor with a final concentration of 10 mM. Subsequently,
aliquots of 10 µL, 50 µL, and 100 µL of the CPI mother liquor were added to 10 mL of the
DMEM complete medium; the final concentrations of the resulting working solution were
10 µM, 50 µM and 100 µM, respectively.

2.3. Reverse Transcription and qPCR

PFF RNA was extracted utilizing the conventional Trizol method, and the reverse tran-
scription was prepared using Evo M-mLV Reverse Transcription Premix Kit II (Guangzhou
Ruizhen Biotechnology Co., Ltd., Guangzhou, China). ChamQ Universal SYBR qPCR
Master Mix kit (Nanjing Novelty Biotechnology Co., Nanjing, China) was used for qPCR.
Primers and their sequences are shown in Table 1. PCR reactions were performed using
a Quant Studio 7 Flex system (Thermo Fisher Scientific, Waltham, MA, USA) according
to the parameters in Table 2. The qPCR was performed following a previously reported
study [33]. The relative expression of genes was calculated using the 2−∆∆Ct method.
The data of each group were from three independent samples and each sample was mea-
sured with three technical replicates. A melting curve analysis was added at the end of the
amplification procedure to confirm the specificity of the amplification.

Table 1. Primer sequence information.

Gene Primer Sequences (5′–3′) GenBank ID

β-actin
(reference gene)

F: CCTTGGATCTTGGCGGTTCT
R: CACTGCCATGCATGATGCTC NM_001206359

PGK1 F: CCTTGGATCTTGGCGGTTCT
R: CACTGCCATGCATGATGCTC NM_001099932

PDK1 F: CGTGCTGGGAATCAGCAAAC
R: GCTCGAAGTCCGTCTCCTTC NM_001159608

LDHA F: ATCCTGTGGACGGAAGCATT
R: AGGTGATAACAGTGGGTGCG NM_001172363

COX1 F: GGAGGTCTAACGGGCATTGT
R: ACCCGGAGAATAGGGGGAAT NP_008636

COX2
F: CCAAGACGCCACTTCACCCATC

NP_008637.1R: TGGGCATCCATTGTGCTAGTGTG

COX3 F: AAGACGCCACTTCACCCATC
R: TCTTGGGCATCCATTGTGCT NP_008640

ATP6 F: CCGCACAATCTCGATCCAAC
R: AGTTGTGTGGTGGGTGTGAA NP_008639

ATP8
F: GCCACAACTAGATCATCCACATG

NP_008638.1R: GATTCTGGGCTTGCTGGGTATG
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Table 2. qPCR reaction system.

Cycle Step Repetition Number Temperature Times

premutability 1 95 ◦C 30 s

cyclic response 40
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2.4. TMRE Assay of Mitochondrial Membrane Potential (MMP)

The culture medium of PFFs treated with CPI for 48 h was aspirated, cells were
washed with PBS, and a working solution was prepared in accordance with TMRE: serum-
free medium = 1:1000 using the TMRE kit (Shanghai Beyotime Biotech, Shanghai, China,
Item No. C2001S). Subsequently, 1 mL of the working solution was added to each well
and incubated for 45 min in a 37 ◦C incubator, shielded from light. At the end of the
incubation period, the supernatant was aspirated, and the cells were washed twice with a
pre-warmed cell culture solution. Following this, 500 µL of the pre-warmed cell culture
solution containing serum and phenol red was added. The observation and documentation
of cell fluorescence were conducted under a fluorescence microscope, and images were
quantified using ImageJ (13.0.6).

2.5. Measurement of Lactic Acid Content

A lactic acid content kit purchased from Shanghai Biyuntian Biotechnology Co., Ltd.,
Shanghai, China, (Item No.: C0017) was used for measuring lactic acid content. The
extraction process involved a cell-to-extract ratio of 500~1000:1. Specifically, 1 mL of extract
was added to the designated volume of cells, and the cells were subjected to ultrasonic
ice bath treatment for cell lysis at a power of 300 W, with ultrasonication intervals of
3 s and intervals of 7 s, totaling 3 min. The process was conducted at 4 ◦C, followed
by centrifugation at 12,000× g for 10 min. Subsequently, 0.8 mL of the supernatant was
collected, and 0.15 mL of extraction solution II was slowly added with careful blowing
and mixing until no gas bubbles were observed. The mixture underwent a 4 ◦C, 12,000× g
centrifugation for an additional 10 min, after which the supernatant was collected. The
lactic acid content was then determined using the lactic acid content kit by measuring
absorbance at 570 wavelengths, and the data were recorded. The lactic acid content was
calculated using a standard curve.

2.6. Somatic Cell Nuclear Transfer

The CPI-treated PFFs were subjected to digestion and resuspension with DPBS-PVA.
In vitro matured oocytes were enucleated through blind aspiration. Blind aspiration is
performed with a microfine glass tube under the first polar body to aspirate the first polar
body and chromosomes in mid-division and some of the surrounding cytoplasm to ensure
removal of the genetic material. Single donor cells were aspirated into the microinjection
needle and injected into the zona pellucida of the nucleated oocytes. The reconstructed
embryos were then equilibrated in PZM-3 for 1 h. Subsequently, the embryos underwent
transfer into an electrofusion solution, and fusion was induced by two direct current (DC)
pulses at 100 v/mm for 100 µs. After fusion, they were transferred back into PZM-3 and
placed in the incubator. Cleavage rates were observed on the second day of incubation,
while blastocysts were collected on the seventh day to record embryonic development
efficiency and the number of blastocyst cells.

2.7. Transcriptome Sequencing Analysis

Standard transcriptome sequencing was conducted on PFFs subjected to a 50 µM
CPI treatment and untreated NC, with four biological replicates for each condition. The
treated cells were denoted as CPI 1–4, while the untreated ones were labeled as NC1–4.
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Total cellular RNA was extracted by the Trizol method as the starting RNA for library
construction, and cDNA was synthesized for PCR amplification to construct the library.
After checking the quality of the library, Illumina sequencing was performed to obtain
clean reads, and HISAT2 (v2.0.5) was used to compare the clean reads with the positional
information on the reference genome, count the number of reads for each gene, and calculate
the FPKM value. DESeq2 software (1.20.0) was used to perform the statistical analysis to
select differentially expressed genes. log2(Foldchange)| > 1 & p value < 0.05. The cluster
Profiler software (3.8.1) was used to map the DEGs to GO and KEGG databases, and the
differential gene sets were analyzed for GO functional annotation and KEGG pathway
enrichment. All the above work was conducted by Beijing Novozymes Technology Co.,
Beijing, China.

2.8. Statistical Analysis

The data analysis was conducted using SPSS 20.0, employing t-tests for pairwise
comparisons between groups, and one-way ANOVA for analyzing differences among two
or more groups.

3. Results
3.1. CPI Treatment Downregulated Oxidative Phosphorylation Gene Expression but Upregulated
Glycolytic Enzyme Gene Expression in PFFs

PFFs were treated with different concentrations of CPI (10 µM, 50 µM, and 100 µM)
for 48 h. The mRNA expression levels of three oxidative phosphorylation genes (Mitochon-
drially Encoded Cytochrome C Oxidase I (COX1), Mitochondrially Encoded Cytochrome C
Oxidase III (COX3), Mitochondrially Encoded ATP Synthase Membrane Subunit 6 (ATP6))
and three glycolysis genes (Phosphoglycerate Kinase 1 (PGK1), Pyruvate Dehydrogenase
Kinase 1 (PDK1), Lactate Dehydrogenase A (LDHA)) in the treated PFFs were measured
by qPCR. As depicted in Figure 1, the 10 µM CPI incubation had no significant effect on
the expression of all tested genes. The addition of 50 µM CPI to the PFF culture medium
significantly decreased ATP6 and increased PGK1 mRNA abundance, as compared to the
NC group. The supplementation of 100 µM CPI to the culture medium of PFFs significantly
downregulated the transcript level of oxidative phosphorylation genes COX3 and ATP6
and upregulated the transcript level of glycolytic enzyme gene PGK1. These results indicate
that treating PFFs with CPI at a concentration of 50 or 100 µM inhibits the expression of
oxidative phosphorylation-related genes while promoting the expression of a glycolytic
gene, PGK1.
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Figure 1. Impacts of CPI treatment on oxidative phosphorylation and glycolysis-related gene ex-
pression in PFFs. Data are presented as “Means ± S.E.”. Three biological replicates in each group.
“*” indicates a significant difference between two groups in the same column (p < 0.05).

3.2. CPI Treatment of PFFs Resulted in Downregulation of MMP and Upregulation of
Lactate Content

Mitochondria provide energy for the host cells by producing ATPs, predominantly
through oxidative phosphorylation. The MMP (Mn) reflects oxidative phosphorylation



Animals 2024, 14, 1362 6 of 12

status of the cells. Therefore, we investigated the effects of CPI treatment on the MMP of
PFFs. The results revealed a significant decrease in cellular MMP following the 50 µM and
100 µM CPI treatment, compared to the NC group (Figure 2A,B). To explore the effect of
CPI on the PFF glycolytic pathway, we also assessed the lactate content, which is an index
of glycolysis, of PFFs treated with 50 µM CPI. The results demonstrated that lactate content
in the CPI-treated group was significantly increased, by one-fold, compared to the NC
group (Figure 2C). This observation indicates that CPI suppresses the cellular oxidative
phosphorylation pathway but promotes the glycolytic pathway, resulting in a drop in
cellular MMP and an upregulation of lactate content.
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Figure 2. Impacts of CPI treatment on MMP and lactate content in PFFs: (A) effects of CPI treatment
on MMP of PFFs, PFFs (red) were stained by TMRE. NC represents the negative NC group, PFFs
were treated with 10 µM, 50 µM, 100 µM CPI; Original magnification: ×100, bar: 100 µm; (B) the
relative fluorescence intensity of TMRE probe; and (C) effects of 50 µM CPI treatment on lactic acid
content in PFFs. Data are presented as “Means ± S.E.”. Three biological replicates in each group.
“*” indicates a significant difference between two groups in the same column (p < 0.05).

3.3. CPI Treatment of Donor Cells PFFs Significantly Enhanced the Developmental Competence of
Cloned Embryos

To investigate the influence of CPI treatment of donor cells on subsequent development
of porcine cloned embryos, we compared the developmental indexes (cleavage rate, blastocyst
rate, and the number of blastocyst cells) of cloned embryos constructed from 50 µM CPI-
treated PFFs and NC PFFs. The results revealed that the blastocyst rate (49.33 ± 3.52%
vs. 38.00 ± 2.0%, p < 0.05) in the treated group was significantly higher than that in the
NC group (Table 3). These findings suggest that incubating donor cells with the oxidative
phosphorylation inhibitor CPI promotes the subsequent development of cloned pig embryos.

Table 3. Effects of CPI treatment of donor cells on subsequent development of porcine cloned embryos.

Groups Cleavage Rate
(n)

Four-Cell Stage Rate
(n)

Blastocyst Rate
(n)

Number of
Blastocyst Cells Mean

NC 67.00 ± 1.91%
(67/100)

37.00 ± 1.91%
(37/100) 38.00 ± 2.0% (38/100) 34.13 ± 13.38

CPI 69.33 ± 1.15%
(52/75)

38.67 ± 1.15%
(40/75) 49.33 ± 3.52% (43/75) * 43.19 ± 18.52

Data is presented as “Means ± S.E.”. “*” indicates a significant difference between two groups in the same column
(p < 0.05).
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3.4. Transcriptomic Analysis of PFFs Treated with CPI

To investigate the impacts of donor cell energy metabolism pathways on the devel-
opment of porcine cloned embryos, PFFs without any treatment and those treated with
50 µM CPI for 48 h were collected for transcriptome sequencing. Based on the princi-
pal component analysis (PCA) results, the NC- and CPI-treated groups exhibited clear
grouping, demonstrating significant inter-group differences and intra-group reproducibility
(Figure 3A). A total of 10,133 differentially expressed genes (DEGs) were identified between
the two groups, comprising 5007 upregulated genes and 5126 downregulated genes in the
CPI-treated group (Figure 3B). Gene Ontology (G.O.) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were conducted on the DEGs identified through RNA sequenc-
ing. The G.O. analysis revealed enrichment of DEGs in metabolism-related pathways such
as the mitochondrial inner membrane protein complex, respirator, inner mitochondrial
membrane respiratory chain complex, NADH dehydrogenase activity, oxidoreductase
activity and other pathways (Figure 3C). KEGG analysis demonstrated that DEGs between
the two cell groups were also enriched in several metabolism-related pathways, including
reactive oxygen species, oxidative phosphorylation, thermogenesis, and other pathways.
(Figure 3D).
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3.5. Interaction Analysis of Oxidative Phosphorylation-Related Pathway Networks

The ROS signaling pathway, oxidative phosphorylation pathway, and thermogenic
signaling pathway, which are closely related to energy metabolism in the KEGG enrichment
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analysis, were mapped for network interactions (Figure 4A). The results showed that the
key node genes, including cytochrome genes (Mitochondrially Encoded Cytochrome C
Oxidase I: COX1, Mitochondrially Encoded Cytochrome C Oxidase II: COX2, Mitochondri-
ally Encoded Cytochrome C Oxidase III: COX3) and ATP synthase genes (Mitochondrially
Encoded ATP Synthase Membrane Subunit 6: ATP6, Mitochondrially Encoded ATP Syn-
thase Membrane Subunit 8: ATP8) had a significantly lower expression in the CPI-treated
group than in the NC group (Figure 4B). Cytochrome genes and ATP synthase genes have
been shown to inhibit the oxidative phosphorylation pathway [32,33]. The downregu-
lated expression of these two families of genes in the CPI-treated cells indicated that CPI
treatment significantly suppressed the oxidative phosphorylation pathways in the cells,
further confirming that CPI is an effective oxidative phosphorylation inhibitor. To validate
the expression level of five node genes, including COX1, COX2, COX3, ATP6 and ATP8,
their mRNA expression levels in 50 µM CPI-treated and NC PPFs were measued by qPCR.
As shown in Figure 4C, the expression levels of the tested five genes were lower in the
CPI-treated group than in the control group, which was consistent with the downregula-
tion trend in the RNA sequencing results, indicating that the RNA sequencing data were
accurate and reliable.
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4. Discussion

CPI, as an analogue of alpha-lipoic acid, suppresses oxidative phosphorylation by
inhibiting the expression of pyruvate dehydrogenase (PDH), which is an enzyme com-
plex within the mitochondria pivotal that catalyzes the conversion of pyruvate to acetyl
CoA [34–36]. The interruption of PDH expression by CPI halts the entry of pyruvate into
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the tricarboxylic acid cycle, disrupting oxidative phosphorylation and diminishing ATP pro-
duction [37]. Furthermore, the CPI-mediated PDH blockade triggers the accumulation of
acetyl-CoA and promotes the glycolytic pathway to meet metabolic requirements [38]. Our
qPCR results revealed that the 10 µM CPI treatment exerted no significant effect on the gene
expression of energy metabolism pathways in donor cells, whereas the 50 µM and 100 µM
CPI supplementation significantly inhibited the expression of oxidative phosphorylation-
related genes. Similar results were found in previous research, which demonstrated that a
10 µM CPI treatment failed to stimulate the PFF oxidative phosphorylation pathway, while
a higher concentration of 100 µM CPI inhibited oxidative phosphorylation [39].

Inhibition of the oxidative phosphorylation pathway disrupts the electron transport
chain’s function in the mitochondria, causing a reduction in the potential gradient between
the mitochondrial membranes [40]. In this study, MMP downregulation was observed in
50 µM and 100 µM CPI-treated PFFs. Previous research has shown that 50 µM and 100 µM
CPI can decrease the MMP of PFFs [41]. The reprogramming of mouse ear fibroblasts
(MEFs) to induce pluripotent stem cells (iPSCs) also involves MMP reduction [42].

During glycolysis, glucose is decomposed into pyruvate, which is then metabolized
into lactate in the cytoplasm; therefore, the level of lactate is positively correlated with
the intensity of intracellular glycolysis [43]. It has been shown that upregulation of the
glycolytic pathway is accompanied by an increase in lactate content [44–46]. The significant
elevation of lactate levels in the CPI-treated PFFs strongly suggests that the glycolysis
process is enhanced in PFFs following CPI treatment.

Among the pathways analyzed by KEGG enrichment in this study, the Wnt, AMPK,
and PI3K/AKT signaling pathways are associated with energy metabolism, in addition to
the ROS signaling pathway [47], oxidative phosphorylation pathway [45], and thermogenic
signaling pathway [48]. It has been shown that activation of the Wnt signaling pathway
promotes upregulation of ATP synthase, leading to increased intra-cellular lactate secretion
and upregulation of the glycolytic pathway [49]. AMPK enhances the glycolytic pathway by
upregulating the expression of glycolytic enzymes [50]. The upregulation of the PI3K/AKT
pathway promotes the activities of glycolytic pyruvate kinase and hexokinase, which
increase ATP production and promote glycolysis and lactate production in breast cancer
cells [51].

In the present study, the blastocyst rate of SCNT embryos cloned from CPI-treated
PFFs was significantly higher compared to the NC group treatment of PFFs with 100 µM
CoCl2 (a glycolysis inducer) and also resulted in a significantly higher blastocyst rate and
blastocyst cell number in subsequent SCNT embryos, compared to NC [31]. Similarly,
treatment of PFFs with 10 µM PS-48, another glycolysis inducer, led to significantly higher
cleavage and blastocyst rates in subsequent cloned embryos compared to NC [30]. These
drug treatments all enhance the developmental efficiency of SCNT embryos by altering
energy metabolic pathways in donor cells. However, it is important to note that the
blastocyst rate and blastocyst cell number may not fully represent the uterine survival rate
of cloned embryos [52]. Whether the CPI treatment of donor cells can improve the full-term
developmental competence of subsequent cloned embryos remains unknown and requires
further investigation.

Our results showed that CPI treatment increased the lactic acid level in donor cells.
Lactate has been shown to be essential for the early development of mammalian embryos,
and deprivation of lactate leads to significant deletion of H3K18lac and to the failure of
major ZAG activation in mouse 2-cell embryos [53]. It has also been shown that lactate
promotes epigenetic reprogramming through histone H3K27 acetylation [54]. Increased
levels of histone acetylation promote transcriptional activation and increased expression
levels of developmentally relevant genes in early SCNT embryos, ultimately enhancing the
developmental potential of SCNT embryos [55]. Therefore, CPI treatment improves the
developmental efficiency of subsequent cloned embryos.
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5. Conclusions

Treatment of PFFs with the oxidative phosphorylation inhibitor CPI effectively shifts
the cellular energy metabolic pathways from oxidative phosphorylation to glycolysis and
enhances the developmental potential of subsequent SCNT embryos. This study provides
a simple new method to improve the efficiency of pig cloning, which will be beneficial for
promoting the development and application of pig SCNT technology.
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