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Simple Summary: This review highlights the profound impact of digital pathology (DP) and artificial
intelligence (AI) on advancing cancer diagnosis and treatment. DP enables pathologists to access,
analyze, and share high-resolution images, enhancing diagnostic accuracy and fostering remote
collaboration. AI further refines cancer diagnosis by automating tasks and facilitating spatial analysis
of the tumor microenvironment (TME), leading to the discovery of novel biomarkers. Immunoscore
(IS), an AI-assisted immune assay, exhibits robust potential in improving cancer diagnosis, prognosis,
and treatment selection, surpassing traditional staging systems. Integrating DP and AI, particularly
the IS biomarker, into clinical practice promises to enhance personalized cancer therapy. The research
underscores a pivotal leap forward in pathology, stressing the imperative of incorporating AI-driven
technologies for improved cancer patient care and outcomes. This exploration aims to provide
insights into the transformative potential of DP in cancer management, influencing the clinical
community towards more effective diagnostic and therapeutic strategies.

Abstract: (1) Background: Digital pathology (DP) is transforming the landscape of clinical practice,
offering a revolutionary approach to traditional pathology analysis and diagnosis. (2) Methods: This
innovative technology involves the digitization of traditional glass slides which enables pathologists
to access, analyze, and share high-resolution whole-slide images (WSI) of tissue specimens in a digital
format. By integrating cutting-edge imaging technology with advanced software, DP promises to
enhance clinical practice in numerous ways. DP not only improves quality assurance and standard-
ization but also allows remote collaboration among experts for a more accurate diagnosis. Artificial
intelligence (AI) in pathology significantly improves cancer diagnosis, classification, and prognosis
by automating various tasks. It also enhances the spatial analysis of tumor microenvironment (TME)
and enables the discovery of new biomarkers, advancing their translation for therapeutic applications.
(3) Results: The AI-driven immune assays, Immunoscore (IS) and Immunoscore-Immune Checkpoint
(IS-IC), have emerged as powerful tools for improving cancer diagnosis, prognosis, and treatment
selection by assessing the tumor immune contexture in cancer patients. Digital IS quantitative
assessment performed on hematoxylin–eosin (H&E) and CD3+/CD8+ stained slides from colon
cancer patients has proven to be more reproducible, concordant, and reliable than expert pathologists’
evaluation of immune response. Outperforming traditional staging systems, IS demonstrated robust
potential to enhance treatment efficiency in clinical practice, ultimately advancing cancer patient care.
Certainly, addressing the challenges DP has encountered is essential to ensure its successful integra-
tion into clinical guidelines and its implementation into clinical use. (4) Conclusion: The ongoing
progress in DP holds the potential to revolutionize pathology practices, emphasizing the need to
incorporate powerful AI technologies, including IS, into clinical settings to enhance personalized
cancer therapy.

Cancers 2024, 16, 1686. https://doi.org/10.3390/cancers16091686 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16091686
https://doi.org/10.3390/cancers16091686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-9635-1339
https://doi.org/10.3390/cancers16091686
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16091686?type=check_update&version=2


Cancers 2024, 16, 1686 2 of 15

Keywords: digital pathology (DP); immunoscore (IS); whole-slide imaging (WSI); artificial intelligence
(AI); quantitative analysis; histopathology; colorectal cancer (CRC); diagnosis; biomarkers; clinical practice

1. Introduction
1.1. The Forthcoming Transition of Traditional Pathology into the Digital Era

Digital pathology (DP), often perceived as a modern innovation, has its roots dating
back several decades. The foundations of DP can be traced to the 1960s when Prewitt
and Mendelsohn pioneered the scanning of microscopic images from blood smears [1].
This scanning method not only facilitated the identification of various cell types but also
retained the spatial information of the analyzed blood samples. Over the past two decades,
DP images have gained extensive use in medicine. A transformative advancement in the
field was in the 1990s with the introduction of whole-slide imaging (WSI). This approach
revolutionized the potential to scan entire tissue sections on slides, departing from the
conventional practice of singling out specific regions of interest (ROI) for analysis. This
progress was made possible with high-resolution WSI devices, capable of quickly digitizing
classical glass slides at resolutions as fine as 0.23–0.25 µm per pixel. Pathologists from
different locations can then review these digital images on a computer monitor [2,3] and
collaborate on specific cases for second opinions.

Termed “digital pathology”, this innovation streamlines the extraction, management,
and interpretation of patient histopathological data. Its primary objective is to tackle the
common challenges faced by traditional pathologists by providing the capability to access
and share scanned slide images, which facilitates remote clinical case diagnosis [4,5].

In traditional anatomical pathology, histopathologists manually assess and classify
patients or diseases under a microscope. Thus, in clinical routine practice, pathologists
rely on the visual evaluation and semi-quantification of morphological features in ana-
lyzed samples. While cost-effective, widely available, and compatible with formalin-fixed,
paraffin-embedded (FFPE) tissue samples [6], these methods are susceptible to subjective
interpretations, particularly in the evaluation of immune cells. This can potentially lead to
inter-observer discrepancies among different pathologists and medical centers [7], affecting
result reproducibility and consequently patients’ treatment decisions [8–10]. Remarkably,
digital WSIs have demonstrated strong diagnostic agreement, often outperforming pathol-
ogists’ traditional light microscopy slide analysis and greatly facilitating the sharing of
diagnostic slides among pathologists [11–15]. Furthermore, by enabling the wide applica-
tion of artificial intelligence (AI), DP is contributing to breakthroughs in diagnostic potential
and workflow efficiency. AI, a concept that emerged in the mid-20th century, aims to repli-
cate human cognitive abilities in machines [16]. Within the realm of AI, machine learning
(ML) methods focus on training machines from available data to enable predictive capabili-
ties, like forecasting therapy responses or predicting cancer recurrence risks. Deep learning
(DL), is a subset of ML emerged in the 1980s, and utilizes multi-layer neural networks to
process data in a way that mimics human neural connections [17]. Essentially, these AI
approaches are designed to extract meaningful image representations, which are subse-
quently processed by specific machine classifiers, based on specific criteria (segmentation,
diagnostics, or prognostics) using supervised or unsupervised methods [18,19].

In fact, automated AI-based DP applied to hematoxylin–eosin (H&E)-stained slides
can integrate multiple quantitative datasets to capture the tissue complexity and spatial
cell organization of the TME, enhancing the automatic selection and analysis of ROIs while
improving accuracy, reproducibility, and efficiency. Consequently, this has the potential
to reduce human errors by lessening the reliance on subjective visual assessments by
pathologists and may pave the way into a digitally empowered era in pathology and
diagnosis of diseases, ultimately improving patient care.

This review provides an insight into the implementation of AI in DP and its potential
to enhance current clinical practice. It will delve into the significance of Immunoscore
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(IS) and Immunoscore Immune-Checkpoints (IS-IC) as innovative AI-assisted DP assays,
not only for diagnosing cancer patients and predicting their clinical outcomes but also
for stratifying them based on response to treatment. Additionally, it will shed light on
the substantial challenges that currently impede the adoption of AI-based tools in clinical
settings.

1.2. Digital Pathology Empowers Quantitative Analysis of Whole-Slide Images (WSI)

In DP, WSIs can be analyzed with remarkable precision, significantly expediting the
quantification of specific cell populations within tumors or distinct tissue types. Addi-
tionally, DP enables the identification and assessment of precise histological patterns and
morphological features. Furthermore, DP exhibits the potential to pinpoint and precisely
define ROI, such as distinguishing between tumoral and stromal areas or assessing the
tumor core versus the invasive margin. Moreover, it can deeply explore and analyze cell-
to-cell distances and interactions, leading to a better understanding of the tumor tissue
microenvironment [19,20].

Quantitative image analysis provides a means to extract highly specific data from
WSI, an incredibly labor-intensive and time-consuming task when executed manually. The
integration of AI in a DP workflow holds the potential to address several challenging issues
frequently encountered by pathologists, including tasks like visual cell counting across
entire tissue slides and the assessment of multiple tumor parameters, which are prone
to significant human errors [21,22]. Over the past few years, open-source WSI analysis
software, coupled with robust clinical applications, has been developed [23,24]. These
software solutions encompass tools for annotation and cell detection, and their affordability
has led to a broader adoption of DP in numerous hospitals worldwide. However, the
widespread implementation of DP and the significant investments in its clinical applications
are still limited in many hospitals and clinical centers (https://www.rcpath.org/profession/
digital-pathology.html (accessed on 1 February 2024)). This can be attributed to factors
such as high initial costs of infrastructure setup, concerns regarding data security and
privacy, challenges in staff training and workflow integration, and regulatory hurdles
related to validation and accreditation. However, high-quality WSI databases are expected
to emerge with the potential increase in DP centers [25]. This will enhance the development
of algorithms using computer software to analyze WSIs for the study of diseases.

2. Clinical Applications of AI and DP
2.1. AI-Based Digital Pathology, a Powerful Driving Force in Cancer Research and Therapy

AI applications in pathology employ advanced image processing to extract precise
information, recognize specific tissue patterns and identify biomarkers’ expression [26,27].
In cancer, AI-based approaches play a vital role in patient diagnosis, classification, and
prognosis for treatment response. For instance, the algorithms designed for early tumor
detection are instrumental in improving patient survival [28] and the potential of DP
in cancer diagnosis is highly encouraging [29–37]. Additionally, DP addresses various
challenges in oncology, including the development of prognostic assays to assess disease
severity and predict tumor recurrence [38] and clinical outcomes in cancer patients [39,40].

DL algorithms are also being employed for the evaluation of Immunohistochemistry
(IHC) and H&E-stained slides across various tumor types. Currently, their utilization
in cancer research is extensive and includes identifying biomarkers that forecast early
melanoma survival [41], recognizing invasive regions in breast cancer tissue [42], and
predicting patient responses to chemotherapy in advanced rectal cancer [43].

In addition to T-helper 1 immune signature [44–46], germline genetics [47] or mi-
crobiomes [48] contributing to the immune landscape, there is growing evidence about
the spatial organization of immune cells in the tumor microenvironment (TME) and its
profound influence on cancer development [44]. DP revealed crucial insights into the
spatial organization of immune cells within the TME, demonstrating its clinical relevance
in various cancers [45,49]. In colorectal tumors, increased CD3+ T-cell density in the inva-
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sive margin strongly correlates with disease-free survival (DFS) [45], providing valuable
information on immune cell interactions and their spatial relationships. DP also enhances
our understanding of the dynamics of TME, immune cell phenotypes, and treatment resis-
tance mechanisms [50] at single-cell resolution. This strategy offers valuable insights into
intra-tumor heterogeneity and its predictive outcomes [51] when combined with spatial
multi-omics data.

Additionally, tracking the spatio-temporal dynamics of immune cells during tumor
progression is vital for gaining deeper insights into cancer’s immune control mechanisms.
Thereby, the potential for spatial analysis of the TME has been greatly advanced through the
application of DP to multiplex IHC imaging. The spatial quantitative analysis of high-plex
images reveals co-localization of markers and immune cell infiltration across different tumor
regions, offering insights into the TME’s architecture [52]. This multispectral approach
also provides a deeper understanding of cell-specific gene expression [53], and the cellular
relationships within tumor tissue.

Multiplexing also enabled the identification of T-cell populations and their relative
spatial distributions in the TME. It also emphasized the potential of immune parameters,
such as IS-IC to stratify patients who may benefit from immunotherapy [30,32,54,55]. In
addition to IS, analysis of other immune cell subpopulations such as Th1 cells, Tfh cells,
B-cells and macrophages yields valuable supplementary insights [44,46,51,56]. Whole-slide
digital assessment, coupled with multiplexed imaging, presents an excellent opportunity to
delve into cell signaling pathways in the TME by examining relative spatial cell distances.
Notably, even when applied to specific regions of interest, this type of analysis can be
challenging for pathologists to perform manually [57,58].

IHC is instrumental in characterizing biomarkers for therapy response [59]. However,
enhancing precision in quantifying immune biomarkers, especially spatial cell phenotypes,
requires advanced quantitative techniques. Also, the development of robust statistical
methods for mapping TME components is crucial to expedite the understanding of intra-
tumor heterogeneity and facilitate the translation of cancer biomarkers for therapeutic
applications.

2.2. Translating Digital Pathology into Clinical Practice: Immunoscore and Immunoscore-IC,
Novel Paradigms for Cancer Treatment

Tumor growth involves complex spatio-temporally regulated interactions between
different TME components [60]. Recent advances in TME spatial analysis, driven by AI
technologies, have identified new prognostic factors by assessing existing immune cell
types [45]. This contributed to the prediction of responses to immune checkpoint inhibitors
(ICIs) immunotherapy, notably highlighting the predictive value of tumor-infiltrating lym-
phocytes (TILs) in various cancers [61]. These insights bridge the gap to the emerging field
of tumor profiling and precision oncology, emphasizing the need for predictive assays to
stratify patients for personalized treatments. The analytical prowess of AI holds the poten-
tial to accelerate the discovery of novel histopathological biomarkers, predicting disease
progression, tumor recurrence, and treatment response [18,25]. Recent years have seen
increased AI implementation in histological imaging analysis, revolutionizing personalized
therapy steps, including tumor detection, staging, and molecular subtyping for enhanced
patient care. For instance, AI facilitates early personalized treatment in CRC by detecting
specific biomarkers like MSI [62] that guide clinicians in selecting patients for specific
therapies, including ICIs and targeted therapies. AI-enabled personalized cancer diagnosis
and treatment are reshaping oncology with impactful examples. The integration of AI into
Glioblastoma imaging holds promise for advancing the characterization and tracking of the
disease, including recurrence. This integration has the potential to substantially enhance
patient outcomes through enabling more accurate diagnosis, precise treatment planning,
and improved monitoring of treatment response [63]. In ovarian cancer, AI algorithms
predict chemotherapy responses based on tumor genomic profiles, guiding clinicians in
selecting the most effective treatment regimen [64]. Furthermore, in pancreatic cancer, AI is
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transforming pancreatic cancer care, enhancing diagnostics, personalizing treatments, and
optimizing operational efficiency, ultimately leading to improved patient outcomes [65].
Additionally, AI-powered liquid biopsy platforms in CRC holds promise for screening,
stratifying patients for treatment, and real-time monitoring of treatment response, offering
improved management and personalized care [66]. These examples highlight how AI
empowers clinicians with actionable insights, leading to more personalized and effective
cancer care strategies. Moreover, these DP practices can ultimately help patients avoid
unnecessary treatment expenses and undesirable side effects.

DP can also evaluate composite biomarkers, including CD8 and PDL-1 in patients
treated with anti-PDL-1 ICI [32,67]. These biomarkers have significant potential in predict-
ing patients’ outcome and response to ICIs. Indeed, patients who are positive for CD8 and
PDL-1 have shown prolonged survival compared with CD8 and PDL-1 negative patients.

Research on human cancers underscored the profound influence of the TME on cancer
development. DP-assisted analysis of immune landscapes provided clinical insights, reveal-
ing the significance of immune cell density and location for patient survival. Automated
image analysis by DP highlighted the crucial role of immune parameters in cancer ther-
apy. This paved the way for innovative approaches like IS and IS-IC that can potentially
revolutionize cancer diagnosis, prognosis, and treatment with objective and standardized
AI-assisted assessments of the immune TME.

IS is a DP-immune assay originally designed to quantify CD8+ and CD3+ T lympho-
cytes within the TME to define T-cell abundance and infiltration in the tumor (Figure 1). IS
provides a powerful prognostic tool as it shows high accuracy in defining tumor immune
contexture in cancer patients by examining the density and location of immune cells [45].
IS also revealed that intratumoral adaptive immune reaction has a significant impact on
patients’ survival [68,69] and demonstrated a robust prognostic value disregarding the
tumor stage, by stratifying patients according to their tumor immune components.
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patients. Immunoscore® analyzer software (INSERM/Veracyte, Marseille, France).

This DP tool features high importance in sorting the patients at risk of tumor recur-
rence [33–35,70–72] (Figure 2A,B), and also in predicting their outcomes and response to
treatments [73]. In colorectal cancer (CRC), IS assessment of infiltrated immune cells on
FFPE-resected tumor sections was a powerful predictor of tumor recurrence (Figure 2B).
IS detected a low adaptive immune reaction in the primary tumor of recurrent patients.
The predictive values of IS have been validated on large cohorts of early and late stages
CRC [33–36,74] and in randomized phase 3 clinical trials [75–78]. The prognostic value
of IS has been also assessed in response to chemotherapy in all CRC stages [33–35,79]
in response to neoadjuvant chemotherapy in bladder [80] and breast [81] cancer and to
radiochemotherapy in rectal cancer [82–84]. Thus, these immune features, associated with
cancer progression and risk of recurrence, revealed high clinical significance, especially
guiding treatment-decisions in cancer patients.
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Figure 2. Illustration of the DP-Immunoscore calculation method. (A) Densities of CD3+ and CD8+
at both CT and IM are converted into percentile values. The mean percentile of the four markers
is calculated and represented into a five-category (IS0, IS1, IS2, IS3, IS4) or a three- (IS-Low, IS-Int,
IS-High) or a two-category scoring system (IS-Low, IS-High). Based on measuring immune response
at the tumor site, IS predicts the risk of relapse in localized colon cancer to identify patients who
could be spared from chemotherapy. (B) Ring charts illustrating the relative contribution of each risk
parameter to recurrence risk in patients with stages II and II/III colon cancer. IS (red) is the highest
predictor of time to recurrence (TTR) in both subgroups.

Recently, the prediction of response to immunotherapy based on the immune contex-
ture parameters, including IS, has been established [30,37]. For this aim, a novel DP-based
assay, the IS-IC, has been developed to predict response to ICI immunotherapies. IS-IC is
revealed as powerful predictive biomarker for response to combination immunotherapy
in metastatic CRC patients, enrolled in phase II AtezoTRIBE clinical trial [30] and for
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response to anti-PDL-1 immunotherapy in non-small cell lung cancer (NSCLC) [32,55].
The latest findings also demonstrated that tumor immune contexture is a determinant of
anti-CD19 CAR-T cell efficacy in large B-cell lymphoma (LBCL). It has also been proved
that IS was robustly associated with response to CAR T-cell, as well as with prolonged
patient survival [37]. This study driven by IS advanced the understanding of TME features
associated with clinical responses to CAR-T cell therapy, which could optimize LBCL
patient treatment.

The prognostic value of IS has now been assessed in a broad range of tumor types [29,
37,80,85–88]. Moreover, the consensus IS has been validated worldwide for its powerful
prognostic significance that outperforms the classical TNM tumor progression and invasion
staging system [36,45,74]. Therefore, IS has shown that immune parameters of cancer
patients are more powerful than the TNM classification system in predicting outcomes.
This evidence would have not been possible through a visual assessment of the immune
response by traditional pathology. Thus, IS and IS-IC can profoundly reshape the landscape
of cancer diagnosis, prognosis, and treatment. Their potential lies in advancing the field of
oncology, empowering patients with more precise and highly effective therapeutic options.

2.3. Immunoscore: A Reliable and Consistent Assay Surpassing Pathologists’ Visual Assessment

For many decades, conventional pathology techniques have played a crucial role in
diagnosing and classifying cancer patients. However, the emergence of ground-breaking
advances in precision medicine marked a paradigm shift in the development of DP-based
methods for precise quantitative analyses.

IS has emerged as a powerful tool and a cutting-edge approach in the field of IHC and
pathology, offering numerous advantages over pathologists’ visual evaluation and quantita-
tive analyses of the immune response [89,90]. This digital assay ensures highly reproducible
and consistent results, surpassing human visual assessments [89,90] (Figure 3A,B).
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Figure 3. Target plot visualizations to depict the agreement between pathologists’ visual assessments
and IS. These illustrations showcase the proportion of evaluations falling into different categories,
including concordant, discordant around cut-points, discordant, very discordant (same case classified
either High or Int or Low), and random cases (same case differently classified in 50% of evaluations).
(A) IS repeated quantification, (B) the mean score of the pathologists’ evaluation of tumor-infiltrating
lymphocytes (TIL) on hematoxylin–eosin (HE) slides and of pathologists’ evaluation of CD3 and
CD8 stains before and after training. Each point in each plot represents assessments for four pa-
tients. Individual pathologist evaluation was previously published by Willis et al. Cancers 2023.
Reprinted/adapted with permission from Ref. [90]. Copyright year, 2023 copyright owner’s J. Galon.
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Comparisons between IS and pathologists’ visual scoring revealed significant discrep-
ancies. A recent multi-institutional study highlighted the reproducibility and concordance
of IS compared to non-concordant evaluations by pathologists in over 92% of cases. IS
demonstrates high reproducibility, while agreement among pathologists remains weak,
even after training [90], leading to notable misclassifications by pathologists, potentially
impacting a substantial number of cases [90]. This non-concordance may misclassify up
to 70% of cases, potentially affecting 87,000 colon cancer cases annually, which would
potentially receive inadequate treatments [90]. IS, driven by DP, provides reliable di-
agnosis and patient stratification, revealing the prognostic significance of the immune
response in treating CRC patients [34,35,79,89,90]. Thus, an assessment of stage II and III
CC patients that does not included a DP IS quantification can drive suboptimal treatment
decision-making [33,34,75,77,78,90]. High-risk patients may also benefit from different
oncology treatments [91–108]. Therefore, standardized IS outperforms expert pathologists’
visual assessments, emphasizing its potential in improving cancer diagnosis and enabling
personalized therapeutic decisions for CRC patient care.

2.4. Adoption of Digital Pathology and AI in Clinical Practice: Challenges, Limitations and
Future Perspectives

The implementation of advanced DP and AI technologies in clinical practice is essential
due to a shortage of pathologists and increased demographics driving (aging population)
the cancer clinical diagnostic load. This approach improves efficiency, quality, and en-
hances overall diagnostic accuracy and collaboration among pathologists, clinicians, and
researchers. Automated DP offers advantages such as a reduction in inaccuracies, faster
analysis, and generation of high-throughput data, often beyond human visual analysis
capabilities. This can significantly alleviate pathologists’ workload and enhances diagnostic
accuracy [109].

However, despite the promising results of AI-powered digital pathology (AI-DP)
and its potential in predicting histopathological diagnoses, the journey from algorithm
development to clinical application is burdened by numerous challenges, including costs,
regulatory approvals, data quality, reimbursement, and rigorous multi-step validations,
which delay the adoption of DP into routine clinical practice. AI’s clinical adoption faces
regulatory hurdles, including EU guidelines, CLIA certification, and FDA approval. DP
also relies on high-quality data for AI training to provide a predictive performance [110],
necessitating consensus in WSI references and multi-institutional validation. The validation
of AI algorithms in DP is critical for ensuring accurate and reliable performance, which is
essential for clinical decision-making. Validated algorithms not only comply with regula-
tory standards but also enhance patient trust and promote ethical practice. By assessing
generalizability and robustness across diverse datasets and settings, validation studies
ensure the applicability of algorithms in real-world clinical scenarios. Transparent reporting
of validation results empowers clinicians to make informed decisions, driving ongoing
quality improvement initiatives, which could ultimately enhance patient outcomes and
healthcare delivery.

The successful incorporation of AI-DP into clinical practice also requires robust techni-
cal support to familiarize pathologists and clinicians. Also, addressing some pathologists’
hesitancy toward AI support can be mitigated through comprehensive training programs,
emphasizing human-in-the-loop AI’s role in enhancing human expertise, rather than re-
placing it.

Difficulties in implementing the IS and other digital tools for colon cancer reporting
include standardizing protocols for sample preparation and imaging, validating algorithms
for accurate analysis, integrating DP with existing laboratory information systems, ensuring
data interoperability, and addressing concerns regarding the reproducibility and clinical
utility of digital biomarkers. Solutions involve interdisciplinary collaboration, stakeholder
engagement, investment in infrastructure and training, regulatory compliance, and ongoing
quality assurance measures.
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Despite existing challenges, the introduction of AI-DP into the medical field shows
significant potential for improving diagnostic accuracy and efficiency. Moreover, DP
streamlines the daily workflow by offering numerous benefits. It facilitates telepathology,
extending access to expert opinions on a global scale, with easy sharing of images, anno-
tations, and diagnostic information, fostering interdisciplinary teamwork and improving
the overall quality of patient care. Most importantly, DP allows to provide objective and
quantitative biomarker data for clinical practice. Furthermore, AI-driven DP can improve
pathology teaching for educational purpose. Therefore, it is imperative to systematically
integrate AI algorithms, beginning with the validation of established biomarkers to en-
sure their alignment with existing diagnostic pathology practices. This will enhance the
confidence in the clinical value of AI tools, paving the way for their seamless integra-
tion into clinical practice. As the implementation of AI advances, the inclusion of novel
biomarkers will further enhance the role of DP as a crucial diagnostic tool in modern
healthcare. The digital IS can be implemented by integrating image analysis software,
specifically web-based software, that automatically quantifies immune cell infiltration in
digital images, providing objective data to support clinical decision-making. In particular,
the implementation of the IS in a digital workflow can vary depending on the system setup
and preferences of the pathology department. It can be automatically generated alongside
other diagnostic data or retrieved on demand by pathologists when needed for further
analysis or decision support. The latter depends on factors such as the capabilities of the
digital system, institutional protocols, and the preferences of pathologists and clinicians.

3. Discussion

DP outperforms traditional pathology practices by providing enhanced accuracy and
facilitating remote collaboration among pathologists. In immuno-oncology, the integration
of AI has been proven crucial for deciphering complex mechanisms within the TME,
significantly impacting drug development.

In clinical settings, AI applications can also support oncologists in making person-
alized treatment plans, by improving diagnostic, prognostic, and predictive decision in
cancer treatment.

IS is a DP approach that revolutionized clinical pathology by recognizing the immune
response as a potent biomarker in cancer. IS demonstrated strong reproducibility, robust-
ness, and standardized prognostic performance in assessing adaptive immune response
in CRC. IS can also enhance diagnostic accuracy and classify patients based on immune
parameters. Unlike visual assessment, IS-driven quantification of CD3+ and CD8+ cells on
digital slide sections minimized the risk of patient misclassification [90], ensuring precise
and consistent results in cancer diagnosis and prognosis.

Thus, IS demonstrated robustness while visual assessments lacked consistency [90].
As previously shown, the visual misclassification in pathology could lead to inaccurate
prognosis and treatment decisions. This underscored the significant potential of the quan-
titative DP in clinical practice [89,90]. The visual assessment of TILs on H&E slides from
CRC patients exhibited low concordance among pathologists [89,90]. Moreover, training
pathologists did not significantly improve agreement, emphasizing the complexity and
subjectivity of traditional pathology approaches. Additionally, misclassifying patients
through visual pathology has profound clinical implications. For instance, misidentifying
stage II CRC patients with high IS as low risk could lead to inadequate monitoring and
treatment [90]. Conversely, misclassifying high IS stage II CRC patients as low risk might
result in the administration of unnecessary chemotherapy [90].

Recently, the immune response criterion has gained large interest and was incorporated
into the 5th edition of the WHO classification of digestive tumors, where it is regarded
as an essential and desirable biomarker. Additionally, IS obtained a certificate from the
CLIA program to perform testing on human specimens. IS has also found its way into
the 2020 European Society for Medical Oncology (ESMO) guidelines and the 2021 Pan-
Asian adapted ESMO Clinical Practice Guidelines [111,112], to enhance prognosis and
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consequently fine-tune the decision-making process for chemotherapy. While it has not
been included in the National Comprehensive Cancer Network® (NCCN®) guidelines yet,
IS has proven to be a potent biomarker for predicting cancer recurrence, offering a novel
approach in cancer treatment.

4. Conclusions

AI and computational biology advancements hold the potential to revolutionize cancer
patient care, improving diagnosis, drug development, and precision medicine. Standard-
ized IS has proven superior to visual assessments by expert pathologists in predicting risk
of relapse [89,90]. This highlights the importance of implementing DP in clinical practice for
personalized treatment of colon cancer patients and potentially other cancer types [89,90].
Given the clinical impact of IS and its prognostic significance in shaping cancer treatment
strategies, its integration into routine practice will potentially contribute a significant stride
in the cancer treatment field.

5. Patents

JG has patents associated with immune prognostic biomarkers and immunotherapies.
CB is the co-inventor of a patent US20180322632A1 licensed to Ventana Medical Systems.
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