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Abstract: In response to the challenges posed by small objects in remote sensing images, such as low
resolution, complex backgrounds, and severe occlusions, this paper proposes a lightweight improved
model based on YOLOv8n. During the detection of small objects, the feature fusion part of the
YOLOv8n algorithm retrieves relatively fewer features of small objects from the backbone network
compared to large objects, resulting in low detection accuracy for small objects. To address this issue,
firstly, this paper adds a dedicated small object detection layer in the feature fusion network to better
integrate the features of small objects into the feature fusion part of the model. Secondly, the SSFF
module is introduced to facilitate multi-scale feature fusion, enabling the model to capture more
gradient paths and further improve accuracy while reducing model parameters. Finally, the HPANet
structure is proposed, replacing the Path Aggregation Network with HPANet. Compared to the
original YOLOv8n algorithm, the recognition accuracy of mAP@0.5 on the VisDrone data set and the
AI-TOD data set has increased by 14.3% and 17.9%, respectively, while the recognition accuracy of
mAP@0.5:0.95 has increased by 17.1% and 19.8%, respectively. The proposed method reduces the
parameter count by 33% and the model size by 31.7% compared to the original model. Experimental
results demonstrate that the proposed method can quickly and accurately identify small objects in
complex backgrounds.

Keywords: small object detection; remote sensing image; YOLOv8n; HPANet; SSFF

1. Introduction

With the rapid development of the information age, remote sensing images play an
extremely important role in many fields, such as ecological resource and climate monitoring,
military target detection, medical diagnosis, and Unmanned Aerial Vehicle navigation [1].
For example, in recent years, as atmospheric warming has led to the melting of glaciers
and sea level rise has led to frequent disasters, such as floods and mudslides [2], the de-
tection technology of remote sensing images can predict the occurrence of such disasters
through the change in geographic features in the images, so as to save people’s lives and
properties. Furthermore, remote sensing image detection technology can also be applied to
active SAR [3] and passive microwave RS [4] techniques for soil moisture detection. This
technology enables the rapid and accurate identification of sensitive information in the
data, thereby achieving precise detection. Even in cases where satellite data resolution
is low, remote sensing image technology can still enhance accuracy through data aug-
mentation and by selecting training data and adjusting the model parameters accordingly
to accomplish tasks. This illustrates the wide-ranging impact of remote sensing image
detection technology in many important fields. However, small targets in remote sensing
images are usually characterized by low resolution, their propensity to be easily obscured
by other objects, complex and changeable backgrounds, the greater influence of light and
weather conditions, and a small number of small targets with wide distribution. These
characteristics have caused great difficulties in the accurate detection of objects in remote
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sensing images. Therefore, small target detection in remote sensing images has become an
important research direction in the development of the computer vision field.

The ways of defining micro-sized targets are mainly categorized into definitions based
on relative scales and definitions based on absolute scales. One kind of definition is by
relative scale. When the relative area of the target instances is between 0.08% and 0.58%,
they can be considered as a whole. It is also possible to go through the ratio of the width
and height values of the target bounding box to the width and height values of the image
to accurately represent them, or the ratio of the area of the target bounding box to the
area of the image to accurately represent them. Although using this type of definition can
provide some help, it also has some challenges, such as not being able to accurately assess
the model’s ability to detect targets at various scales and also being susceptible to data
preprocessing and model structure. Another type of definition is based on absolute scales.
Based on the MS COCO data set [5] and what is known in practical applications, objects
with a resolution lower than 32 pixels × 32 pixels can be called small targets. The concept
of small targets can also be defined according to different situations, such as the complexity
of the real environment and the complexity of the convolutional neural network. Besides
MS COCO, there are other data sets that give definitions of small targets based on absolute
scales. For example, in the TinyPerson data set [6], targets with pixel value sizes between
[20 and 32] are defined as small targets. In the face detection data set WIDER FACE [7]
and in the aerial image data set DOTA, targets with pixel values between [10 and 50] are
defined as small targets.

Traditional object detection methods often rely on feature extraction to detect image
information, such as Histogram of Oriented Gradients (HOG) [8], Scale-Invariant Feature
Transform (SIFT) [9], Local Binary Pattern Histograms (LBPHs) [10], etc. Although these
traditional methods have certain advantages in extracting local image features and design-
ing classifiers, they suffer from limitations, such as poor robustness, weak generalization
ability, high computational cost, and difficulty in solving feature representation problems.
As a result, these models cannot effectively detect small targets in complex scenes in remote
sensing images. In recent years, with the development of computer hardware and the
improvement of computational capabilities, deep learning has become a popular research
direction in the field of artificial intelligence. Among deep learning algorithms, object
detection algorithms based on Convolutional Neural Networks (CNNs) have gradually
replaced traditional object detection algorithms due to their weight sharing and transla-
tional invariance properties, thus achieving faster computation speed and higher detection
accuracy. They have become the mainstream detection method.

Based on deep learning, object detection algorithms are mainly divided into two
categories: two-stage detection and single-stage detection. Two-stage detection first extracts
features from the image during the detection process and generates some candidate regions
and then classifies and locates the candidate regions to output the position and category
information of the targets. Typical two-stage detection algorithms include R-CNN [11],
Fast R-CNN [12], and Faster R-CNN [13]. Single-stage detection uses CNN to extract
image features, passes the extracted features to multiple fully connected layers for object
detection, and then directly outputs the position and category information of the targets.
Typical single-stage detection algorithms include the YOLO series [14–17] and SSD [18].
Single-stage detection algorithms can process and analyze information in images without
generating candidate regions in advance, thus eliminating frequent data transformations
and computations and thereby greatly improving detection efficiency. Therefore, in large-
scale data processing, single-stage detection algorithms are more widely applied than
two-stage detection algorithms.

Currently, there is still significant room for improvement in the detection accuracy of
small targets in remote sensing images. The main challenges stem from the characteristics
of such images, including the low resolution of small targets, susceptibility to occlusion by
other objects, complex and variable backgrounds, the significant influence from lighting
and weather conditions, and the sparse distribution of small targets. Additionally, down-
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sampling in image processing may lead to loss of object information, resulting in sparse
representation of object features in high-level feature maps. All of these factors collectively
impact the detection of small targets in remote sensing images. To address these challenges,
this paper proposes a lightweight small target detection algorithm based on YOLOv8n.
Introducing a small target detection layer allows for better preservation of small target fea-
ture information. Combined with the SSFF module, it enables the model to better integrate
the high-dimensional information of deep feature maps and the detailed information of
shallow feature maps. Furthermore, the proposed and applied Path Aggregation Network
(HPANet) strengthens the fusion of feature maps at different scales.

The main contributions of this paper are summarized as follows:

(1) A detection layer is added to the original multi-scale feature fusion network structure,
thus generating larger-scale feature maps and improving the network’s ability to learn
small target feature information.

(2) It incorporates the SSFF module by selectively fusing feature maps of different scales,
thus improving the detection accuracy and robustness of small targets and reducing
the number of model parameters.

(3) The HPANet network is proposed, and it replaces the original PANet network, thus
enhancing the network’s ability to integrate feature maps of different scales while
simultaneously reducing network parameters.

2. Related Work

Small object detection has wide applications and practical uses in various fields, and
many scholars are dedicated to improving the detection accuracy of small objects. Although
single-stage detection algorithms represented by the YOLO series outperform many object
detection methods, remote sensing images typically have various characteristics, such as a
high proportion of background information, a high degree of target clustering, and a large
number of small objects. These characteristics result in lower detection accuracy of the
YOLO series compared to two-stage detection algorithms. To improve the detection perfor-
mance of objects in remote sensing images, many researchers have made improvements
to the YOLO series. Ma et al. [19] proposed SP-YOLOv8s based on YOLOv8s, replacing
the cross-row convolution module with the SPD-Conv module to enhance the network’s
learning and representation capabilities. Additionally, they replaced the path aggregation
network with the SPANet structure to enhance feature fusion at different scales. Wang
et al. [20] introduced a C2f-E structure based on an efficient multi-scale attention module
(EMA) to enhance the network’s detection capability for objects of different sizes in remote
sensing images. Han et al. [21] proposed a VEW-YOLOv8n network model, where the
backbone network utilized the VanillaC2f module, thus reducing the complexity and num-
ber of parameters in the model. Jang et al. [22] presented a lightweight forest pest image
recognition model based on the improved YOLOv8 architecture. This algorithm replaced
the traditional convolutional layers in the YOLOv8 neck module with lightweight GSConv
and utilized a Slim neck design paradigm for reconstruction, thus reducing computational
costs while maintaining model accuracy. Wang et al. [23] proposed a model for Unmanned
Aerial Vehicle (UAV) strawberry recognition based on YOLOv8. The improved YOLOv8
model incorporates a Shuffle Attention Module and a VoV-GSCSP Module, thereby en-
hancing both recognition accuracy and detection speed. Ling et al. [24] introduced the
YOLOv8s-GhostNetv2-CA_H model based on YOLOv8. This model replaces the backbone
of the YOLOv8 model with GhostNetv2 architecture for lightweight conversion. Addition-
ally, it integrates an improved CA_H attention mechanism, successfully achieving precise
detection of jujube tree trunks. Fan et al. [25] addressed the issue of limited computing
resources in coal mines by proposing the CM-YOLOv8 model. This algorithm introduces
adaptive predefined anchor boxes tailored to the coal mining data set to enhance detection
performance for various targets. Moreover, it devises a pruning method based on the
L1 criterion, thus significantly compressing both the computational and parameter vol-
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ume of the model without compromising accuracy. The experimental results demonstrate
its effectiveness.

In the above researchers’ studies, it can be seen that the algorithms of the YOLO series
are widely used in various application fields, with significant potential for improvement
in some specific areas. This paper proposes a lightweight enhanced YOLOv8n method
for remote sensing image target detection, which achieves good detection results on the
VisDrone remote sensing data set.

3. Introduction of YOLOv8 Detection Network

YOLOv8, proposed by Ultralytics, is a deep neural network based on a single-stage
object detection algorithm, thus providing a new state-of-the-art (SOTA) model. It offers
models of different sizes, including N, S, M, L, and X scales, based on scaling factors to meet
various scene requirements. YOLOv8 supports various visual tasks, integrating algorithms
like pose estimation, object detection, image classification, and instance segmentation. It
adopts multiple SOTA technologies, demonstrating strong scalability to support other
YOLO versions and algorithms beyond YOLO. YOLOv8 adopts the C2f structure, with
a richer gradient flow in the backbone network and neck end, combining semantic in-
formation with contextual information. It sets different channel numbers for models of
different scales to improve overall performance. Its detection head adopts a decoupled head
structure, thus separating detection and classification tasks and independently processing
detection tasks. YOLOv8 uses binary cross-entropy as a classification loss function.

H(y, ŷ) = − 1
N

N

∑
i=1

[yilog (ŷi) + (1 − yi)log(1 − ŷi)] (1)

Binary cross-entropy (BCE) is a commonly used loss function in computer vision,
which is usually used in binary classification problems, such as the presence of an object in
an image or whether the image is normal or abnormal. This function plays an important
role in evaluating the performance of the model and in the training process. H(y, ŷ) is the
binary cross-entropy loss function, where y is the actual label, which is usually a vector
containing 0 and 1 (if it is 0, it means a negative case, and if it is 1, it means a positive
case). ŷ is the predicted output of the model, which is also usually a vector containing 0
and 1, and it represents the probability that the model belongs to a positive case for each
sample. N is the number of samples, and yi and ŷi are the ith element of the label and the
predicted output.

YOLOv8 uses DFL (distribution focal loss) and CIoU loss as regression loss functions.
CIoU (Complete IoU) can more accurately measure the similarity between target frames,
which improves the accuracy and stability of target detection. The DFL (Detection Fusion
Layer) refers to a technology layer used for target detection. Its main purpose is to fuse
the detection results from different feature layers to improve the performance of target
detection. The CIoU and DFL formulas are shown below, respectively.

CIOU = IoU − p(C2 , C1)− γv(C2 , C1) (2)

where IoU denotes the ratio of intersection to concatenation between the measured frame
and the real bounding box. p(C2 , C1) is a normalized term for the distance between the
centroids of the two frames. v(C2 , C1) is a normalized term for the distance between the
predicted frame and the diagonal length of the real frame. γ is an adjustable parameter that
balances the importance of the centroid distances and the diagonal lengths. ciou combines
these terms in order to comprehensively assess the degree of match between the predicted
box and the real bounding box. It takes into account certain aspects, such as the location,
size, and shape of the box, making it more comprehensive and accurate in evaluating the
performance of the target detector.

DFLi,j = σ
(
α·Fi,j + β·Gi,j

)
(3)



Sensors 2024, 24, 2952 5 of 19

where DFLi,j denotes the final detection result of the ith feature layer and the jth position, Fi,j
denotes the detection result from the ith feature layer, Gi,j denotes the detection result from
the jth position, α and β are the fusion weights, and σ is the activation function sigmoid.
The DFL combines the linearly weighted detection results from the different feature layers
and positions and performs a nonlinear transformation through the activation function to
generate the final detection result.

Compared to previous versions, YOLOv8 also introduces a semantic segmentation
model, YOLOv8-Seg. YOLOv8 improves the overall performance by optimizing the net-
work structure to achieve higher and more flexible detection results suitable for a wide
range of engineering applications. The model is trained on large-scale data sets, demon-
strating good generalization ability, and it can be applied to various object detection tasks.
In this paper, we take into account the accuracy and speed of each model in YOLOv8, and
we choose the YOLOv8n network as the base model. The network structure of YOLOv8 is
shown in Figure 1.
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4. Improvement of YOLOv8
4.1. Small Target Feature Retention Layer

In the original YOLOv8 network, the larger downsampling ratio resulted in smaller
initial downsampling sizes of the feature maps. After multiple downsampling operations,
it becomes very difficult to fully preserve the feature information of small objects. Con-
sequently, the feature information in the neck network of YOLOv8 cannot be adequately
fused, leading to decreased detection accuracy. In deep learning, smaller receptive fields al-
low the backbone network to obtain more fine-grained information, thereby improving the
accuracy of small object detection. To address this issue, we introduced the shallow feature
layer P2 outputted by the backbone network into the feature fusion network structure and
made corresponding improvements. Specifically, the FPN module in the neck structure [26]
generates 80 × 80 feature maps through upsampling, followed by additional upsampling
operations to obtain larger 160 × 160 feature maps. These feature maps are then fused
with the 160 × 160 feature maps generated in the backbone structure and inputted into the
head structure for classification and detection, thus extracting feature information of small
objects from shallower feature maps. These improvements enable the network to better
preserve the feature information of small objects and enhance the detection accuracy of
small objects through the fusion of shallow and deep feature maps. The newly added small
object detection layer is illustrated in Figure 2.
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4.2. SSFF Module

For the scale problem of small targets in remote sensing images, most existing tech-
niques adopt feature pyramid structures for feature fusion, where only summation or
concatenation is used to merge pyramid features. However, various feature pyramid net-
work structures fail to effectively exploit the correlation among all pyramid feature maps,
which may lead to a decrease in model accuracy. The SSFF [27] module utilizes a novel
scale sequence feature fusion method, which can better integrate the high-dimensional
information of deep feature maps with the detailed information of shallow feature maps.
During the image downsampling process, the size of the image changes, but the scale-
invariant features remain unchanged. Scale space is constructed along the scale axis of the
image, representing not only a scale but also a range of scales that an object may have. The
scale signifies the details of the image. A blurred image may lose details, but the structural
features of the image can be preserved. The SSFF structure is shown in Figure 3. Scaled
images, which serve as inputs to SSFF, can be obtained using the following method:

Fσ(ω, h) = Gσ(ω, h)× f(ω, h) (4)

Gσ(ω, h) =
1

2πσ2 e−(ω2+h2)/2σ2
(5)

Here, f(ω, h) represents a two-dimensional input image with width ω and height
h. Fσ(ω, h) is generated by smoothing through a series of convolutions using a two-
dimensional Gaussian filter Gσ(ω, h), where σ is the scaling parameter of the standard
deviation of the Gaussian filter used for convolution. These resulting images have the same
resolution but different scales. Therefore, feature maps of different sizes can be considered
scale space, and effective feature maps of different resolutions can be adjusted to the same
resolution for concatenation. The SSFF module horizontally stacks feature maps of different
scales and extracts their scale sequence features using 3D convolution. The SSFF module
comprises the following components:

(1) Use a 1 × 1 convolutional layer to change the number of channels in the P4 and P5
feature layers to 256.

(2) Resize them to the size of the P3 layer using the nearest neighbor interpolation
method [28].

(3) Increase the dimension of each feature layer using the unsqueeze method, changing
them from three-dimensional tensors [height, width, channels] to four-dimensional
tensors [depth, height, width, channels].

(4) Concatenate the 4D feature maps along the depth dimension to form a 3D feature
map for subsequent convolution.
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(5) Finally, accomplish scale sequence feature extraction using 3D convolution, 3D batch
normalization, and the SiLU [29] activation function.
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4.3. HPANet

In YOLOv8, PANet [30] (Path Aggregation Network) is a network structure designed
for multi-scale object detection. PANet aims to address the limitations of single-scale object
detection models when dealing with multi-scale objects by effectively aggregating feature
maps from different levels to enhance the model’s detection capability. Its advantage lies in
its ability to improve the detection accuracy of small objects by extracting and fusing multi-
scale features, thus enabling the model to better capture the characteristics of small objects.
However, due to the smaller size and fewer features of small objects, the feature fusion and
aggregation operations in PANet may lead to the model overly focusing on large objects,
thereby reducing the detection performance of small objects. Additionally, the increased
computational complexity and parameter volume of PANet also affect the efficiency of
handling small objects. Inspired by the PANet network structure, this paper proposes an
efficient and lightweight HPANet network structure. In deep learning, the receptive field
refers to the perception range of each pixel in the output feature map of a neural network
on the input image. The size of the receptive field determines the network’s understanding
of local information in the input image, thus affecting the network’s detection capability
for objects of different sizes. Therefore, selecting the appropriate receptive field [31] size
is crucial for accurate and efficient detection of small objects in remote sensing images.
HPANet, based on PANet, removes the detection layers for large and medium-sized objects,
thus retaining the detection layers with smaller receptive fields, reducing the computational
complexity and parameter volume of the network, and enabling the network to focus
on detecting small objects, thereby improving the accuracy and speed of the network.
Furthermore, to better utilize information at different scales, enhance the model’s perception
of objects, and avoid information loss during feature extraction, the original concatenation
fusion method is replaced with Zoomcat after balancing computational complexity and
parameters. Zoomcat’s advantages in object detection primarily include multi-scale feature
fusion, enhanced perception of multi-scale objects, reduced information loss, flexibility,
universality, and improved model performance. By finely fusing feature maps at different
levels, Zoomcat effectively captures object information at different scales, thus enabling
the model to adapt to various object sizes and handle object detection tasks at different
scales within the same model structure. Additionally, the introduction of Zoomcat can
avoid information loss during feature fusion and improve the model’s robustness and
performance in complex scenes. The HPANet network structure is illustrated in Figure 4.
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4.4. Modified Model

The improved model structure is illustrated in Figure 5 of this paper. This model
adopts the HPANet network structure to incorporate the small object detection layer,
thus enabling the network to focus on small object detection while reducing parameters
and model size. Additionally, the SSFF module is embedded into the neck network,
thus allowing the network to better integrate the high-dimensional information of deep
feature maps and the detailed information of shallow feature maps, thereby improving
detection accuracy.
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5. Experimentation and Analysis
5.1. Data Set and Experimental Environment

In this thesis, the proposed model is evaluated and validated using the VisDrone UAV
aerial image data set, a large-scale data set dedicated to UAV vision tasks [32]. The data set
is a large-scale data set for aerial view target detection and tracking, and it is designed to
provide rich, realistic vision data for vision algorithm research and development. There are
a total of 8599 images, and the training set, validation set, and test set contain 6,471,548, and
1580 images, respectively, with a pixel size of 2000 × 1500, including pedestrians, people,
bicycles, automobiles, vans, trucks, tricycles, awning tricycles, buses, and motorcycles, in
a total of 10 categories. The VisDrone data set, captured by a variety of UAV-mounted
cameras, covers a wide range of aspects, including location, environment, objects, and
density. The VisDrone data set has the following characteristics: first, it contains a large
number of real scene images covering a wide range of environments, such as cities, villages,
and highways, which can well-reflect target detection and tracking scenarios in the real
world. Secondly, the labeling information in the data set is very fine, and the location,
size, and shape of the target are labeled in detail, which provides an accurate standard for
algorithm research. In addition, the VisDrone data set provides images under different
weather and lighting conditions, as well as viewpoints under different angles and heights,
which can help the algorithms to be applied in various complex situations. As a publicly
available data set, the VisDrone data set has been widely used in research and practice in
the fields of target detection, tracking, and remote sensing. Researchers can utilize this data
set to test and evaluate their algorithms and compare them with other algorithms. At the
same time, this data set also provides a valuable resource for industry applications, which
can help develop smarter surveillance systems, intelligent transportation systems, and so
on. Other data sets of the same type are DOTA [33], AI-TOD [34], etc. Figure 6 shows some
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images of the VisDrone data set [32] (Figure 6a) and some images of the AI-TOD data set
(Figure 6b).
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The experiments are based on the PyTorch deep learning framework, and they use a
single NVIDIA Tesla T4 graphics card for model training. The specific configuration of the
experimental environment is shown in Table 1.

Table 1. Experimental environment configuration.

Item Name

Operating system Ubuntu 20.04
CPU Intel(R) Xeon(R) Silver 4214R
GPU NVIDIA Tesla T4
RAM 16 GB

Deep learning framework PyTorch (2.1.0)
Interpreter Python (3.8)

CUDA version CUDA (11.8)

5.2. Evaluation Indicators

In target detection, Precision (P), Recall (R), and mAP (mean average precision) are
important metrics for evaluating the performance of an algorithm. Precision: precision
measures how many of all samples categorized by the model as positive instances are truly
positive instances. Recall: the recall rate measures how many of all true positive cases are
successfully detected by the model. The specific formulas for P and R are as follows:

P =
TP

TP + FP
(6)
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R =
TP

TP + FN
(7)

The TP in the above formula refers to the number of positive samples correctly clas-
sified as positive by the model. FP refers to the number of negative samples incorrectly
classified as positive by the model. FN refers to the number of positive samples incorrectly
classified as negative by the model. AP is used to measure the performance of the model
on a single class. It is the area under the Precision–Recall curve. The formula is as follows:

AP =
∫ 1

0
PRDR (8)

The mAP is a commonly used evaluation metric for target detection, which combines
the precision and recall of different categories. First, for each category, the area under
its Precision–Recall curve (AP, average precision) is calculated, and then the AP of all
categories is averaged to obtain the mAP. Its formula is as follows:

mAP =
∑n

k=1 APk

n
(9)

5.3. Ablation Study

In order to verify the effectiveness of the three improvement points proposed in this
paper, we use YOLOv8n as the baseline model for comparison, and we train the VisDrone
data set under the same experimental environment. The number of training rounds is 300
epochs, and experiments with input image sizes of 640 × 640 were performed to obtain
the test data of each improvement module. The results are shown in Table 2, where “

√
”

indicates that the module is added, and “×” indicates that it is not added. Figure 7 is a
visual bar chart of model size and parameter amount in Table 2.

Table 2. Ablation study results.

Base Layer for
Small Target SSFF HPANet mAP0.5 mAP0.5:0.95 FPS Model

Size/MB GFLOPs Parameter/MB

√
× × × 33.5 19.3 187.8 6.0 8.1 3.01√ √

× × 37.2 22.3 128.6 5.9 12.2 2.92√
×

√
× 34.4 20.1 153.9 6.1 8.5 3.05√

× ×
√

33.8 19.6 293.3 3.3 6.3 1.65√ √ √
× 37.4 22.1 107.1 5.1 12 2.5√ √ √ √

38.3 22.6 125.3 4.1 13.6 1.97
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Figure 8 shows the precision, recall, mAP@0.5, and mAP@0.95 curves of YOLOv8n
with the addition of HPANet, SSFF, and Layer for Small Target, respectively, and compares
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them with the base model YOLOv8n, where it can be clearly observed that all three
individual improvements are effective.
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As can be seen from Figure 9, after adding the small target layer alone in YOLOv8,
except for Awning-tir accuracy, which is basically the same as that of the base model, all
other accuracies are higher than those of the base model, and it can be concluded that the
addition of the small target layer is very effective.
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Experimental validation has demonstrated that the proposed enhancements in this
paper significantly contribute to improving detection accuracy while reducing both model
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parameter count and size. For VisDrone data set, when introducing the small target
detection layer alone into YOLOv8n, there was an 11% increase in mAP@0.5% compared to
the original algorithm, with a 15.5% improvement in mAP@0.5:0.95. Introducing the SSFF
module alone resulted in a 2.6% improvement in mAP@0.5 accuracy and a 4% improvement
in mAP@0.5:0.95. When HPANet was introduced alone, mAP@0.5 and mAP@0.5:0.95
improved by 0.9% and 1.5%, respectively, with a 45% reduction in model size and a 45%
reduction in the amount of parameters. Upon introducing both the small target detection
layer and the SSFF module simultaneously, the mAP@0.5 increased by 11.6% compared
to the original algorithm, with improved detection accuracy observed for various types
of small targets. When all three modules were incorporated, our algorithm achieved a
14.3% increase in mAP@0.5 compared to the original YOLOv8n algorithm, with a 17.1%
increase in mAP@0.5:0.95, while reducing the model parameter count and size by 33%
and 31.7%, respectively. These findings indicate that the enhanced algorithm effectively
enhances the model’s capability to extract fine-grained features from remote sensing images,
thereby enhancing the overall detection accuracy of the model. In addition, in terms of
the model being lightweight, the base model YOLOv8n needs 0.0053s to process an image,
and the improved model in this paper needs 0.0079s to process an image, although the
processing speed has decreased. However, after our analysis of the growth of model
accuracy, the number of parameters and the model storage size are obviously reduced in
the trade-off analysis, and we conclude that the improved model in this paper reaches the
lightweight standard.

The comparison curves of the experimental results of the original algorithm and the
improved algorithm on the VisDrone data set are shown in Figure 10. From the figure, it
can be seen that the mAP@0.5 and mAP@0.95 of the improved algorithm gradually increase
relative to the original YOLOv8 algorithm as the training epoch increases.
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Figure 11 shows the visualization results of YOLOv8n and the improved model of
this paper on the VisDrone data set for detection, respectively. Based on the comparison, it
can be clearly seen that the model proposed in this paper not only has significantly fewer
misdetections and omissions but also higher recognition accuracy.
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Figure 11. (a) YOLOv8n detection visualization results on the data set VisDrone. (b) Detection
visualization results of the improved model on the data set VisDrone.

5.4. Comparison Test

To further validate the effectiveness of the proposed algorithm, various state-of-the-art
(SOTA) models were selected for comparison on the VisDrone data set. These include classic
YOLO series networks, the anchor-free algorithm CenterNet, the two-stage algorithm Faster-
RCNN, and some currently popular algorithms. The experimental results evaluating the
improved algorithm based on mAP values for each category and the overall algorithm mAP
value are presented in Table 3. In terms of detection accuracy, the improved algorithm in this
paper outperforms current popular SOTA models. The overall mAP values of the improved
algorithm are increased by 60.9%, 40.2%, and 26.8% compared to the YOLOv3, YOLOv4,
and YOLOv6 models, respectively. Moreover, the improved detection algorithm in this
paper achieves higher accuracy in each category compared to models of the same category,
and the overall model mAP@0.5 reaches 38.2%. These results indicate that the improved
algorithm proposed in this paper can effectively accomplish the task of Unmanned Aerial
Vehicle (UAV) object detection. Figure 12 is a visual bar chart of mAP0.5 for each algorithm
in Table 3.

Table 3. Detection results of different algorithms on VisDrone data set.

Algorithm
Model Awn-tr Bicycle Bus Car Motor Pedestrian People Truck Tricycle Van mAP0.5

Fast R-CNN 8.73 5.8 43.8 44.1 16.8 12.5 8.1 30.4 8.5 20.4 19.9
CenterNet [35] 14.2 7.5 42.6 61.9 18.8 22.9 11.6 24.7 13.1 19.4 23.7

SSD 11.1 7.3 49.8 63.2 19.1 18.7 9.0 33.1 11.7 29.9 25.3
DMNet [36] 14.1 8.9 49.2 58.9 29.3 27.6 18.9 29.3 20.3 30.2 28.7

YOLOv3 7.7 6.8 39.3 68.8 21.5 22.5 12.5 26.4 8.4 24.3 23.8
YOLOv4 12.3 8.6 48.8 69.2 22.7 26.6 14.5 29.9 12.6 27.2 27.3
YOLOv6 10.2 5.0 43.0 74.1 32.4 31.4 25.5 26.7 18.1 35.7 30.2

Ours 15.1 11.6 51.1 80.9 45.4 43.8 34.5 30.8 25.2 44.2 38.3
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Figure 13 presents the visualized evaluation metrics of the improved model proposed 
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precision–recall (P-R) curve, and the harmonic mean of precision and recall, respectively. 
Through analysis, it is evident that the improved model in this paper achieves the best 
detection precision while maintaining a high recall rate. Compared to the base model, the 
improved algorithm predicts more accurate results. 

Figure 12. Table 3 mAP@0.5 accuracy visualization bar graphs.

Figure 13 presents the visualized evaluation metrics of the improved model proposed
in this paper on the VisDrone data set. Figures 13b–d and 13a depict precision, recall, the
precision–recall (P-R) curve, and the harmonic mean of precision and recall, respectively.
Through analysis, it is evident that the improved model in this paper achieves the best
detection precision while maintaining a high recall rate. Compared to the base model, the
improved algorithm predicts more accurate results.
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5.5. Validation on Other Data sets

In order to ensure that the algorithm proposed in this paper can successfully achieve
detection in data sets with complex terrain, such as hilly terrain, we have taken several
approaches to address the challenges. First, we introduce the SSFF module, which utilizes
a new scale-sequence feature fusion approach that can effectively preserve the features
of the objects to be detected, thus achieving successful detection. Second, we adopt a
multi-scale training strategy, which is able to cover the target features at different scales
and improve the generalization ability of the model by using multi-scale image data in
the training process. In addition, we adopt various data enhancement strategies, such
as random scaling, random cropping, random rotation, etc., to increase the diversity of
the training data, which in turn improves the robustness of the model. During the model
training process, we performed model optimization and parameter tuning by adjusting the
hyperparameters, such as network structure, loss function weights, learning rate, etc., in
order to improve the detection accuracy of the model in different scenarios. Finally, after
the detection results were output, we performed post-processing optimization, such as
adjusting the threshold and parameters of non-maximum suppression (NMS), to further
improve the quality of the detection results. In summary, through the combined application
of these methods, we are able to effectively address the detection challenges in complex
terrain data sets and ensure the performance and accuracy of the algorithms.

In order to validate the robustness and generalizability of the improved algorithm
proposed in this paper, this paper chooses to use the AI-TOD [34] aerial image microtarget
detection data set, which contains eight different object classes, i.e., airplanes, bridges,
storage tanks, ships, swimming pools, automobiles, pedestrians, and windmills, with a
total of 700,621 object instances. In order to ensure the comprehensiveness of the evaluation,
the data set was divided into a training set and a test set in a ratio of 8:2, where the training
set contained 11,214 samples and the test set contained 2804 samples. The largest object in
the data set is less than 64 pixels in size, about 86% of the objects in the data set are less
than 16 pixels in size, and the average object size is about 12.8 pixels, so the effectiveness of
the algorithm proposed in this paper can be fully verified.

Table 4 shows the results of YOLOv8n and the improved algorithm in this paper on
the AI-TOD data set. mAP0.5% and mAP0.5:0.95% of our algorithm on the AI-TOD data
set have increased by 18.6% and 21.6%, respectively, which is a significant increase. In
addition, there is a significant increase in the accuracy of all categories, of which the bridge
and windmill category detection accuracy is much higher than the results obtained by the
YOLOv8n model. The improved algorithm in this paper demonstrates good robustness
and generalization after the validation of AI-TOD data. Figure 14 is the data visualization
bar chart in Table 4.

Table 4. Results of YOLOv8n and the improved model on the AI-TOD data set.

Algorithm
Model Airplane Bridge Tank Ship Pool Vehicle Person Windmill mAP0.5 mAP0.5:0.95

YOLOv8n 19.8 28.8 71.2 58.4 0.2 58.0 15.0 6.2 32.2 13.4
Ours 21.0 43.9 80.1 62.3 1.8 64.3 18.9 13.1 38.2 16.3

Figure 15 shows the visualization results of YOLOv8n and the improved model of this
paper on the AI-TOD data set, respectively; based on the comparison, it can be seen that
the improved algorithm of this paper still has good detection accuracy with the same kind
of data set.
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6. Conclusions

In this study, firstly, we address the challenge of small target detection in remote
sensing images by successfully introducing a small target detection layer, which is able to
effectively preserve small target features that may be lost during the downsampling process
and significantly improve the accuracy of the model. This innovation enables our algo-
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rithm to better handle the case of complex backgrounds and dense targets, thus bringing
important performance gains to the task of target detection in remote sensing images.

However, after solving the problem of small target feature retention, we found that the
existing feature fusion approach is still insufficient, so we further innovated by introducing
the SSFF (Scale Sequence Feature Fusion) module into the neck network of the YOLOv8n
model. The introduction of this module changes the feature fusion strategy by effectively
fusing semantic and spatial information to further improve the accuracy of the model,
and it successfully reduces the number of parameters and the overall size of the model.
This novel feature fusion mechanism makes our algorithm more adaptable in dealing with
challenging situations, such as complex lighting and severe occlusion.

In addition, based on the characteristics of the model data observed in the experiments,
we independently developed HPANet and applied it to the model to replace the original
PANet, which has a very small model size and fast computing speed, and, at the same
time, excellent performance in small target detection accuracy, which is better than PANet
in the small target detection task. This innovation not only improves the performance of
the algorithm but also further reduces the size of the model, making the algorithm more
suitable for deployment and application in real-world scenarios.

We conducted rigorous experiments on two professional remote sensing data sets,
VisDrone and AI-TOD, and the experiments proved that compared with the basic YOLOv8n,
the improved model accuracy has been greatly improved, the number of parameters and the
model size have been significantly reduced to the degree of lightweight, and the algorithm
also has a good robustness and generality, and it can effectively cope with a variety of data
changes and noise. Comparison tests are conducted on some existing models with high
application rates, and the experiments prove that the algorithm proposed in this paper
performs well and outperforms the original algorithm and other typical target detection
algorithms in terms of accuracy, speed, and model size.

In the future, the algorithmic improvements proposed in this paper can focus on
several key aspects. First, the detection accuracy can be improved through more in-depth
network structure design and loss function optimization to ensure that the model can accu-
rately capture small target information in remote sensing images. Second, more targeted
data enhancement methods need to be designed for remote sensing image characteristics,
including simulating image changes under different weather and illumination conditions
and more effective broadening of small targets, so as to improve the model’s generalization
ability and robustness. In addition, a target feature enhancement mechanism can be intro-
duced to enhance the detection performance by utilizing the target’s own shape, texture,
and other feature information, which helps to improve the model’s ability to detect small
targets. Meanwhile, the design of a suitable adaptive receptive field mechanism enables
the model to dynamically adjust the size of the receptive field according to the size and
complexity of the target, so as to detect small targets of different scales more effectively.
Considering these aspects of improvement together, the performance and applicability of
the algorithm in this paper will be further improved in the task of small target detection in
remote sensing images.
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