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ABSTRACT
The gut microbiota has coevolved with the host for hundreds of millions of years, playing 
a beneficial role in host health. Human parasitic helminths are widespread and pose a pervasive 
global public health issue. Although Type 2 immunity provides partial resistance to helminth 
infections, the composition of the gut microbiota can change correspondingly. Therefore, it raises 
the question of what role the gut microbiota plays during helminth infection. Akkermansia 
muciniphila has emerged as a notable representative of beneficial microorganisms in the gut 
microbiota. Recent studies indicate that A. muciniphila is not merely associated with helminth 
infection but is also causally linked to infection. Here, we provide an overview of the crosstalk 
between A. muciniphila and enteric helminth infection. Our goal is to enhance our understanding 
of the interplay among A. muciniphila, helminths, and their hosts while also exploring the potential 
underlying mechanisms.
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1. Introduction

Approximately 1.5 billion individuals are infected 
with helminth parasites, making helminths 
a pervasive global public health issue.1,2 In addition 
to helminths, commensal bacteria have coevolved 
with their hosts. The gut microbiome, comprising 
around 10 million bacteria, plays a critical role in 
maintaining the healthy metabolic status of an 
individual.3,4 The interaction between helminths 
and gut bacteria is crucial for determining the 
development of helminth infections.5,6

Among these commensal bacteria, Akkermansia 
muciniphila has emerged as a critical bacterium. 
A recent review demonstrated that the absence or 
reduction of A. muciniphila is associated with 
inflammatory disorders.7 A. muciniphila is vital 
for maintaining a healthy intestinal barrier and 
has been extensively studied in mice, as well as in 
an initial trial involving humans,8–13 Gaps in exist-
ing knowledge regarding the crosstalk between 
A. muciniphila and enteric helminths are being 

filled. In this review, we discuss the effect of enteric 
helminth infections on A. muciniphila and the role 
of A. muciniphila in enteric helminth infections. 
We aim to improve our understanding of 
A. muciniphila-helminth – host interactions and 
identify the possible underlying mechanisms.

2. Helminth-induced immune responses and 
the gut microbiota

Helminth parasites typically trigger robust type 2 
immune responses that play a crucial role in eliminat-
ing these parasites.14 These responses become crucial 
as multicellular helminths migrate through host 
tissues.15 The key characteristics of helminth infec-
tions include goblet cell hyperplasia and mucin secre-
tion in the intestines. This immune response is critical 
for the expulsion of helminths through the mainte-
nance of the epithelial barrier.16 Goblet cells respond 
to type 2 cytokines by generating mucus, with well- 
established roles for IL-13 and IL-4.16,17 In the 
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absence of IL-4 and IL-13, efficient expulsion of hel-
minths from the mouse intestine is hindered ,18 , .19,20 

Additionally, IL-5 deficiency in mice results in 
a higher worm load during both acute and chronic 
infections.21,22 These findings underscore the impor-
tance of type 2 cytokines and their signaling pathways 
in limiting helminth infections. Accumulating evi-
dence suggests that the microbiota plays a pivotal 
role in maintaining host homeostasis, exerting signif-
icant effects on numerous disease mechanisms.23 

Research on host – helminth interactions has focused 
on host-associated gut microbiomes.24 Notably, 
Trichuris muris larvae are unable to develop and 
colonize germ-free mice, underscoring the essential 
role of bacterial microbiota in establishing infection.25 

The gut microbiome undergoes alterations during 
T. muris infection associated with Th2 responses.26 

Specifically, T. muris infection-associated goblet cell 
activation restricts the colonization of Bacteroides 
vulgatus, a common member of the gut microbiota. 
This restriction is attributed to the activation of 
a robust Th2 immune response. Deworming 
enhances the abundance of Bacteroidales, suggesting 
a causal relationship between helminth infections and 
microbial diversity. Trichinella spiralis-induced 
strong type 2 immunity still occurs independently of 
changes in the microbiota in germ-free mice.27 

However, fecal bacterial transplantation from healthy 
mice to T. spiralis-infected mice can increase the 
number of goblet cells but not the expression of IL- 
4 and IL-13 at day 3 post infection.28 Along these 
lines, the gut microbiota may contribute to mucus- 
producing goblet cell function in deworming, inde-
pendent of type 2 immunity, which necessitates 
further investigation.

3. The impact of helminth infections on 
A. muciniphila abundance

The gastrointestinal tract relies on a crucial defense 
mechanism known as the mucus barrier. The gut 
microbiota, considered a vital factor influencing 
host health, plays a pivotal role in altering the prop-
erties of the mucus layer.29 Researchers at the 
Wageningen Laboratory of Microbiology have 
made groundbreaking discoveries, identifying 
A. muciniphila as a novel species within the genus 
Akkermansia, phylum Verrucomicrobiota, com-
monly inhabiting the gut mucus layer.30 

A. muciniphila has been found in the human intes-
tine since early life, without causing harm to the 
host.31,32 Remarkably, decreased abundance of 
A. muciniphila is associated with the occurrence of 
various diseases and physiological changes, such as 
obesity, diabetes mellitus, and inflammatory bowel 
disease,33–35 Researchers are particularly intrigued 
by the interaction between A. muciniphila and infec-
tious diseases, especially helminth infections. 
A thorough qualitative systematic review of human 
studies revealed a strong association between 
Akkermansia spp. and helminth infection.36 For 
instance, individuals with gastrointestinal helminths 
in Sri Lanka exhibit a significant increase in 
A. muciniphila compared to uninfected 
individuals.37 Similar observations have been 
reported in several helminth-infected mouse mod-
els. In mice, Heligmosomoides polygyrus infection 
increases the relative abundance of 
A. muciniphila.38,39 Helminth-induced type 2 
immunity plays a role in modulating the gut micro-
biota, including A. muciniphila.39 Another helminth 
that colonizes the intestine, Trichuris muris, can 
significantly increase the abundance of 
Verrucomicrobiales.26 During infection with 
T. spiralis, which inhabits the small intestine for 
approximately two weeks, the abundance of 
Akkermansia increases in helminth-infected 
mice,40–42 Interestingly, Schistosoma japonicum, 
which exhibits tropism for the liver, leads to an 
increase in Akkermansia abundance during 
S. japonicum-induced liver cirrhosis.43 

Furthermore, in a mouse model of percutaneous 
infection with Schistosoma mansoni, the infected 
mice exhibited a greater abundance of 
Akkermansia.44,45

Collectively, these findings suggest that the 
abundance of A. muciniphila increases during hel-
minth infection, potentially resulting from interac-
tions between the helminths and their hosts. 
Helminth Heligmosomoides polygyrus infection 
promotes the induction of alternatively activated 
(M2) macrophages and helminth-induced M2 cells 
can increase the abundance of A. muciniphila. An 
enhanced type 2 immune response leading to 
increased intestinal mucus secretion is 
a distinctive feature of helminth infections.46 allows 
A. muciniphila to reach a more favorable growth 
environment.
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4. The impact of A. muciniphila on helminth 
infections

A positive relationship between A. muciniphila 
colonization and helminth infection restrain has 
been determined (Figure 1). Our previous study 
demonstrated that A. muciniphila exerts anthel-
mintic effects against T. spiralis infection.47 

A. muciniphila improved intestinal mucus 

secretion, and pasteurized A. muciniphila was 
more effective than live A. muciniphila. Another 
study showed that these compounds were retained 
even when inactivated by pasteurization.11 

However, there is insufficient evidence to explain 
why pasteurized A. muciniphila often exhibits bet-
ter efficacy. One possible explanation is that pas-
teurization not only has no effect on 

Figure 1. Akkermansia muciniphila is involved in mucin production by goblet cells independent on type 2 immunity. Intestinal 
epithelial cells trigger the production of type 2 cytokines (IL-4, IL-5, and IL-13) in response to helminths. Mucus production by goblet 
cells is induced by type 2 cytokines. Type 2 immunity limits helminth infections and can result in their physical expulsion from the 
mucosal membranes where the helminth resides. In addition, the gut microbiota may contribute to mucus-producing goblet cell 
function during deworming. Although A. muciniphila cannot affect type 2 cytokines (IL-4, IL-5 and IL-13) production, A. muciniphila can 
improve intestinal mucin production, indicating the presence of an alternative type 2 immunity-independent mechanism for the 
mucin-promoting function of A. muciniphila. However, the mechanisms have not yet been elucidated.
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mucus-promoting bacterial components but also 
eliminates intestinal invasion caused by bacteria. 
This phenomenon has paved the way for making 
bacteria more suitable for various applications. To 
date, no studies have systematically explored the 
role of A. muciniphila in helminth infections.

Furthermore, infection with helminth T. spiralis 
causes cardiac fibrosis (Figure 2). Recent metage-
nomics analysis revealed a higher presence of 
A. muciniphila in the small intestine of infected 
mice. Interestingly, antibiotic treatment exacerbated 
helminth-induced cardiac fibrosis, and the domi-
nant species, A. muciniphila, during T. spiralis infec-
tion appeared to positively influence cardiac fibrosis 
outcomes.40 Schistosoma is also one of the major 
pathogens that causes fibrosis in the liver.48,49 As 
mentioned in above section, the expansion of 

A. muciniphila in humans and mice is induced by 
infection with different genera of Schistosoma, such 
as S. mansoni and S. japonicum,43–45 Treatment with 
A. muciniphila protects against liver fibrosis induced 
by a high-fat diet and carbon tetrachloride 
administration.50 A. muciniphila has shown poten-
tial for ameliorating liver inflammation and fibrosis 
in NEMO∆hepa mice prone to liver carcinogenesis.51 

However, the role of A. muciniphila in the develop-
ment of Schistosoma-induced liver fibrosis has not 
been determined. Additionally, it has been observed 
that compounds present in the outer membrane of 
A. muciniphila (Amuc_1100) mechanically bind to 
the toll-like receptor (TLR) 2.11 Our previous studies 
have confirmed the involvement of TLR2 in the 
effects of pasteurized A. muciniphila on helminth 
infection.40,47 We conducted an experiment 

Figure 2. Akkermansia muciniphila plays a role in protection against Trichinella spiralis infection. In the left panel, infection with 
T. spiralis leads to helminth burdens, including adult worms and muscle larvae, and causes cardiac fibrosis. As shown in the right panel, 
treatment with A. muciniphila reduced the burden on adult worms and muscle larvae and ameliorated the severity of cardiac fibrosis 
induced by T. spiralis.
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involving TLR2 knockout mice and found that treat-
ment with pasteurized A. muciniphila failed to alle-
viate the helminth burden and pathology associated 
with T. spiralis infection.40,47

While A. muciniphila has a deworming effect, it 
does not enhance the type 2 immune response, as 
evidenced by no increase in IL-4 concentration.52 

No evidence supports a correlation between 
A. muciniphila and other type 2 cytokines. 
Although A. muciniphila cannot induce Th2 cell 
response,53 indicating the presence of an alterna-
tive type 2 immunity-independent mechanism for 
the mucin-promoting function of A. muciniphila, 
more thorough mechanistic studies using a type 2 
immunity-deficient helminth-infected model 
should be conducted in future. A recent study 
indicated that 15:0-i15:0 phosphatidylethanola-
mine, a lipid found in the cell membrane of 
A. muciniphila, increases the release of tumor 
necrosis factor (TNF)-α in a TLR2-dependent 
manner.54 Moreover, TNF-α plays a crucial role 
in the expulsion of T. spiralis,55 suggesting its puta-
tive involvement in the capacity of A. muciniphila 
to expel T. spiralis. A. muciniphila promotes the 
differentiation of secretory intestinal epithelial cell 
lineages, accelerates intestinal epithelial regenera-
tion and increases the number of mucin-producing 
goblet cells in the intestines, consequently enhan-
cing mucus production during gut damage caused 
by radiation and methotrexate.56 Supplementation 
with A. muciniphila prevents the decrease in thick-
ness of the colonic mucus layer that occurs with 
aging.57 A. muciniphila promotes the development 
of goblet cells in the intestine, resulting in increased 
mucin production58 and enhancing the integrity of 
the gut barrier.8 A. muciniphila also upregulates the 
genes responsible for maintaining intestinal barrier 
function (e.g., MUC2, BIRC3, and TNFAIP3) and 
improves intestinal homeostasis by activating the 
ALPK1/TIFA/TRAF6 axis.59 Furthermore, 
A. muciniphila stimulates NLRP6 expression and 
enhances autophagy in goblet cells, thereby pro-
moting the production of mucin in the context of 
inflammatory bowel disease.58 These findings pro-
vide mechanistic and novel insights into 
A. muciniphila-induced mucus production. 
However, the mechanisms underlying helminth 
infection have not yet been fully elucidated.

5 Conclusions

A. muciniphila-induced regulation of gut barrier 
function, including mucus production, has been 
identified by various research teams. Although the 
relevance of A. muciniphila in helminth infections 
has been described in many publications, the studies 
about relationship between A. muciniphila coloniza-
tion and helminth infection restrain have just begun. 
Indeed, although some studies have argued that 
mucin-degrading bacteria have a risk of reducing 
the mucus layer due to their capacity for mucus 
consumption,60,61 improved mucus production by 
A. muciniphila during helminth T. spiralis infection 
is crucial for its anthelmintic effects. Given that 
increasing goblet cell mucus secretion constitutes 
part of the “weep and sweep” response that develops 
to promote helminth expulsion,14 helminth infec-
tion could be considered a model for investigating 
the crosstalk between A. muciniphila and mucus. 
The protective role of A. muciniphila and its asso-
ciated molecules against infection with other hel-
minths should be explored further. Moreover, the 
detailed mechanism of the type 2 immune indepen-
dent mechanism by which A. muciniphila regulates 
mucin function in helminth infections is worth 
exploring in the future.
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