
Rekadwad et al. BMC Microbiology          (2024) 24:162  
https://doi.org/10.1186/s12866-024-03295-4

RESEARCH

A culture‑independent approach, supervised 
machine learning, and the characterization 
of the microbial community composition 
of coastal areas across the Bay of Bengal 
and the Arabian Sea
Bhagwan Narayan Rekadwad1,2*, Yogesh Shreepad Shouche2,4 and Kamlesh Jangid3 

Abstract 

Background  Coastal areas are subject to various anthropogenic and natural influences. In this study, we inves-
tigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing 
on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the dif-
ferences between these coastlines: The Bay of Bengal’s shallower depth and lower salinity; upwelling phenomena 
due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants 
and debris.

Results  The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differ-
ences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis 
indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, 
random forest regression, and supervised machine learning models classification confirm the diversity of the microbi-
ome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. 
Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for fur-
ther study.

Conclusion  Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal 
areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities 
and climate variations on biology of coastal ecosystems and biodiversity.

Keywords  Amplicon sequencing, Microbial composition and function, Coastal marine microbiome, Metagenomics, 
Operational taxonomic unit, Supervised machine learning

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Microbiology

*Correspondence:
Bhagwan Narayan Rekadwad
rekadwad@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-024-03295-4&domain=pdf


Page 2 of 20Rekadwad et al. BMC Microbiology          (2024) 24:162 

Background
Coastal marine habitats are critical to the health of the 
environment and the economy as a whole. These include 
things such as providing habitat, recycling nutrients, 
protecting seashores, and safeguarding potential fish-
ing zones [1]. Similarly, forest cover is crucial as a car-
bon sink, enabling carbon rhizodeposition back into the 
environment [2]. These ecosystems provide a variety of 
ecological, economic, and social benefits, such as habitat 
and biodiversity, climate regulation, coastal protection, 
food production, recreational activities, and a significant 
source of income for local economies through tourism [3, 
4]. The health and services provided by these ecosystems 
are intrinsically tied to the microorganisms that reside in 
them, for example, pollution cleanup, disease, and drug 
discovery [5, 6]. The coastal marine microbiome is always 
active in critical habitats, flora, and fauna, such as cor-
als, sponges, macroalgae, seagrasses, mangroves, and 
saltmarshes. These species are responsible for the stabil-
ity of ecosystems [7]. Furthermore, because the health 
of coastal marine ecosystems is dependent on these 
creatures that create habitat, scientists have recognized 
the need to study macroorganisms and their microbi-
omes as a unified biological unit [8, 9]. As a result, sub-
stantial studies have been conducted in recent years on 
how microbiomes affect the phenotypic, physiologic, 
and developmental characteristics of the host [10–12]. 
Although we now have a better understanding of sev-
eral fundamental concepts in coastal marine microbial 
ecology, coastal microbiome research is still in its early 
phases, particularly with regard to holobionts. This is 
especially true when contrasted to other domains of 
microbiome research, such as the human microbiome 
[13]. There are numerous unsolved questions at the 
time, making it difficult to establish how microbial pro-
cesses affect the ecology of these habitats, both now and 
when the environment evolves in the future. Therefore, 
it is clear that we need to set priorities and come up with 
important questions for future research that will help us 
determine how microbial processes truly affect the bio-
sphere and the health of coastal marine ecosystems [7, 
14, 15].

A coastal-marine environment possesses a unique 
microbial community composition under particular envi-
ronmental conditions. It tends to change with the fluctu-
ating concentration of elements but remains steady with 
the physical and chemical nature of matter [16, 17]. The 
decrypted microbial diversity of the soil would act as a 
representative microbial pool for the entire region [18]. 
Marine microorganisms play a pivotal role in the ecosys-
tem’s biogeochemical cycle [19]. These cycles involve the 
movement of nutrients and other substances between 
the ocean and the atmosphere as well as the movement 

of these substances within the ocean itself [20]. One 
important way that marine microorganisms contribute 
to biogeochemical cycles is through the process of pho-
tosynthesis. Many types of marine microorganisms, such 
as algae and cyanobacteria, are able to capture energy 
from sunlight and use it to convert carbon dioxide into 
organic matter through primary production, which 
supplies nutrition to microorganisms [21, 22]. Marine 
microorganisms also play a role in carbon sequestration 
and regulate carbon sinks [23]. In addition to these roles, 
marine microorganisms are also involved in the cycling 
of other important nutrients, such as nitrogen and phos-
phorus, which are essential for the growth of plants and 
other organisms. Hence, they are an important part of 
global biogeochemical cycles [19, 24, 25]. Moreover, the 
existing coastal microbial composition is often correlated 
with the carbon–nitrogen recycling and productivity of 
the ocean, which is a critical criterion for justifying the 
health of a coastal ecosystem [26–29].

Annual precipitation, climate change, and natural 
and artificial disasters accelerating loss of native micro-
bial communities and dysfunctional balance in an eco-
system [30]. Determining the connection between the 
microbiome composition of coastal and plains areas is 
crucial [14] because it displays clear patterns that high-
light the effects of pollution. In our paper, a microbial 
community analysis from coastal areas and selected 
forests was carried out. These include long-term obser-
vations of changes in coastal areas and certain plains, 
culture-dependent soil microbiome analysis, high-
throughput amplicon sequencing of environmental 
DNAs, and statistical analyses. India covers a large geo-
graphic area in South Asia; therefore, changes in these 
large geographical areas are substantial over a period 
of time and are either impacted or governed by recrea-
tional activities and domestic and industrial pollution. 
We considered these factors during the assessment of 
the soil microbiome using culture-independent, super-
vised machine-learning and culture-dependent meth-
ods to provide valuable insights into the structure and 
function of microbial communities and identify new 
taxa over a long period of time. Thus, the study on com-
parative microbial analysis of coastal regions, Andhra 
Pradesh vs. Goa, examines the microbial compositions 
of coastal areas in Andhra Pradesh (AP) and Goa (GA), 
analyzing the impact of geographic and environmental 
factors. The hypothesis suggests that factors such as the 
Bay of Bengal’s characteristics, upwelling, and strong 
tidal currents influence microbial communities differ-
ently in AP and GA. Additionally, the study suggests 
that variations in temperature, soil type, and vegetation 
coverage have an impact on these differences in micro-
bial diversity.
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Material and methods
Sampling site and sample collection
The coastal areas along the Arabian Sea and the Bay 
of Bengal were observed for various anthropogenic 
activities and pollution from 2014 to 2017. Based on 
firm observations of the coastlines of nine states (West 
Bengal, Odisha, Andhra Pradesh, Tamil Nadu, Kerala, 
Karnataka, Goa, Maharashtra, and Gujarat, from east 
to west), two states, namely, Andhra Pradesh (AP) 
and Goa (GA) states of India, were selected across the 
coastal border of mainland India. AP and GA states are 
situated exactly opposite each other, i.e., sampling sites 
on coastlines of the Bay of Bengal (from here, Bay) and 
the Arabian Sea (from here, ASea) are parallel to each 
other. A total of 80 km of sampling sites were chosen, 
and coordinates were chosen for composite sampling 
[31] on the coastlines of AP and GA states (Fig. 1, Video 
1). Five sampling sites were chosen for sample collec-
tion in each coastal region. The sampling points were 
chosen in such a way that sampling point 1 on the Bay 
should be at approximately the same latitude as sam-
pling point 1 on the ASea. The distance between any 
two sampling sites was approximately 20 km. Metadata 
from each sampling site were collected. Postmonsoon 
soil samples were collected in October 2017 from the 
coastlines of GA, i.e., Colva beach (labeled GCVB01 to 
06), Chicalim (GCCL01 to 06), Goa University-Oxdel 
or Oxdel (GGUO to 06), Calanguate (GCLG to 06), 
and Mandrem (GMDM01 to 06). Similarly, samples 
from Pallepalem (APG01 to 06), Ammanbrolu-Kanu-
parthi (AMB01 to 06), Kothapatanam (AKPT01 to 06), 
Ethamukkala (AEMK01 to 06), and Ullapalem (AUP01 
to 06) in AP were collected. Six control samples from 
the analysis were collected at border tropical decidu-
ous forests in Nanded District, Maharashtra (from 
here, Forest), labeled Met (KVRF01), Kurali (KVRF02), 
Ghampur (KVRF03), Rampur (KVRF04), Korta 
(KVRF05), and Pandara Phata (KVRF06). A composite 
sampling method [31] was adopted for sample collec-
tion. Ten cm of soil core was collected multiple times 
by avoiding the humus layer, packed in Nasco Whirl–
Pak sampling bags (PW390, HiMedia Laboratories), 
and transported to the laboratory under refrigerated 
conditions using dry ice. The maximum temperature 
recorded during transportation was 5 °C. Samples were 

subjected to immediate downstream processing, such 
as cleaning, pH measurement, metagenome extraction 
and isolation of microorganisms.

Whole DNA extraction samples and 16S rRNA amplicon 
sequencing
The whole metagenome was extracted from 66 samples 
using a Qiagen DNeasy Power Soil Kit (Cat No. 12888-
100; 100 preparations) according to the manufacturer’s 
instructions. A total of 250  mg of soil was used for the 
extraction of the whole metagenome, i.e., environmental 
DNA (eDNA), from each sample separately. The eDNA 
extraction was confirmed using gel electrophoresis, and 
the DNA quality was measured using a NanoDrop 2000 
(Thermo Fisher Scientific, USA), followed by fluoro-
metric quantification using a Qubit (Thermo Fisher Sci-
entific, USA) dsDNA HS assay kit. Then, the extracted 
DNA was used to create an amplicon library. The V4 
region-specific primers (forward 5’ GTG​CCA​GCMGCC​
GCG​GTAA 3’ and reverse 5’ GGA​CTA​CHVGGG​TWT​
CTAAT 3’) [32, 33] and the TaKaRa bacterial 16S rDNA 
PCR Kit Fast (800) (TaKaRa Bio Inc; Cat. # RR182A) were 
used to amplify the 16S gene. Prior to polymerase chain 
reaction (PCR), extracted genomic DNA was diluted to a 
concentration of 12.5 ng/L. The Applied Biosystems TM 
96-Well Thermal Cycler was programmed for PCR using 
the following parameters: initial denaturation at 95 °C for 
3 min; 25 cycles of denaturation at 95 °C for 30 s; anneal-
ing at 55 °C for 30 s; and extension at 72 °C for 30 s; and 
final extension at 72 °C for 5 min. The PCR results were 
examined for amplification on an agarose gel.

Following amplification, the products were cleaned 
with AMPure XP beads (A63882, Beckman Coulter, 
Inc.), and library preparation was performed using 
the NextraXT DNA Library preparation kit (Illumina, 
USA) according to the manufacturer’s instructions. 
To obtain final libraries, final clean-up was conducted 
using AMPure XP beads, which were then exam-
ined for fragment size distribution using TapeStation 
(5067-5582, Agilent Technologies) and quantified using 
Qubit DNA (Q32854, Thermo Fisher Scientific) prior 
to sequencing. The 16S rRNA gene amplicon libraries 
were sequenced on an in-house Illumina MiSeq plat-
form using paired-end 2 × 250 bp chemistry [34].

(See figure on next page.)
Fig. 1  Sampling sites show precipitation in the year 2017. It was recorded that the east coast (approximately 75–100 percent) received more 
rainfall than the west coast (approximately 100–200 percent) of India. Samples collected from a) Andhra Pradesh’s coastal area were mostly sandy 
agricultural land, lagoons, and salterns; b) Goa’s coastal area was mostly hilly, and beaches possessed soil, rocks, and sand; and c) the tropical 
deciduous forest hilly area possessed black soil and Rocky Mountains (Adopted and modified from Source: National Centers for Environmental 
Information (NCEI) https://​www.​ncei.​noaa.​gov/ and Google Earth (https://​earth.​google.​com/))

https://www.ncei.noaa.gov/
https://earth.google.com/
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Fig. 1  (See legend on previous page.)
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High‑throughput sequencing data analysis using in‑house 
bioinformatics pipelines
Demultiplexing and denoising in DADA2 and generation 
of the feature table
Pair-end raw read quality was evaluated with the FastQC 
[35] tool. Validation of the metadata mapping file was 
performed using the Keemei tool for standalone Quan-
titative Insights Into Microbial Ecology 2 (QIIME2) 
(http://​QIIME2.​org) of amplicon sequencing data 
[36–38]. The 16S rRNA gene fastQ forward and reverse 
reads were processed using QIIME2 version 2023.5 on 
the macOS M2 Pro M2 platform. QIIME2 was favored 
for analysis over mothur because it offers more dynamic 
visualization options  [37]. Mothur is more concerned 
with data generation. Moreover, the inbuilt DADA2 pipe-
line in QIIME2 was used for quality control processing 
and to filter any phiX reads and chimeric sequences. The 
inbuilt dada2 tool in QIIME2 denoised and removed low-
quality regions of the sequences. Herein, high-quality 
bases equal to Q30 (the probability of an incorrect base 
call is 1 in 1000 and the inferred base call accuracy is 
99.9%) were observed around position 250 bases; thus, 
sequences were truncated at 250 bases. For each ampli-
con dataset, the error rate was computed. Each data-
set was a sequence variant inferred after dereplicating 
identical readings. Following this, paired-end reads were 
combined, and chimeras were eliminated. After quality 
filtering, the resulting data were visualized and summa-
rized for the number of sequences associated with each 
sample and with each feature. The feature table generated 
in QIIME2 is called a higher-resolution amplicon variant 
table, which is analogous to the traditional operational 
taxonomic unit (OTU) table. All sequences were rare-
fied to an even sequencing depth of 10,000 sequences 
per sample to correct for unevenness between samples. 
Negative control samples were not included in the data 
analysis because they did not contain suspected contami-
nants from sampling or PCR amplification.

Core‑metric, alpha and beta diversity analyses
Alpha and beta diversity analyses were computed by 
applying related statistical tests, resulting in the genera-
tion of interactive visualizations. First, the core-metrics-
phylogenetic method was used to rarefy the feature table 
o that each sample had the same number of features at 
the same rarefaction depth. This will help to compute 
several metrics for alpha (Shannon’s diversity index, 
observed features, Faith’s phylogenetic diversity, and 
evenness or Pielou’s evenness) and beta (Jaccard dis-
tance, Bray‒Curtis distance, unweighted UniFrac dis-
tance, and weighted UniFrac distance) diversity and to 
generate principle coordinate analysis (PCoA) plots using 

Emperor for each of the beta diversity metrics. Permuta-
tional multivariate analysis of variance (PERMANOVA) 
in QIIME2 calculated differences between microbial 
communities (beta diversity) based on phylogenetic 
data displayed on the PCoA plots. To test hypotheses 
about the differences between groups of data, statistical 
validation of the analyzed results was performed using 
ANOVA in QIIME2. In the context of analyzing results 
with QIIME2, ANOVA can be used to test whether 
there are significant differences in the microbial com-
munity composition between different samples or groups 
of samples. For example, ANOVA could be used to test 
whether there are significant differences in the types and 
abundances of microbes present in samples collected 
from different locations or under different conditions. 
Performing statistical validation of the analyzed results 
using ANOVA in QIIME2 helped to ensure the reliability 
and robustness of the results. It helps determine whether 
any observed differences between groups are statistically 
significant and are not due to random variation or other 
sources of error. This is an important step in the analysis 
of microbial community data, as it helps to ensure that 
the conclusions drawn from the data are reliable and sup-
ported by the evidence.

Alpha diversity rarefaction
To explore alpha diversity as a function of sampling 
depth, optionally controlled minimum sampling depth 
with --p-min-904 and maximum sampling depth with 
–p-max-95879 were selected, and diversity metrics were 
computed for all samples in the tables. With --p-itera-
tions, the number of rarefied tables calculated at each 
sample depth was regulated. Samples can be grouped 
based on metadata collected at the time of sampling, 
which results in the visualization of features in each spe-
cific group, such as area, place, vegetation, and tempera-
ture, with parameters provided in the sample metadata. 
Average diversity values were plotted for each sample at 
each sampling depth.

Taxonomic analysis
The taxonomic composition of each sample in rela-
tion to metadata was calculated by assigning taxonomy 
to the sequences from feature data using the QIIME2 
artifact feature-classifier classify-sklearn. A pretrained 
Naive Bayes classifier and the q2-feature-classifier plugin 
(trained on the Greengenes 13_8 99% OTUs) with 250 
bases from the V4 region of the 16S rRNA were applied 
to our sequence data and generated a visualization of the 
mapped taxonomy. The taxonomic composition of sam-
ples with interactive bar plots was visualized on QIIME2 
View (https://​view.​qiime2.​org/).

http://QIIME2.org
https://view.qiime2.org/
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Alignment of sequences using MAFFT and phylogeny using 
FastTree
A phylogenetic tree was constructed from features using 
the q2-phylogeny artifact (align_to_tree_mafft_fasttree) 
action without sacrificing scalability in QIIME2. MAFFT 
was used to remove highly variable positions from a 
multiple sequence alignment so that an unrooted phylo-
genetic tree could be made using qiime phylogeny fast-
tree artifact. Finally, a root will be added to the unrooted 
tree. The final unrooted phylogenetic tree will be used for 
analyses that we perform next, specifically for comput-
ing phylogenetically aware diversity metrics. The gener-
ated tree files were viewed using Interactive Tree of Life 
v6 [39].

Phylogeny with Empress
To confirm the taxonomic categorization made in former 
steps, analysis with Empress was carried out to investi-
gate the hierarchical relationships between features in 
a dataset. Empress provides both novel features and 
functionality [40]. Trees of amplicon sequence variants 
(ASVs) or operational taxonomic units (OTUs) were cre-
ated and visualized.

Deicode ordination
To test high levels of sparsity, DEICODE (a form of 
Aitchison Distance) was performed. It offers a robust 
and relatively simple way to interpret compositional PCA 
where zero values do not influence the resulting ordina-
tion, i.e., compositional biplots. These biplots were visu-
alized in ‘QIIME2 View’ through Emperor [41, 42].

Random forest regression and supervised machine learning 
model
Supervised machine learning approach was used to 
discriminate the diversity of samples according to the 
microbiological compositions of the samples. We have 
provided a benchmark comparison of supervised learn-
ing classifiers and regressors that have been built in 
scikit-learn, which is a machine learning toolkit based 
on the Python programming language. In addition, we 
introduce q2-sample-classifier, a plugin for the QIIME2 
microbiome bioinformatics platform that makes it easier 
to apply scikit-learn classifiers to microbiome data. We 
developed the q2-sample classifier. The models of ran-
dom forest, additional trees, and gradient boosting per-
form the best in regard to supervised classification and 
regression of soil microbiome data [43].

Isolation and characterization of aerobic heterotrophic 
bacteria
Selected samples were used for isolation of hydrocarbon 
and salt-resistant aerobic heterotrophic bacteria [44, 45] 

on minimal media, R2A media, mannitol salt agar, Zobell 
Marine Agar, sea water agar, nutrient agar, Luria–Bertani 
agar (HiMedia Laboratories, Thane), and soil extract agar. 
Isolation of bacteria was carried out using the spread 
plate and streak plate methods. The first replica of iso-
lated pure cultures was labeled and preserved in a -80 °C 
refrigerator at an in-house culture collection facility, i.e., 
NCMR-NCCS Pune. Colony characteristics, morpholog-
ical features, resistance to antibiotics, hydrocarbon, and 
physiological characteristics were recorded.

Screening and identification of hydrocarbon‑resistant, 
antibiotic‑resistant, and slow‑growing bacteria using 
MALD‑TOF MS
We decided to profile the most typical bacteria that 
emerge as resistant in the presence of either hydrocar-
bons or antibiotics and grow relatively slowly under labo-
ratory conditions on petri plates. Technically, it is very 
difficult to identify all bacteria using traditional biochem-
ical methods due to their high cost and laborious nature. 
Bacterial colonies in triplicate were randomly selected 
from actively growing resistant phenotypes for each sam-
pling site and identified at our in-house MALDI-TOF 
Biotyper (Bruker Daltonics, Germany) laboratory, as 
described in the technique [46]. The colonies were spot-
ted on a MALDI target plate, covered with 1:1 matrix 
solution (alpha-cyano-4-hydroxycinnamic acid - HCCA 
matrix suspended in 50% acetonitrile and 2.5% trifluoro-
acetic acid) and allowed to air dry at ambient tempera-
ture. The samples were run via the Autoflex speed system 
(Bruker Daltonik, Germany), and the resulting spectra 
were utilized to identify bacteria at the species level using 
MALDI Biotyper software 3.0 (Bruker Daltonik, Ger-
many) against the Bruker proteomics reference library. 
Only microorganisms with low confidence or unidenti-
fied based on their MALDI-TOF score were cross vali-
dated using Sanger DNA sequencing [47].

Confirmation of bacterial identity using 16S rRNA gene 
sequencing methods
16S rRNA gene sequencing is a method that is commonly 
used to identify and characterize microbial species. It 
involves amplifying and sequencing a marker gene, i.e., 
the 16S ribosomal RNA (rRNA) gene. The 16S rRNA gene 
is conserved across different species, but there are some 
differences in the sequence of this gene between species, 
which can be used to identify and classify them. Using a 
PCR cycler with the following program: initial denatura-
tion at 94 °C for 4 min, 32 cycles of 94 °C for 25 s, 55 °C 
for 60 s, and 72 °C for 60 s, followed by a final extension 
of 4 min at 72  °C, and storage at 4  °C before being sent 
to an in-house sequencing facility for Sanger sequenc-
ing. Each generated sequence was manually analyzed, 
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and contigs were prepared using DNASTAR Lasergene 
SeqMan bioinformatics tools (https://​www.​dnast​ar.​
com/​softw​are/​laser​gene/). EzBiocloud is a database that 
contains information on the 16S rRNA gene sequences 
of a wide range of microbial species. By comparing the 
sequence of an unknown microbe to the sequences in the 
EzBiocloud database, it is possible to identify the microbe 
at the species level or within a related group of species. 
The resulting contigs were checked for identification 
of the closest taxa using EzBiocloud (http://​www.​ezbio​
cloud.​net/).

Results and discussion
The results showed distinct differences in the microbial 
community composition of the 66 composite samples in 
the coastal soil belt, especially between GA and AP, com-
pared with the control (forest).

Sample sites and highlights of pollution, anthropogenic 
activities, and recreational activities in coastal areas
Based on the literature and results, it was disclosed that 
climatic conditions on the two different coastlines are 
entirely different in terms of water quality and salinity, 
soil and sand appearance, geographic locations, intrusion 
of waters, and the natural organization of coastal areas 
in AP and GA. There are three reasons we discovered 
over the span of 5 years of observation. First, Bay is a sea 
located to the east of the Indian subcontinent and north-
west of the Indonesian archipelago. It is an important 
part of the northeastern Indian Ocean and is connected 
to the ASea to the west (see INCOIS India, incois.gov.in). 
The Bay is on average 470 feet shallower than ASea [48]. 
The reduced depth of the Bay may have significant rami-
fications for the marine ecology. Net primary produc-
tion (NEP) in the sea, for instance, is equal to the gradual 
burial of organic matter minus the rate at which organic 
materials enters continents [49]. This indicates that the 
majority of organic matter tends to migrate into the deep 
ocean rather than settling in shallower waters like the 
Bay, which may have an impact on the microbial compo-
sition at the deposit destination and coastal ecosystems.

Moreover, rainwater gathered in the pan of the Bay of 
Bengal dilutes it and has a natural tendency to flow from 
the east side to the west side [50, 51] i.e., toward Goa 
(Fig. 2a). This indicates that salinity of the Bay is reduced 
due to displacement seawaters. Rengarajan et  al. [52] 
used 228Ra and 226Ra to study mixing in the surface waters 
of the western Bay of Bengal. They found that 228Ra is a 
good tracer for figuring out how fast low-salinity waters 
in the north and high-salinity waters in the south of the 
western Bay of Bengal mix with each other [52]. This evi-
dence supports our investigation about the movement 
of oil spills and pollutants due to the intrusion of the 

Bay water into the ASea because of desalination and the 
hydrological movement of ocean water.

The second reason for changing coastline charac-
teristics and pollution is the upwelling phenomenon. 
Upwelling is a phenomenon that occurs when cold, 
nutrient-rich water from deeper layers of the ocean rises 
to the surface [56–58]. Upwelling can also occur due to 
the influence of currents and other oceanic processes [59, 
60]. This, in turn, can fuel growth of phytoplankton by 
delivering chemical nutrients [61] and support the entire 
marine food web, as these primary producers provide 
food for a wide variety of animals, including fish, sea-
birds, and large predators such as whales [62–64]. It can 
also have global impacts, as upwelling can influence the 
concentration of carbon dioxide in the atmosphere and 
bring deeply sunk tar balls and heavy hydrocarbon-rich 
water to the surface [65, 66]. This allows the exchange 
of water from the bottom of the ocean to the surface 
(Fig. 2b).

The third reason is high tide. During high tide, the 
level of the ocean rises and can reach higher levels than 
at low tide [67, 68]. This occurs when the gravitational 
pull of the moon and the sun align in such a way that they 
increase the gravitational pull on the Earth’s oceans. As 
the water level rises, it can cover areas of the coastline 
that are normally above water, including beaches, rocks, 
and other structures. As the water level rises during high 
tide, it can also cause waves and currents to strengthen. 
These waves and currents can drag or push objects that 
are on the coastline or in shallow water out to sea [69, 70]. 
The entire coastline of India experiences reverse deposi-
tion at beaches as a result of high tide (see Fig. 2c), which 
drags everything on the sea’s edge and causes move-
ment of everything in and carried by ocean water. We 
have observed that many live sea animals, such as fish, 
squids, conches (shankhas), starfish, octopus, unearthed 
seaweed, algal biomass, and other sunken remnants 
of ships, boats, and similar objects, were dragged and 
deposited on the coast after high tide. Photographic evi-
dence (S Fig. 1) shows that the coastline of ASea is more 
heavily polluted than that of the Bay. Hence, the three 
reasons mentioned earlier support our investigation and 
vice versa. Collected evidence proves that the coastal 
region of Goa was heavily polluted by various pollutants, 
including (a) oil pollution; (b) a stream of domestic waste 
dumping into the ASea at Panjim; (c) and (d) plastic pol-
lution at beaches; and (e) used diapers on beaches. These 
have a huge impact on biodiversity, fauna, and microbial 
flora residing in marine environments and coastal habi-
tats [71]. Visuals show that many marine animals in huge 
numbers were found dead on the coastline of the ASea, as 
mentioned in S Fig. 1: (f ) dead crab; (g) alcoholic bever-
age bottle; (h) dead fish; (i) dead starfish; (j) live octopus; 

https://www.dnastar.com/software/lasergene/
https://www.dnastar.com/software/lasergene/
http://www.ezbiocloud.net/
http://www.ezbiocloud.net/


Page 8 of 20Rekadwad et al. BMC Microbiology          (2024) 24:162 

(k) live jellyfish; and (l) dead and rotting squid. We do not 
find such implications across the AP coastline.

A total of 66 samples were collected from 11 differ-
ent sites in the AP, GA, and forest areas. Samples were 
collected from five sites in the AP with an approximate 
distance of 20 km between the two sample sites. A simi-
lar strategy was applied during the collection of sam-
ples from the GA coast. Sampling sites in the GA on the 
west coast were exactly opposite those in the AP along 

the east coast. Soil samples from the topical deciduous 
were used as control samples for this study. The com-
posite sampling method was adopted for the collection 
of coastal samples (see Fig. 1), as mentioned earlier. Six 
composite samples were collected from each site dur-
ing the morning hours only. Six composite samples 
collected from each sampling site were labeled as fol-
lows: AEMK01-AEMK06, AKPT01-AKPT06, AMB01-
AMB06, APG01-APG06, and AUP01-AUP06 from the 

Fig. 2  Climatic conditions, geographical structure, and reasons for oil pollution along the Bay and ASea coastlines are: a the shallower nature 
of the Bay and dilution by monsoon water cause a decrease in density and salinity of the Bay water, which results in movement towards the ASea; b 
Upwelling causes upward movement of sunken pollutants; and c high tide causes an increase in sea level and drags all pollutants towards beaches 
across the coastline [50, 51, 53–55]
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AP coastline; GCCL01-GCCL06, GCLG01-GCLG06, 
GCVB01-GCVB06, GGUO01-GGUO06, and GMDM01-
GMDM06 from the GA coastline; and K-series: KVRF01-
KVRF06 from forest (see metadata Table 1 and S Fig. 2). 
Soil collected from the AP and GA coastlines was sandy 
or loamy in texture. The color of the soil varies but is 
most commonly black or reddish. However, the soil tex-
ture of the control sample was purely organic, loamy 
and free from pollutants. The environmental tempera-
ture during sample collection was typically warm, with 
an average of 30  °C. Most of the samples were soil, and 
some were beach sand with different colorations (black, 
blackish white, red, reddish, whitish black, sandy white, 
and blackish red). The environmental temperature at the 
time of sampling ranged from 20 °C to 35 °C (AP), 28 °C 
to 35 °C (GA), and 30 °C (Forest). Similarly, the pH of the 
samples was recorded, and most of them were at approxi-
mately neutral pH, i.e., 7.0–8.0 (AP), 7.0–7.5 (GA), and 
6.5–7 9 (Forest). GA was slightly hotter than AP. Forest 
cover, agriculture, and minimal intervention in the natu-
ral ecosystem could be the reasons for the difference in 
temperature across these two coastlines. Moreover, the 
type of soil, temperature, forest cover or vegetation are 
the most influential factors that lead to changes in the 
microbial community composition in the coastal soil. 
Hence, it is necessary to determine community structure 
characteristics and trace genetic variants found in coastal 
soil belts [72]. To decipher, the diversity of the microbial 
community, 16S rRNA amplicon sequencing of the above 
collected samples was carried out, followed by bioinfor-
matics analysis using QIIME2.

Amplicon sequencing of the V4 region and bioinformatics 
analysis
The 16S amplicon sequencing and bioinformatic analy-
sis using QIIME2 revealed features found in 66 compos-
ite samples of environmental DNA. Demultiplexing of 
sequences yielded 91, 25, and 440 operational taxonomic 
units (OTUs) for taxonomic classification with 559607, 
145479.5, 138264, and 3024 OTU maximum, median, 
mean, and minimum values, respectively (S Tables 1 and 
2). Additionally, we removed truncated reads, reads that 
were too short after transcription, and reads that had 
more than the maximum number of ambiguous bases 
during denoising of samples using DADA2 true 91,24,744 
quality reads for taxonomic classification, with an aver-
age of 1,38,253.6 per sample (S Table 3). A feature clas-
sifier sklearn A total of 61,22,782 frequencies contained 
50,480 operational taxonomic units (OTUs) (S Table 4). 
Sequence length statistics and a seven-number sum-
mary of sequence lengths indicate that among more 
than 50,000 OTUs, the mean length is 227.19 ± 3.3 bases, 
with 98% of sequences being 229 bases long. Of the 

total sequences sampled at a depth of 10,000, 98 percent 
of forward sequence OTUs and 89 percent of reverse 
sequence OTUs were 251 nt long, with 50 percent hav-
ing a median value of 251 nt and median frequency of 
95,879 (S Tables  5 and 6). Box and whisker plots of the 
number of OTUs per sample indicate the possibilities of 
diverse microbial communities in each sampling zone. 
Interactive OTU plots were generated using a random 
sampling of 10,000 out of 9,125,440 sequences without 
replacement. This position (251) is greater than the mini-
mum sequence length observed during subsampling (248 
bases). As a result, the plot at this position is not based 
on data from all of the sequences, so it should be inter-
preted with caution when compared to plots for other 
positions (S Fig.  3). Multiple taxonomic levels, such as 
phylum and species, were used to classify representative 
sequences from our dataset. Sequences were normalized 
for use in subsequent QIIME2 analyses. A real-time anal-
ysis of the soil microbiome revealed that a total of 59,664 
(0.97%) features in 66 (100.00%) samples and 650,000 
(10.62%) features in 65 (98.48%) samples were retained at 
sampling depths of 904 and 10,000, respectively (S Fig. 4, 
S Tables 7.1 and 7.2). Understanding coastal ecosystems 
remains a challenging task due to frequent changes in 
climatic conditions, the exchange of soil‒water microbi-
omes, and the impact of pollutants, especially oil spills 
and hazardous recalcitrant compounds.

The q2-diversity plugin inferred plugin core-metrics-
phylogenetic rarefied feature table and MAFFT tools 
insightful phylogenetic FastTree (Fig. S5a and b). It was 
seen that most of the circular rooted and unrooted trees 
have a high number of frequencies that cause related 
child nodes to group together on sister nodes. Taxonomy 
was automatically assigned using the Genome Taxonomy 
Database (GTDB). Moreover, soil from GA, AP, and for-
est areas harbors bacterial phyla from Candidatus Phyla 
Radiation (CPR). In alpha diversity analysis, Pielou’s 
evenness showed that microbial communities inhabit-
ing samples from GA (average Pielou evenness = 0.94) 
were more diverse than those from the AP coast (aver-
age Pielou evenness = 0.96). However, the diversity in 
the forest samples was relatively conserved (average 
Pielou evenness = 0.97). The Kruskal‒Wallis test (non-
parametric ANOVA) found a significant high difference 
among all groups. P value indicates (p = 0.001) ndicating 
that the microbial communities inhabiting soil collected 
from GA, AP, and Forest were significantly different (S 
Fig. 6, S Tables 8 and 9). Furthermore, alpha rarefaction 
evidence from Faith PD, observed OTUs, and Shannon 
index values indicates subset selection, and the calcula-
tion of alpha diversity for a randomly selected subset at 
a depth of 904 sequences in each sample confirms that 
sequencing was deep enough and captured most of the 
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Table 1  Metadata of samples collected for 16S rRNA amplicon sequencing and bioinformatics analyses from coastlines of AP and GA, 
and Forest

Area Place Sample type Color Sample ID Coordinates Environ. 
Temp. (oC)

pH

Latitude Longitude

Andhra Pradesh coastline Ethamukkala Soil Blackish white AEMK01 15°22′52.6″ 80°06′10.8″ 30 7

Black AEMK02 15°22′52.5″ 80°06′11.1″ 32 8

AEMK03 15°22′52.1″ 80°06′11.4″
AEMK04 15°22′51.9″ 80°06′10.3″ 32 7

AEMK05 15°22′51.5″ 80°06′10.0″ 30 7

AEMK06 15°22′50.4″ 80°06′09.7″ 32 7.5

Kothapatnam Soil Black AKPT01 15°26′26.3″ 80°08′45.3″ 25 8

AKPT02 15°26′26.0″ 80°08′45.8″
AKPT03 15°26′25.1″ 80°08′45.8″ 7.5

AKPT04 15°26′09.9″ 80°10′40.0″
Blackish white AKPT05 15°26′09.2″ 80°10′38.3″
Red AKPT06 15°26′09.2″ 80°10′38.4″ 7

Ammanbrolu 
and Kanuparthi

Soil Reddish AMB01 15°35′39.8″ 80°08′43.4″ 20 7.5

AMB02 15°35′40.0″ 80°08′42.9″
AMB03 15°35′40.5″ 80°08′43.9″

Whitish AMB04 15°34′44.4″ 80°13′06.2″ 23

AMB05 15°34′23.4″ 80°13′20.4″
Whitish black AMB06 15°34′23.5″ 80°13′19.9″ 8

Pallepalem Sandy soil Black APG01 15°41′22.4″ 80°16′56.0″ 20 8

Sandy white APG02 15°41′22.7″ 80°16′57.0″ 7.5

Black APG03 15°41′22.0″ 80°16′56.7″
Beach sand Sandy white APG04 15°41′17.3″ 80°17′04.8″ 8

Soil Whitish black APG05 15°41′32.5″ 80°15′54.03″
Whitish black APG06 15°41′32.2″ 80°15′54.3″ 7.5

Ullapalem Soil Light black AUP01 15°14′15.0″ 80°03′05.6″ 35 7

AUP02 15°14′15.1″ 80°03′04.3″
Reddish AUP03 15°14′14.7″ 80°03′05.0″
Yellowish AUP04 15°14′13.5″ 80°03′05.6″ 7.5

AUP05 15°14′13.4″ 80°03′05.6″
Black AUP06 15°14′12.3″ 80°03′05.8″ 8
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Table 1  (continued)

Area Place Sample type Color Sample ID Coordinates Environ. 
Temp. (oC)

pH

Latitude Longitude

Goa coastline Chicalim Soil Black GCCL01 15°23′56.4″ 73°50′50.0″ 25 7

GCCL02 15°23′55.9″ 73°50′49.9″

GCCL03 15°23′55.5″ 73°50′49.9″

Blackish GCCL04 15°23′52.2″ 73°50′51.6″ 7.5

Black GCCL05 15°23′90.2″ 73°54′78.5″

GCCL06 15°23′90.2″ 73°54′81.4″

Calanguate Soil Reddish black GCLG01 15°31′54.1″ 73°45′48.7″ 32 7

GCLG02 15°31′54.5″ 73°45′48.3″

GCLG03 15°31′54.7″ 73°45′49.0″

GCLG04 15°31′53.1″ 73°45′49.2″

Red GCLG05 15°31′53.9″ 73°45′49.0″

GCLG06 15°31′54.0″ 73°45′48.4″

Colva Beach sand Sandy white GCVB01 15°16′40.5″ 73°54′44.5″ 29 7

GCVB02 15°16′42.0″ 73°54′47.3″ 7.5

GCVB03 15°16′42.5″ 73°54′47.7″ 7

GCVB04 15°16′42.4″ 73°54′48.0″ 7.5

GCVB05 15°16′40.5″ 73°54′48.2″ 7

GCVB06 15°16′41.4″ 73°54′47.2″

Oxdel Soil Blackish red GGUO01 15°27′18.2″ 73°50′04.2″ 25 7

Red GGUO02 15°27′18.9″ 73°50′09.8″

Blackish GGUO03 15°27′18.8″ 73°50′15.1″

GGUO04 15°27′14.2″ 73°50′19.0″

GGUO05 15°27′10.7″ 73°50′19.0″

GGUO06 15°27′08.9″ 73°50′20.9″

Mandrem Soil Reddish GMDM01 15°39′59.1″ 73°42′54.0″ 28 7

Black GMDM02 15°39′59.2″ 73°42′54.9″

Reddish GMDM03 15°40′20.5″ 73°42′35.6″

Blackish red GMDM04 15°39′37.1″ 73°44′38.2″

GMDM05 15°39′36.2″ 73°44′38.4″

GMDM06 15°39′36.5″ 73°44′37.5″
Forest Met Soil Black KVRF01 19°38′22.8″ 77°55′18.1″ 30 6.5

Kurali KVRF02 19°38′24.5″ 77°58′10.7″ 7

Ghamapur KVRF03 19°38′22.3″ 78°58′10.6″
Rampur KVRF04 19°37′44.2″ 78°00′02.9″
Korta Yellowish black KVRF05 19°37′47.0″ 78°03′72.7″ 7.5

Pandhra Phata Black KVRF06 19°38′27.9″ 78°04′39.8″ 7
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diversity from the collected samples. Alpha diversity 
increased significantly in GA compared to AP and For-
est as measured by the Simpson index (P 0.001) (S Fig. 7, 
and S Tables  10.1-10.3). Bray‒Curtis, Jaccard distance, 
unweighted and weighted UniFrac, and permutational 
multivariate analysis of variance (PERMANOVA) tests 
were used to analyze the overall bacterial community 
composition between samples (AP, GA, and forest) and 
found significant differences between communities (p 
value = 0.001 (area) and p value = 0.002 (description of 
soil)). Principal component analysis (PCoA) reveals a 
consistent structure and distribution pattern across a 
wide variety of biologically diverse communities. This 
pattern can be seen across all of the communities in dif-
ferent PCoAs (Fig. S8a–d and S Table 11). Samples taken 
from two distinct environments, namely, the AP and the 
forest, came together to form a distinct cluster. On the 
other hand, samples taken from the GA area have been 
divided into four groups, one of which has some similari-
ties with the samples taken from the AP and the forest. 
Unweighted UniFrac, which rates differences from 0 to 1 
(0 being no difference and 1 being a complete difference), 
indicates a significant difference. In contrast to the dif-
ference between the AP and forest communities, which 
is almost the same at 0.65 0.05 (S Fig.  8e), the diversity 
difference between the GA communities ranges from 
0.85 to 9.0. Additionally, another beta diversity plot with 
a description of the soil supports earlier findings that 
soil from the GA area supports more diverse microbial 
communities than AP and Forest, including blackish, 
blackish-red, sandy-white, reddish-black, and reddish. 
Microbial communities from the AP and forest, how-
ever, were more conserved or resembled one another (S 
Fig. 8f ). Additionally, Aitchison distance was used to find 
high levels of sparsity in the deicode ordination and sup-
ported the results of beta diversity analysis (Fig. 3). The 
fact that the compositional biplot log ratio of the GA 
samples points in a different direction than those of the 
AP and Forest samples shows that the beta diversity fea-
tures were correct.

The taxonomic analysis of communities inhabit-
ing coastal soil and forest environments comprised a 
total of 68 phyla. Proteobacteria (32%), followed by 
Acidobacteria (18%), Actinobacteria (11%), Plancto-
mycetes (6%), Bacteroidetes (7%), Verrucomicrobia 
(6%), Chloroflexi (6%), Thaumarchaeota (3%), Firmi-
cutes (2%), Gemmatimonadetes (2%), Robubacteria 
(1%), Latescibacteria (1%), Elusimicrobia (1%), and 
Nitrospirae (1%), which contributed up to 97% of the 
total community of the soil samples. Within the phy-
lum Proteobacteria, Gammaproteobacteria (41.092%) 
was the most abundant class, followed by Alphapro-
teobacteria (37.594%), Deltaproteobacteria (21.21%), 

Betaproteobacteria (0.103%) and Zetaproteobacteria 
(0.00193%). were detected at relatively lower abun-
dances (< 1%) in the samples (Fig. 4a). Microorganisms 
are the most ancient constituents of the ecosystem in 
the Earth’s surroundings [73] and are subjected to fre-
quent changes or modifications. Changes in the chemi-
cal compositions of the natural environment are always 
triggered by human-made activities, which may not 
have an adverse impact on higher organisms but defi-
nitely change the native microbiome composition [74, 
75]. This indicates that the bacterial community in soil 
is highly diverse and that there are significant differ-
ences in the community composition between different 
geographical regions. These findings have important 
implications for our understanding of the role of bac-
teria in soil ecosystems and for the development of 
sustainable agricultural practices [76]. Furthermore, 
the relative abundance of taxa at the genus level also 
indicates huge diversity in the case of samples from 
the GA coast, such as GCCL05, GCVB01, GCLG02, 
GGUO03, GMDM01, GCCL06, GMDM02, GGUO05, 
GCLG05, and GCVB02; from the AP coast, such as 
APG02, AEMK04, AMB06, and APG03; and from the 
forest, such as KVRF01 and KVRF06. The acidobac-
terial group Ellin6075 was significantly more preva-
lent in APG03 soil samples (Fig. 4b). Several members 
of Candidate Phyla Radiation (CPR) were detected, 
including Robubacteria (1%) and Latescibacteria (1%), 
contributing to a large diversity of bacteria [76]. The 
EMPress tree of amplicon sequence variants (ASVs), 
which represents evolutionary relationships between 
OTUs, was used to derive the taxonomic hierarchy 
between OTUs. To represent evolutionary dominance, 
Asgardaeota, Elusimicrobia, Proteobacteria, Ther-
moachaeota, Acetothermia, Dependentiae, and Firmi-
cutes were representative phyla. Other bacterial phyla 
that made significant contribution in a huge diversity 
belongs to Acetothermia, AncK6, Armatimonadetes, 
Asgardaeota, Calditrichaeota, Chlamydiae, Crenar-
chaeota, Cyanobacteria, Dadabacteria, Deferribacteres, 
Deinococcus-Thermus, Dependentiae,Diapherotrites, 
Elusimicrobia, Entotheonellaeota, Epsilonbacteraeota, 
Euryarchaeota, Fibrobacteres, Fusobacteria, Gem-
matimonadetes, Halanaerobiaeota, Hydrogenedentes, 
Hydrothermae, Hydrothermarchaeota, Incertae Sedis, 
Kiritimatiellaeota, Lentisphaerae, Margulisbacte-
ria, Modulibacteria, Nanoarchaeaeota, Nitrospinae, 
Omnitrophicaeota, Opisthokonta, Patescibacteria, 
Schekmanbacteria, Spirochaetes, Synergistetes, Teneri-
cutesPhyla such as GAL15, BRC1, CK-2C2, FBP, 
FCPU426, PAUC34f, WOR-1, WOR-2, WS1, WS2, 
WS4 and some unspecified represented a huge number 
of candidatus phyla (Fig. 4a and S Fig. 9).
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Fig. 3  Deicode ordination - Measurement of Aitchison distance to find levels of sparsity in deicode ordination to understand beta diversity analysis
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Random forest regression and supervised machine 
learning model for spotting trend in development 
of microbiome coastal areas
A supervised machine learning method was used to 
examine and spot trends in microbiome data using the 
QIIME2 artifact q2-sample classifier. To select the fea-
tures that provide the highest possible level of prediction 
accuracy, a process known as feature selection is carried 
out. This process makes use of cross-validated recursive 
feature elimination. In addition, regression analysis and 
classification model studies were carried out. The AP 
dataset is the simplest; it can be differentiated clearly on 
PCoA plots and shows significant intrasample similar-
ity between samples from the same area, whereas other 
datasets display a higher spread and can be differenti-
ated from GA and forest samples. The AP dataset is the 
simplest. It can be differentiated visually on PCoA plots, 
as mentioned earlier, and the new confusion matrix plot 
(S Fig. 10) created using random-forest regression. On a 
scale of 0 to 1, 0 indicates diversity, whereas 1 indicates 
uniqueness. Based on these parameters, the overall accu-
racy of the microbiome was 0.9, whereas the baseline 
accuracy was 0.45. The repressor accuracy results for AP 
coastal soil were 0.9, followed by forest at 0.66. On the 
other hand, GA coastal soil has shared diversity closer to 

forest, i.e., 0.33, than AP soil, i.e., 0.033, and vice versa. 
This indicates that GA soil harbors a diverse microbial 
community and is mostly different from AP soil, whereas 
forest soil diversity is more inclined toward AP soil [77, 
78]. Moreover, a machine learning model was applied to 
study classification accuracy. Receiver operating charac-
teristic (ROC) curves are a graphical representation of 
the classification accuracy of a machine-learning model. 
A machine-learning model’s classification accuracy is 
graphically depicted using receiver operating character-
istic (ROC) curves. The ROC curve illustrates, for various 
threshold values, 0.99 for AP and 1 for GA and For-
est. Hence, GA coastal soil has a greater area under the 
curve (AUC), indicating better diversity than AP coastal 
soil (Fig.  5 and b). Forest diversity is steep toward the 
AP coastal soil, confirming the accuracy of the obtained 
results. Hence, the results of the supervised machine 
learning and random forest regression models were vis-
ualized through a heatmap of randomly selected taxa, 
almost all of which represented Candidatus (Fig. 5c). The 
log10 frequency (0–4) of features was normalized and rep-
resents dark blue (0) to light orange (4). The degree and 
direction of the connection is represented by the color 
of each cell; cells with darker colors have greater correla-
tions, whereas lighter hues have weaker correlations [79].

Fig. 4  Taxonomic analyses- Bar plots represents phylum level (a) and genus level (b) distribution of microbial taxa in soil of Goa, A. P. and Forest
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Isolation and identification of heterotrophic bacteria
Culture-based investigations have been carried out for 
further clarification using harsh chemicals and strin-
gent protocols. More than 450 bacteria were isolated 
and screened for their identification using MALDI-TO 
MS in-house at NCMR-NCCS Pune. Based on MALDI-
TOF MS results and resistance profiles, 134 bacteria 
were selected for further confirmation of identifica-
tion. 16S rRNA gene sequence analysis and identifica-
tion using EzBiocloud suggests that isolated strains are 
extremely diverse and possess biotechnological applica-
tions. Inference was derived from characteristics and 
published reports. These taxa were distributed among 
21 different genera, including Achromobacter denitrifi-
cans, Aspergillus quadralineatus, Azohydromonas aus-
tralica, Azotobacter chroococcum, Bacillus filamentous, 
Bacillus marisflavi, Bacillus mycoides, Bacillus pacifi-
cus, Bacillus paralicheniformis, Brevibacterium casei, 
Brvundimonas albigilva, Cellulosimicrobium cellulans, 
Domibacillus indicus, Lysobacter soli, Microbacterium 
telephonicum, Mycobacterium spp. LZMCs, Mycolibac-
terium pallens, Nomomuraea candida, Rhodococcus 
equi, Salinicola salarius, Sphingomonas dessicabilis, 
Staphyllococcus gallinarium, Thalassobacillus hwang-
donitrificans (one strain each), Virgibacillus halodeni-
trficans, Acinetobacter towneri, Bacillus licheniformis, 
Chitinophaga rhizospaerae, Oceanobacillus kimchii 
(two strains each), Bacillus subtilis subsp. stericoris, 
Lysobacter panacisoli (three strains each), Bacillus fir-
mus (four strains), Bacillus aryabhattai (seven strains) 
and Bacillus paramycoides (eight strains). The exist-
ence of huge diversity represented by 21 genera in cul-
ture-based identification shows that collected samples 
were rich in microbial flora, with huge biotechnologi-
cal potential [80, 81]. Metagenome analysis reveals the 
presence of bacteria, like Mycobacterium spp., Vibrio 
spp., Pseudomonas spp., Aeromonas spp., and others, 
are more common and cause bacterial diseases in fish 
[82]. Later, these may be lethal causes for sea food-
borne infections in humans through ingestion [83, 84].

Novel taxa and deposition of 16D rRNA gene sequences 
of heterotrophic bacteria
A few strains were identified as novel strains based on cul-
ture-dependent analysis and sequencing: Chitinophaga 
caseinilyticastrain strain GCCLKN05(OQ975925), Pries-
tia filamentosa strain AMBL002 (OQ975923), Chitin-
ophaga caseinilytica strain MSPCSM02 (OQ975935), 
Bacillus paranthracis strain TYGMDM05 (OQ975939), 
Acinetobacter towneri strain TYGCLG05 (OQ975938), 
Domibacillus indicus strain SEGGUO07 (OQ975936), 
Rossellomorea marisflavi strain GCLG005 (OQ975926), 
Acinetobacter towneri strain TYGCCL04 (OQ975937), 
Thalassobacillus hwangdonensis strain AMBL003 
(OQ975924), Bacillus zanthoxyli strain GCVB002 
(OQ975927), Bacillus mobilis strain GOACSMMS16 
(OQ975934), Bacillus paramycoides strain GOAA7MS06 
(OQ975928), Bacillus velezensis strain GOAAR2A13 
(OQ975931), Bacillus infantis strain GOABTMNBNR19 
(OQ975932), Bacillus paramycoides strain GOAAMS05 
(OQ975929), Bacillus paramycoides strain GOAAR2A07 
(OQ975930), and Bacillus cereus strain GOACSMMS11 
(OQ975933) were identified and shows 96.22, 96.47, 
97.53, 97.94, 98.32, 98.34, 98.35, 98.57, 99.07, 99.16, 
99.37, 99.38, 99.44, 99.65, 99.93, 100, 100% similarity, 
respectively, with standard type strains (Table  2). Thus, 
identification of the 16S rRNA gene using the EzBio-
clud database indicates that GCCLKN05, AMBL002, 
MSPCSM02, TYGMDM05, TYGCLG05, SEGGUO07, 
GCLG005, and TYGCCL04 are novel taxa at least at 
the genus or species level. The DNA sequences of these 
bacteria have been deposited in the NCBI Genebank 
with accession numbers ranging from OQ975923 to 
OQ975939. Identification of novel strains is necessary 
for a number of reasons. First, it can help us to better 
understand the cultivable diversity of the soil microbi-
ome [85, 86]. Second, it can lead to the discovery of new 
enzymes and other biomolecules with potential appli-
cations in biotechnology [87, 88]. Third, it can help us 
to understand the role of bacteria and archaea in soil 
health and nutrient cycling [89–91]. The identification 

(See figure on next page.)
Fig. 5  Receiver Operating Characteristic (ROC) curves - a The ROC curve plots the relationship between the true positive rate (TPR, on the y-axis) 
and the false positive rate (FPR, on the x-axis) at various threshold settings. The line on the top-left corner of the plot indicates GA soil diversity, 
the pink line indicates forest diversity, and the light orange line indicates AP soil diversity. Thus, the top-left corner of the plot represents 
the “optimal” performance position, indicating a FPR of zero and a TPR of one. This “optimal” scenario is unlikely to occur in practice, but a greater 
area under the curve (AUC) indicates better performance. This can be compared to the error rate achieved by random chance, which is represented 
here as a diagonal line extending from the lower-left to upper-right corners. Additionally, the “steepness” of the curve is important, as a good 
classifier should maximize the TPR while minimizing the FPR. In addition to showing the ROC curves for each class, average ROCs and AUCs 
are calculated. “Micro-averaging” calculates metrics globally by averaging across each sample; hence class imbalance impacts this metric. 
“Macro-averaging” is another average metric, which gives equal weight to the classification of each sample. b Scatter plot: Linear regression scatter 
plots (for regression) of predicted and expected classes/values for soil microbiome. c Supervised machine learning generated a heatmap of the top 
100 taxa. All taxa that contributed to the majority of the sequences among the sample belonged to Candadatus Phyla Radiation
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of novel strains is often a challenging task [92, 93]. This 
is because the soil microbiome is extremely diverse, and 
many strains are difficult to culture in the laboratory. 
However, advances in sequencing technology have made 

it easier to identify novel strains. The identification of a 
few novel strains based on culture-dependent analysis 
and sequencing is a significant finding. This suggests that 
the soil microbiome is even more diverse than previously 

Fig. 5  (See legend on previous page.)
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thought and that there are still many novel strains to be 
discovered [94–97]. This finding has important implica-
tions for our understanding of soil health and nutrient 
cycling, and it could lead to the discovery of new biomol-
ecules with potential applications in biotechnology [98].

Conclusion
This study investigated the coastal areas of Andhra 
Pradesh (AP) and Goa (GA) and compared them for the 
presence of pollution and microbiome. Three primary 
reasons for these differences were identified: the shal-
lower depth of the Bay of Bengal leading to different 
water movement patterns, upwelling phenomena influ-
encing nutrient-rich water at the surface, and the impact 
of high tides on coastal dynamics. This study provided 
insights into the pollution levels and microbial diver-
sity of coastal soil. The analysis of amplicon sequencing 
data and bioinformatics tools revealed a diverse micro-
bial community in both regions. GA coastal soil showed 
higher diversity than AP, while forest soil had similarities 
to AP soil. The supervised machine-learning model fur-
ther confirmed the distinction between the three regions 
based on their microbial diversity. Culture-based inves-
tigations resulted in the isolation and identification of 
numerous heterotrophic bacteria from the coastal soil, 
with several strains identified as novel taxa. These find-
ings indicate the richness of microbial flora potential bio-
technological applications in the sampled coastal areas. 
Hence, this study sheds light on the environmental status 
and microbial diversity of coastal regions in AP and GA, 

providing valuable information for further research and 
environmental management efforts.
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