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Abstract: Continuous glucose monitoring is valuable for people with diabetes but faces limitations
due to enzyme–electrode interactions and biofouling from biological samples that reduce sensor
sensitivity and the monitoring performance. We created an enzyme-based electrochemical system
with a unique nanocomposite coating that incorporates the redox molecule, aminoferrocene (NH2-Fc).
This coating enhances stability via electroactivity and reduces nonspecific binding, as demonstrated
through cyclic voltammetry. Our approach enables real-time glucose detection via chronoamperome-
try with a calculated linear range of 0.5 to 20 mM and a 1 mM detection limit. Validated with plasma
and saliva, this platform shows promise for robust metabolite detection in clinical and research
contexts. This versatile platform can be applied to accurately monitor a wide range of metabolites in
various biological matrices, improving patient outcomes.

Keywords: antifouling; glucose biosensor; enzymatic; continuous monitoring; aminoferrocene

1. Introduction

Diabetes prevalence has drastically increased worldwide, with more than half a billion
people affected by this condition [1]. The current prevalence rate of 6.1% places diabetes as
one of the leading causes of death globally [1,2], and it is considered a significant contributor
to other chronic diseases, including heart attack, stroke, and kidney disease [2,3]. Elevated
levels of glucose in the blood, if not recognized early, are extremely life threatening, yet
23% of adults living with diabetes remain undiagnosed in North America [4]. Therefore,
the accurate, reliable, and timely monitoring of glucose from human samples (e.g., saliva,
plasma, blood, etc.) is essential for the prevention and management of diabetes and its
related complications. Although many glucose biosensors based on different transduction
principles have been developed, electrochemical-based glucose biosensors utilizing enzy-
matic sensing currently dominate the market [3,5,6]. These devices harness the inherent
electrochemical properties (e.g., reduction or oxidation capabilities) of metabolites, such as
glucose, to develop systems that can rapidly quantify the target analyte in complex biologi-
cal fluids with high reliability. Most glucose biosensors rely on the enzymatic oxidation of
glucose mainly due to the high selectivity and stability of glucose oxidase (GluOx) [6–8],
because this results in better performances in biological fluids and a longer shelf life than
those of other technologies.

Currently, the rapid quantification of glucose levels from finger-prick blood samples is
achieved using a glucometer, a handheld biosensing electrochemical device that enables reg-
ular monitoring at home. However, several factors, such as deteriorated test strips, reader’s
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imprecision, improper storage, interference from multiple medications, and environmental
conditions, may impact the reliability of these blood glucose measurements [9–12]. In
addition, the sample site may become painful, and wounds from finger-pricks are at risk of
infection due to the requirement for repeated testing [3,12]. Also, these devices utilize a
single-point measurement mode that is not practical for continuous monitoring, which is
required for the optimal detection of hypo/hyperglycemic levels and improved glycemic
control in diabetes patients [10,11]. This is important because glucose levels in blood can be
influenced by factors of intrinsic nature (biochemical reactions) or exogenous origin (diet
or medication).

Continuous glucose monitors (CGMs) that relay glucose levels in real-time have
been developed to overcome these limitations. CGMs can be life changing as they fa-
cilitate more personalized insight into glucose level changes during the day, offering
patients the power to make more informed treatment decisions and prevent episodes of
hypo/hyperglycemia [11,13]. Although many companies have successfully created and
commercialized several CGMs, their application for long-term monitoring, to date, remains
restricted due to inaccuracy at low glucose concentrations, high costs, the short duration of
single implantation, and biocompatibility issues [13,14].

One of the key challenges to obtaining accurate and sensitive real-time measurements
of glucose concentrations in complex biological fluids results from the non-specific binding
of various biomolecules found in the sample matrix, which can interfere with specific signal
detection. For example, biosensors exposed to physiological environments for extended
periods may exhibit a high background current or signal drift that can compromise the de-
tection sensitivity and analytical accuracy [12]. This is because these sensors are constructed
using materials that are prone to passivation by fouling agents (i.e., proteins, amino acids,
lipids, etc.) that form an impermeable layer on the electrode surface, affecting charge trans-
fer kinetics between the target analyte and the electrode surface [15]. This effect discourages
the application of biosensors for continuous monitoring since fouling degrades the sensor
surface, resulting in a low signal-to-noise ratio and reduced sensitivity [12,15]. Therefore,
it is critical to develop methods to address biofouling-related problems to continuously
monitor metabolites, such as glucose, in real time over extended periods.

We have previously addressed the crucial challenge of overcoming signal interference
due to biofouling by developing a novel nanocomposite coating based on the glutaralde-
hyde (GA) crosslinking of conductive nanomaterials, such as reduced graphene oxide
(prGOx), dissolved with bovine serum albumin (BSA) in PBS [16]. This nanocomposite
formulation not only reduces fouling by creating a more hydrophilic surface at the elec-
trode/electrolyte interface, preventing non-specific adsorption, but also offers enhanced
electroconductive properties promoting their electrochemical performance in biological
fluids. The prGOx in the nanocomposite formulation serves as a conductive material that
facilitates electron transfer across the nanocomposite coating to the underlying electrode; it
also provides functional groups required for facile surface modification. We successfully
demonstrated the potential of this antifouling coating on an electrochemical sensor for
single-point measurements of various biomolecules, including IL-6, PCT, CRP, SARS-CoV
NS1, GFAP, and NFL in different biological matrices [17–19]. In the present study, we
demonstrated that a prGOx/BSA/GA nanocomposite coating can be used to construct a
glucose biosensor that addresses the electrode fouling challenges observed in enzyme-based
continuous monitoring systems.

In label-based electrochemical sensors, detection is usually achieved through the
diffusion of redox molecules, such as potassium ferro/ferricyanide, from electrolyte to
electrode surfaces [20]. Although these biosensors are robust and reliable, sometimes
redox probes can contaminate electrode systems, giving rise to non-specific signals, which
could be overcome by functionalizing a stable redox-active functional molecule, such as
a ferrocene derivative [21,22]. Specific recognition between the capture molecule and
target analyte will impede the charge transfer between the immobilized redox probe and
electrode surface, which can be leveraged to analyze the biosensor performance. Several
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research groups have developed biosensing platforms modified with redox mediators to
detect various analytes including glucose [21,22], enzymes, proteins, and nucleic acids [23].
However, these platforms do not address the challenges related to biofouling that must be
eliminated to translate these devices toward successful commercialization.

Here, we explored whether the functionalization of the prGOx/BSA/GA nanocom-
posite coating with a redox-based molecule that has low redox potential and good elec-
trochemical stability can be used to engineer a multifaceted biosensing platform for the
continuous monitoring of glucose in complex biological fluids. Our results describe the
successful fabrication of a redox-embedded nanocomposite sensor and its application for
glucose detection in two clinically relevant biological matrices: saliva and plasma. To
accomplish this, we covalently coupled the redox molecule, aminoferrocene (NH2-Fc; a
ferrocene derivative with NH2 substitution) to prGOx/BSA/GA. NH2-Fc undergoes re-
versible oxidation and reduction reactions (Fc ↔ Fc+) and exhibits good electrochemical
behavior that favors a reagentless determination of target analytes. In our platform, the
NH2-Fc efficiently mediates the enzymatic oxidation of glucose via immobilized glucose
oxidase and retains the activity of an enzyme-immobilized glucose biosensor. Also, the
low redox potential (~0.2 V) of NH2-Fc reduces the background signal from other inter-
fering electroactive species present in biological samples. Through rigorous experimental
evaluations and comparative analyses, we demonstrate, for the first time, the potential of a
NH2-Fc functionalized prGOx/BSA/GA nanocomposite-coated electrochemical sensor for
the continuous monitoring of glucose with high sensitivity and selectivity.

2. Materials and Methods
2.1. Nanocomposite Deposition

Screen-printed carbon electrodes (SPCEs) (DropSens, Metrohm, Riverview, FL, USA)
were cleaned with ethanol (Sigma Aldrich, Burlington, MA, USA), polished with Kimwipes,
and washed with deionized water. The SPCEs were dried, and oxygen plasma-treated at
0.5 mbar and 50% power for 8 min (Zepto Diener Plasma, Diener Electronics, Ebhausen,
Germany). An antifouling nanocomposite coating consisting of pentaamine-functionalized
reduced graphene oxide (prGOx; Sigma Aldrich, Burlington, MA, USA) and bovine serum
albumin (BSA; IgG-Free, Protease-Free; Jackson ImmunoResearch, West Grove, PA, USA)
was prepared in 10 mM phosphate-buffered saline (PBS, pH 7.4) as reported in our previous
work [16]. Briefly, the prepared solution was subjected to tip sonication with a 1 s ON/OFF
pulse at 50% amplitude for 30 min (Q125, QSonica LLC, Newtown, CT, USA), followed
by heating at 105 ◦C for 5 min. The protein-denatured solution was centrifuged (Cen-
trifuge 5418R, Eppendorf, Framingham, MA, USA) at 16.2 rcf for 15 min to remove excess
prGOx/BSA aggregates. A mixture of the prGOx/BSA supernatant solution and 70% glu-
taraldehyde (GA; Sigma Aldrich, Burlington, MA, USA) was prepared in the ratio of 69:1,
applied over the plasma-treated SPCEs, and incubated overnight in a humidity chamber.
The prGOx/BSA/GA nanocomposite-deposited SPCEs were washed the following day
with PBS on a shaker at 500 rpm for 10 min and dried using a slide spinner.

2.2. Fabrication of the Redox-Functionalized Glucose Sensor

The surfaces of the nanocomposite-deposited SPCEs were activated using carbodi-
imide chemistry, wherein 400 mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDC; Thermo Fisher Scientific, Waltham, MA, USA) and 200 mM of N-
Hydroxysuccinimide (NHS; Sigma Aldrich, Burlington, MA, USA) dissolved in 50 mM
2-(N-morpholino)ethanesulfonic acid (MES; Thermo Fisher Scientific, Waltham, MA, USA)
buffer at pH 6.2 were added to the sensor and incubated for 30 min at room temperature.
The SPCEs were then rinsed with MilliQ water and dried before the addition of redox
molecules. Aminoferrocene (NH2-Fc; Sigma Aldrich, Burlington, MA, USA) dissolved in
PBS at a 1 mg/mL concentration was added to the working electrode surface and incubated
for 45 min, and then rinsed with PBS via agitation at 500 rpm for 5 min and dried. Following
the functionalization of NH2-Fc, the working electrodes were selectively spotted with 2 µL
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of an enzymatic solution obtained by mixing glucose oxidase at 80 mg/mL with GA in a
1:1 v/v ratio. The glucose oxidase-immobilized SPCEs were dried overnight at 4 ◦C to let
the enzyme composition adhere to the prGOx/BSA/GA nanocomposite-coated surfaces.
When the electrode surface was completely dry, it was washed gently with PBS and kept
stored at 4 ◦C until use.

2.3. Electrochemical Measurements

All electrochemical measurements were carried out on an Autolab PGSTAT128N
potentiostat (Metrohm, Riverview, FL, USA). Electrochemical impedance spectroscopy (EIS)
was used to characterize the interfacial properties of the electrode surface modification
at each step of the glucose biosensor fabrication. Cyclic voltammetry (CV) was used to
electrochemically characterize the NH2-Fc-functionalized prGOx/BSA/GA nanocomposite
coating and to determine the oxidation/reduction potential of NH2-Fc. The potential for
chronoamperometry measurements used for glucose quantification was obtained from CV
measurements. Calibration curves were built for glucose concentrations between 0 mM
and 50 mM based on chronoamperometry.

2.4. Sample Collection

In this study, saliva and plasma samples were collected from a volunteer following
ethical guidelines and with informed consent. The saliva samples were obtained using
passive drool collection, while the plasma samples were collected through venipuncture
and processed to obtain the plasma fraction. Both the saliva and plasma samples were
stored at −80 ◦C. Prior to electrochemical analysis, the samples were thawed at room
temperature and thoroughly mixed. The samples were tested both in their natural state
and spiked with glucose, each undergoing three tests for accuracy and reliability.

3. Results
3.1. Fabrication of the Nanocomposite Interface with Confined Redox Probes

The NH2-Fc-functionalized glucose biosensor interface was fabricated in three steps
(Figure 1) with electrochemical characterization performed after each step (Figure S1). First,
the prGOx/BSA/GA nanocomposite coating was drop-cast onto the SPCE surface. The
conductive material (prGOx) facilitates electron transfer and improves the electroactive
surface area, while the BSA cross-linked with GA provides structural stability and prevents
biofouling. Second, the redox mediator, NH2-Fc, was covalently functionalized onto the
nanocomposite coating through EDC/NHS chemistry. The carbonyl carbon of the NHS
ester group undergoes nucleophilic substitution on reaction with the amine group of NH2-
Fc derivative, resulting in a stable amide bond. Finally, an enzyme layer was coated onto
the NH2-Fc modified SPCE by drop-casting a solution containing glucose oxidase and GA,
and then dried. The GA-crosslinked enzyme layer offers selective permeability for glucose
and provides long-term stability for glucose oxidase.
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Figure 2. Electrochemical performance of NH2-Fc-functionalized prGOx/BSA/GA in PBS. (A) Com-
parison of CV responses for bare and NH2-Fc-functionalized nanocomposite-coated SPCEs. (B) CV 
of NH2-Fc-functionalized SPCEs measured in PBS at different scan rates. (C) Plot demonstrating a 
linear relationship between logarithm of peak current vs. logarithm of scan rate. (D) Cyclic voltam-
mogram recorded in PBS for 20 cycles showing electrochemical stability of NH2-Fc-functionalized 
prGOx/BSA/GA coating. 

Figure 1. Schematic representing the steps involved in the fabrication of glucose biosensors. The
sensor was constructed sequentially with a nanocomposite-based antifouling coating, surface-
functionalized redox, and enzyme layers that support glucose detection in biological samples.
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3.2. Electrochemical Characterization of the Redox Immobilized Glucose Sensor

Understanding the charge transfer kinetics of NH2-Fc-functionalized electrode sur-
faces is crucial to determining their electrochemical performance. Biomolecular binding
interactions at the electrode/electrolyte interfaces alter the redox-based charge transfer
processes, which can be utilized to design an efficient electrochemical biosensor for various
applications. Here, the redox behaviors of the NH2-Fc-modified and bare prGOx/BSA/GA
nanocomposite-coated SPCEs were obtained using CV measurements in PBS. The CV
of NH2-Fc-modified SPCEs revealed a defined quasi-reversible oxidation and reduction
peak at 0.23 V and 0.15 V, respectively, with a peak separation of 80mV. In contrast, the
bare nanocomposite-coated SPCE (Figure 2A) showed no well-defined peaks. This is
indicative of the oxidation and reduction of an Fc derivative in NH2-Fc during the elec-
trochemical processes, and the obtained peaks were consistent with the redox potential of
NH2-Fc, confirming the successful functionalization of NH2-Fc onto the prGOx/BSA/GA
nanocomposite coating.
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Figure 2. Electrochemical performance of NH2-Fc-functionalized prGOx/BSA/GA in PBS. (A) Com-
parison of CV responses for bare and NH2-Fc-functionalized nanocomposite-coated SPCEs. (B) CV
of NH2-Fc-functionalized SPCEs measured in PBS at different scan rates. (C) Plot demonstrating a
linear relationship between logarithm of peak current vs. logarithm of scan rate. (D) Cyclic voltam-
mogram recorded in PBS for 20 cycles showing electrochemical stability of NH2-Fc-functionalized
prGOx/BSA/GA coating.

The electrochemical oxidation and reduction of NH2-Fc functionalization were further
evaluated with scan rates ranging from 10 mV/s to 100 mV/s. The voltammograms show a
characteristic CV curve with increasing redox peak currents for NH2-Fc with an increasing
scan rate (Figure 2B). The plot for the log of the scan rate versus the log of the redox peak
current exhibited a linear relationship with a slope of 1.1, which is strongly indicative of
NH2-Fc functionalization contributing toward surface-controlled electrochemical behavior
(the expected slope is 1.0) (Figure 2C).

To further elucidate the stability of NH2-Fc functionalization, the prepared prGOx/BSA/
GA nanocomposite-coated sensor was subjected to CV measurements in PBS by cycling
the potential between −0.5 V and +0.5 V at 100 mV/s for 20 cycles. No significant
change in peak current with increasing scan cycles was observed (Figure 2D), confirming
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the long-term electrochemical stability of the NH2-Fc-functionalized prGOx/BSA/GA
nanocomposite coating.

3.3. Glucose Detection in a Standard Solution

The sensor response to glucose was measured for glucose concentrations between
0.1 mM and 50 mM using chronoamperometry. Initially, we investigated chronoamperome-
try measurements at different potentials (0, 0.2 V) to determine the signal sensitivity. We
subsequently performed glucose detection measurements using chronoamperometry at
0.2V based on these results. Changes in the current response of the NH2-Fc-functionalized
prGOx/BSA/GA sensor were measured when exposed to varying glucose concentrations
in PBS (Figure 3). A calibration curve was generated by plotting the average of the current
response 20 sec after glucose exposure. The sensor exhibits a linear behavior between 0 mM
and 20 mM glucose concentrations with a detection limit of 1 mM (Figure 3B) and stable
signal response with <10% signal loss over 60 min (Figure S2).
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Figure 3. Glucose level-dependent changes in the current response of the NH2-Fc-functionalized
prGOx/BSA/GA sensor. (A) Chronoamperometric response of the NH2-Fc-functionalized
prGOx/BSA/GA sensor at 0.2 V in PBS obtained with the successive addition of glucose from
0 to 50 mM. (B) Calibration dose–response curve derived from the amperometric signal response. The
graph shows a linear response for glucose concentrations between 0 and 20 mM and the saturation
for concentrations higher than 20 mM of glucose. Data represented here are from n = 2 replicates.

3.4. Specificity and Selectivity

Biological fluids contain a plethora of metabolites and electrolytes that could poten-
tially interfere with glucose measurements, giving rise to non-specific signal responses.
Therefore, the specificity and selectivity of our developed glucose sensor were determined
in the presence of various interfering electroactive constituents. The NH2-Fc-functionalized
glucose sensor was first exposed to physiologically relevant concentrations of potentially
interfering substances, such as BSA (2.5 mg/mL), uric acid (1 mM), and dopamine (10 µM),
separately spiked in a 5 mM glucose solution. The NH2-Fc-functionalized glucose sensor
responded selectively toward glucose detection compared to other interferents (Figure 4A).
Metabolites such as uric acid and dopamine have positive redox potentials; however, no
change in the electrochemical signal response was observed with these potential interferents
(Figure 4A,B), and the current response remained almost the same as the test solution spiked
with only glucose. This indicates that there is no electrochemical interference from these
metabolites, and the electrochemical signal we obtained is from the oxidation/reduction of
an Fc derivative NH2-Fc immobilized on the antifouling coating.

The specificity of our glucose sensor was further evaluated with varying concentrations
of other sugar molecules, such as fructose and sucrose (Figure 4D). The current increased
with the addition of 5 mM glucose (Figure 4C), confirming the functional sensitivity of the
sensor for glucose detection. Moreover, when subjected to varying fructose concentrations,
the same sensor showed no changes in the observed current response, followed by an
increase in current response to 5 mM glucose. These results confirm the high specificity of
the NH2-Fc-functionalized nanocomposite coated sensor for glucose detection.
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3.5. Glucose Detection in Complex Biological Fluids 

Figure 4. Specificity and selectivity of the glucose sensor were determined in the presence of various
interfering electroactive constituents. (A) Chronoamperometric response obtained at 0.2 V from the
NH2-Fc-functionalized glucose biosensor for 5 mM glucose in PBS spiked with the electroactive
interferants BSA, uric acid, and dopamine. (B) Box plot representation of current response obtained
with 2.5 mg/mL BSA, 1 mM uric acid, and 10 µM dopamine spiked separately in a solution containing
5 mM glucose in PBS. (C) Amperometry response of the NH2-Fc-functionalized glucose sensor with
varying concentrations of fructose demonstrating sensor specificity. (D) Plot showing the specificity
of the developed glucose biosensor for glucose detection compared with other saccharides, sucrose
and fructose. Data represented here are from n = 2 replicates.

3.5. Glucose Detection in Complex Biological Fluids

The feasibility of glucose detection in true biological samples is essential for deter-
mining the usefulness of this sensor for clinical applications. The performance of our
NH2-Fc-functionalized glucose sensor was investigated using plasma and saliva samples
containing different glucose concentrations (Figure 5). The sensor consistently exhibited
current responses in the detectable range, indicating that its reliability and robustness are
appropriate for potential future clinical use. However, a sensor performance evaluation
with real samples will need to be carried out further to evaluate the commercial viability of
this glucose sensor. Furthermore, the glucose biosensor shows a linear detection range of
1–10 mM that is well within the expected values for normal blood glucose levels in humans
(4–6 mM) compared to other state-of-the-art glucose biosensors reported in prior published
studies (Table 1).
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Table 1. Comparison with reported state-of-the-art glucose biosensors.

Platform Redox Detection Method Linear Range Detection Limit Comments

Pyrolytic carbon [20] Potassium
ferro/ferricyanide Amperometry 0.001–1 0.4 µM Redox species in solution

Gold [24] GOx modified with ferro-
cencecarboxaldehyde

Cyclic
voltammetry 1.0–5.0 mM 5.2–210 µM Variable response due to

high oxygen levels

Glassy carbon
electrode [25]

Poly(glycidyl
methacrylateco-

vinylferrocene) redox
copolymer

Amperometry 0.5 to 6 mM 3 µM Requires FAD as a cofactor

Multiwalled carbon
nanotubes [26] Osmium redox polymer Voltammetry

/amperometry - - Moderate stability

ZnO Nanorods [27] - Cyclic
voltammetry 1–13.8 mM 1 mM Non-enzymatic sensing

may have selectivity issues

prGOx/GA/BSA (This
work) NH2-Fc Amperometry 0.0–10 mM 1 mM Scalable and cost effective
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4. Discussion

Enzyme-catalyzed glucose oxidation has been the standard for developing electrochemical-
based glucose biosensors. The general chemical principle involves glucose oxidase, an
enzyme that selectively oxidizes glucose to form gluconic acid and hydrogen peroxide
(H2O2) in the presence of oxygen, as indicated by the following reaction:

Glucose + H2O + O2
Glucose oxidase→ Gluconic acid + H2O2

H2O2 is further oxidized at the working electrode, leading to the release of two free
electrons, constituting an electrochemical signal response proportional to the glucose con-
centration. However, detection approaches based on O2 consumption or H2O2 production
may not be suited for continuous monitoring due to oxygen limitations, especially for
sensor systems employed in vivo. An alternative strategy is to replace O2 with molecules
that can serve as electron mediators, which forms the basis of our work.

The development of an enzymatic electrochemical readout based on a prGOx/BSA/GA
nanocomposite-based antifouling coating with a functionalized redox molecule addresses
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many challenges that need to be overcome to significantly advance metabolomic and
diagnostic applications. This new approach reduces cross-reactivity and signal instabil-
ity in traditional diagnostic devices, which should enable the continuous monitoring of
metabolites, such as glucose, over extended periods.

In this study, the charge transport between the redox center of glucose oxidase and
nanocomposite-coated SPCE was achieved using NH2-Fc based on the following reaction:

Glucose + NH2 − Fc+ Glucose oxidase→ Gluconic acid + NH2 − Fc + 2H+

The electrochemical responses we measured to establish that NH2-Fc mediates the
sensing response by tunneling electrons between the electrode and enzyme redox center,
which is crucial for the development of glucose biosensors for continuous monitoring. We
also showed that the covalent coupling of NH2-Fc to the nanocomposite-modified SPCE
prevents the leaching of NH2-Fc, which is required for building a sensitive detection system.
The linear relationship between the glucose concentration and current response demon-
strates adequate glucose oxidase loading in the enzyme layer formed via GA crosslinking.
Furthermore, the reproducible current response in the presence of various interfering
species and the biological sample matrix demonstrates the potential of developing low-cost,
rapid, sensitive, and portable electrochemical detection devices for monitoring multiple
metabolites, as well as, potentially, for multiplexing these sensors. The simple fabrication
methods used and flexibility of modifying the enzyme layer allow for the quick optimiza-
tion of the developed biosensor platform to different target analytes, opening new avenues
for continuous monitoring for various research and clinical applications. In addition, a
multivariate analysis can be effectively performed by leveraging advancements in machine
learning, resulting in a more accurate and rapid biosensor.

5. Conclusions

In summary, we reported the development of electrochemical sensors that address
critical challenges in glucose detection and that can potentially offer a new approach for
continuous glucose monitoring. The high sensitivity and selectivity of this glucose sensor is
based on the use of a nanocomposite-based antifouling coating, a functionalized (Fc deriva-
tized) ferrocene-based redox mediator, and a redox enzyme. The NH2-Fc exhibits reversible
redox behavior, facilitating electron transport with the redox center of glucose oxidase and
supporting the regeneration of enzyme activity for the continuous determination of glucose.
A clinical application of the developed platform was demonstrated in plasma and saliva
samples, and it showed no interference from other electroactive species. The demonstration
that glucose detection can be carried out in complex biological fluids and in the presence of
potential interferents expands the application scope of the continuous sensing of glucose
as well as other small metabolites. This versatility broadens its potential applications in
clinical diagnostics, metabolic profiling, and drug development, in addition to personalized
medicine, and, hence, potentially impacts a broad range of healthcare practices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano14090796/s1, Figure S1: EIS characterization of sensor fabrication. Nyquist plot showing
the changes in Rct for each step involved in the glucose sensor fabrication. Z’ and Z” represent the real
and imaginary part of measured impedance; Figure S2: Stability of glucose detection over the span of
60 min in 1 mM glucose. Bar plot and the dotted line represents average current response obtained
every 10 and over 60 min, respectively; Figure S3: The calibration curve of glucose standard solutions
using colorimetric assay. Linear regression analysis: y = 9.1417x with an R2 of 0.9967, demonstrating
a strong correlation between the variables.
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