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Abstract

Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in

the intercommunication between the cochlea and brain is a key process in the initiation and

progression of this disease. However, whether the cochlear properties can be influenced by

pathological signals associated with dementia remains unclear. In this study, using a mouse

model of Alzheimer’s disease (AD), we investigated the impacts of the AD-like amyloid β
(Aβ) pathology in the brain on the cochlea. Despite little detectable change in the age-

related shift of the hearing threshold, we observed quantitative and qualitative alterations in

the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the

cochlea. Our findings highlight the potential contribution of Aβ pathology in the brain to the

disturbance of cochlear homeostasis.

Introduction

The cochlea is situated within the intricate folds of the inner ear and plays a key role in hearing.

This peripheral organ comprises three tubular structures: the scala vestibuli, tympani, and

media (Fig 1). The scala media are immersed in a K+-rich extracellular fluid called endolymph.

In contrast, the scala vestibuli and tympani contain perilymph, an extracellular solution with

an ionic composition similar to that of general extracellular body fluids, including blood

plasma. Perilymph transmits sound waves that propagate through the tubule extending from

the scala vestibuli to the scala tympani, thereby initiating the mechano-electrical transduction

of auditory information in the sensory epithelium [1,2]. Perilymph interacts with other extra-

cellular body fluids, such as cerebrospinal fluid (CSF) and blood. Direct communication
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between the perilymph and CSF is facilitated by a narrow bony channel called the cochlear

aqueduct, which likely establishes a physical connection between the perilymphatic space of

the cochlea and the subarachnoid space of the brain [3]. Although water and small molecules

(< 5 kDa in molecular weight) can permeate this tiny channel [4–6], the precise nature of the

molecules exchanged between these two compartments remains unclear. In addition, peri-

lymph interacts with blood through the blood–labyrinth barrier [7]. This arrangement may

allow communication between the cochlea and other organs. Therefore, the inner ear may

indirectly communicate with the brain via the peripheral circulatory system, as diverse mole-

cules are exchanged between the blood and the CSF through the blood–brain barrier [8].

Common human brain disorders are associated with hearing impairments [9]. Notably,

dementia frequently coexists with hearing loss [10–12]; however, the relationship between

these two conditions remains analogous to a “chicken or egg” dilemma. In other words,

whether signal transmission from the ear to the brain, from the brain to the ear, or a combina-

tion of both underlies the onset and progression of the brain disorder is still unclear. Consider-

ing that cerebral atrophy is often detected in patients with age-related hearing loss [13], the

prevailing hypothesis is that hearing loss contributes to the advancement of cognitive decline.

In rodents, elevating the auditory threshold by exposure to noise or ototoxic drugs induces

pathological changes in the hippocampus and cognitive decline [14]. Conversely, whether

brain pathologies associated with dementia affect cochlear function remains elusive.

Alzheimer’s disease (AD) is the predominant form of dementia and is characterized by pro-

gressive memory loss and cognitive decline [15]. A key pathological feature of AD is the accu-

mulation of AD-like amyloid β (Aβ) aggregates in the brain, which exert neurotoxic effects

through various mechanisms. These processes include non-specific binding, which leads to

cell membrane permeabilization, and specific binding to pattern-recognizing membrane

receptors [16–18]. In addition, the effects of brain Aβ pathology on the peripheral tissues, such

as the heart, kidney, and liver, have been shown in patients with AD and AD animal models

[19–23]. Aβ pathology may also perturbate the homeostasis of the inner ear due to the poten-

tial relationship between hearing dysfunction and dementia [24]. Nevertheless, this hypothesis

has not been fully proven through experimental approaches.

In this study, we examined how Aβ deposition in the brain affects the cochlear properties

using a knock-in mouse model of AD, named AppNL-G-F/NL-G-F mice (KI mice). KI mice carry

three mutations identified in patients with familial AD: Swedish (NL), Arctic (G), and Beyr-

euther/Iberian (F) mutations. Introducing these mutations results in the formation of AD-like

Aβ aggregations in the brain [25]. Initially, we assessed hearing levels using auditory brainstem

response (ABR) measurements and found that age-related shifts in hearing thresholds in KI

mice were similar to those in control wild-type (WT) mice. Subsequently, we conducted quan-

titative and qualitative analyses of perilymph proteins by sampling fluid from live mice at dif-

ferent postnatal ages. The total protein content of the perilymph was approximately 1.5 times

higher in KI mice at 6 months of age, when cognitive decline starts to be detectable, than in the

WT mice [25]. Moreover, tandem mass tagging (TMT) for quantitative proteomic analysis

identified differentially abundant proteins in the perilymph of the two mouse types. Notably,

the abundance of proteins potentially related to cellular damage and inflammatory responses

was robustly altered in KI mice, suggesting a disturbance in perilymphatic homeostasis.

Finally, most altered proteins in the perilymph of KI mice differed from those previously

described in the CSF [26]. This observation implies infrequent protein exchange between peri-

lymph and CSF in mice, although conventional belief holds that these two compartments are

interconnected with each other. Our findings illuminate a conceivable association between Aβ
deposition in the brain and the disturbance of cochlear properties.
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Materials and methods

Ethical statement for animal experiments

All animal experiments were approved by the Animal Care and Use Committee of the Osaka

University Graduate School of Medicine (Reference Number 03-015-011). The experiments

were conducted under the supervision of the committee and per the Guidelines for Animal

Experiments of Osaka University and the Japanese Animal Protection and Management Law.

All animal handling and reporting complied with the ARRIVE guidelines [27]. All surgeries

were performed under anesthesia, and efforts were made to minimize suffering.

Animals

AppNL-G-F/NL-G-F mice (KI), AD knock-in mouse models harboring NL, G, and F mutations in

amyloid precursor protein (APP) genes in a homozygous manner [25], were kindly provided

by the RIKEN BioResource Research Center (Tsukuba, Japan). The mice were bred with a

C57BL/6J background. Appwt/wt (WT) and KI mice were generated by mating two heterozy-

gous mutant (AppNL-G-F/wt) mice. The mice were kept in cages at 23 ± 1.5˚C with 45 ± 15%

humidity under a regular 12-h dark/light cycle with ad libitum access to food and water. The

experimental procedures were conducted during the light phase of the cycle. The animals were

randomly assigned to each experimental group without blinding. WT and KI mice of either

sex were analyzed at approximately 3, 6, and 12 months of age (n = 8 for each genotype at each

age). Anesthesia was induced by intraperitoneal injection of a mixture of medetomidine

hydrochloride (0.75 mg/kg; Kyoritsu Seiyaku, Tokyo, Japan), midazolam (4 mg/kg; Sando,

Tokyo, Japan), and butorfal tartrate (5 mg/kg; Meiji Seika Pharma, Tokyo, Japan). Anesthetic

depth was monitored by assessing the toe pinch responses, corneal reflexes, and respiratory

rate as per the guidelines. In cases of insufficient anesthesia, an additional mixture of medeto-

midine hydrochloride (0.375 mg/kg), midazolam (2 mg/kg), and butorfal tartrate (2.5 mg/kg)

was administered. The experiments were only initiated once deep anesthesia was ensured.

Fig 1. Structure of mouse cochlea. An overview of the snail-shaped mouse cochlea (center and left panels) and the internal architecture of the cochlea (right panel) are

shown. A glass micropipette was inserted through a round window into the scala tympani to collect the perilymph fluid (center and right panels).

https://doi.org/10.1371/journal.pone.0303375.g001
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ABR measurements

The anesthetized mice were placed in a prone position in a soundproof booth equipped with

acoustic and electrical shielding (Acoustic Systems, Englewood, CO, USA). ABR assessments

were conducted using a setup comprising specialized hardware and software (RZ6 Processor

and BioSigRZ version 5.7.6 RRID:SCR_014820; Tucker-Davis Technologies, Alachua, FL,

USA). Subdermal needle electrodes were inserted at the vertex, under the pinnae of the left

ear, and beneath the pinnae of the contralateral ear (ground) of each animal. Cos2-gated 1-ms

tone burst stimuli (21/s, alternating polarity) spanning frequencies of 4, 8, 16, or 32 kHz and

featuring a 0.1-ms rising, 0.8-ms duration, and 0.1-ms falling phases were delivered to the test

ear via a closed-field speaker (MF-1; Tucker-Davis Technologies). Brainstem responses were

processed with a band-pass filter (0.3−5 kHz), and 200–500 artifact-free responses were aver-

aged to construct a waveform. For each stimulus frequency, the intensity was initially set to a

sound pressure level of 90 dB and gradually reduced in 5 dB increments until the pressure

level no longer elicited a discernable waveform. ABR thresholds, representing the minimum

stimulus level that induced a detectable response, were determined through visual assessment.

The ABR measurements were repeated if the threshold response was unclear. Throughout the

measurement, the animals were maintained with spontaneous respiration, and the body tem-

perature was kept near 37˚C with a heating pad (Natsume Seisakusho Co Ltd, Tokyo, Japan).

Perilymph was collected from mice at 6 months of age, as described in the “Collection of

cochlear perilymph from mice” section, whereas other animals were euthanized with an over-

dose of the anesthetic.

Collection of cochlear perilymph from mice

After completion of the ABR measurements, each anesthetized mouse was transferred to a

head holder, and one side of the cochlea was exposed from the ventrolateral direction [28].

Using a micromanipulator (MP-285; Sutter Instrument Co., Novato, CA, USA), a glass capil-

lary micropipette (World Precision Instruments, Sarasota, FL, USA) was carefully inserted

through a round window into the perilymphatic space of the scala tympani in the cochlea (Fig

1). Perilymph spontaneously flowed into the pipette without suction. This method allowed us

to obtain 1−2 μL of the fluid from each cochlea in a minimally invasive manner. Upon collect-

ing perilymph on one side, the same procedure was repeated on the opposite side. Perilymph

obtained from two mice (i.e., four cochleae) was mixed in a single microtube. Four samples of

each genotype were prepared. Before the proteomic analysis, the protein concentration of each

sample was determined using a standard Bradford assay by measuring the absorbance at 595

nm (TaKaRa Bio, T9310A, Shiga, Japan). Among the four samples from each WT and KI

mouse, the sample with the lowest protein content was excluded from subsequent analyses.

Proteomic analysis

The samples for liquid chromatograph-tandem mass spectrometry (LC-MS/MS) analysis were

prepared as previously described [29,30]. First, the perilymph samples were subjected to heat-

ing at 95˚C for 5 min in a detergent-containing buffer (100 mM Tris, 12 mM sodium deoxy-

cholate, 12 mM sodium N-lauroylsarcosinate; pH 8.5) to denature the proteins, and debris was

subsequently removed through centrifugation at 20,000 × g for 5 min. Subsequently, the pro-

teins in the sample were reduced with 5 mM dithiothreitol (DTT) at 50˚C for 30 min and

alkylated with 10 mM iodoacetamide at room temperature in the dark for 30 min. The reaction

was quenched by adding 5 mM DTT. The proteins were digested with lysyl endopeptidase

(Wako) at 37˚C for 6 h after a 5-fold dilution with 50 mM ammonium bicarbonate buffer (pH

8.0) and with sequencing-grade trypsin (Promega, Madison, WI, USA) at 37˚C overnight.
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Finally, the eluted tryptic digest was lyophilized using a centrifugal evaporator CC-105

(TOMY, Tokyo, Japan), followed by dissolution in 10 μL of 10 mM triethylammonium bicar-

bonate. A TMT 10-plex isobaric label reagent set (Thermo Fisher Scientific, Waltham, MA,

USA) in 5 μL of anhydrous acetonitrile was added to label identical TMT-tags to six perilymph

samples. After incubation at room temperature for 1 h, to quench the labeling reaction, the

samples were mixed with 1 μL of 5% hydroxylamine and incubated for 15 min at room tem-

perature. Then, the labeled samples were mixed in a single tube to quench the labeling

reaction.

LC-MS/MS analyses were performed as previously described, with minor modifications

[29]. Briefly, the peptides in the samples underwent separation at a flow rate of 300 nL/min on

a nano HPLC capillary column (C18, 3 μm, 100 Å pore size, 75 μm i.d., and 120 mm length;

Nikkyo Technos, Tokyo, Japan) for 180 min. The eluted peptides were introduced into a

Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific) controlled by Xcalibur 4.2

software and analyzed in a scan range of m/z 350–1,500 with a resolution of 70,000 at m/z 200

for MS1. The ions with peak intensities > 2.0 × 105 with a charge state from 2+ to 7+ were sub-

jected to MS/MS. In the second MS, the ions were fragmented via higher-energy collision dis-

sociation. Subsequently, the MS and MS/MS spectral data were analyzed by assigning the

spectra against the tryptic peptides of Mus musculus proteins using Proteome Discoverer 2.3

software (Thermo Fisher Scientific). The search results were filtered through a percolator with

a q-value threshold of 0.01. The intensities of the TMT reporter ions with an average reporter

S/N> 20 and a co-isolation threshold < 50% were used for quantification. Proteins with two

or more unique peptides were used for subsequent analyses. A p-value cut-off and an effect

size cut-off were used to define differentially abundant proteins as follows: p-value < 0.05 and

fold change either� 1.5 (for upregulated) or� 0.67 (for downregulated). This threshold is

widely used to determine whether a protein is upregulated or downregulated [31–33]. Protein

localization was defined based on the UniProt annotation. Comparable data for CSF proteo-

mic analysis were extracted from a previous study to compare differentially abundant proteins

in the perilymph of KI mice with those in the CSF [26].

Statistical analyses

All data are expressed as the mean ± standard error of the mean (SEM). Two-tailed Student’s

t-tests were used for comparisons between the two groups. One-way analysis of variance

(ANOVA), followed by Bonferroni’s post-hoc test, was conducted when comparing more than

two groups. Data distribution was assumed to be normal, and the variance was similar between

the groups that were statistically compared. No statistical methods were used to predetermine

the sample sizes; however, our sample sizes were similar to those generally used in the field

[34–36]. Differences between groups with p< 0.05 were considered statistically significant.

Microsoft Excel 2019 (Microsoft, Seattle, WA, USA) and Adobe Illustrator 2023 (Adobe, San

Jose, CA, USA) were used to create graphs. Microsoft Excel 2019 was used to calculate statisti-

cal parameters.

Results

Effect of brain Aβ pathology on hearing threshold

We compared the age-related changes in KI mice with those in WT mice to examine whether

AD-like Aβ pathology in the brain impacts hearing. As age-related hearing decline starts at

around 3 months and gradually progresses after that in this genotype, we measured the ABR

thresholds of either genotype at 3, 6, and 12 months of age [37]. Age-related hearing

impairment was evident across all measured frequencies (4, 8, 16, and 32 kHz) in KI mice; this
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profile was similar to that observed in WT mice (Fig 2). Moreover, in all three age groups, the

auditory thresholds at any frequency in the KI mice were comparable to those in the WT mice.

These results suggest that the accumulation of pathological Aβ aggregates in the brain of KI

mice is unlikely to accelerate hearing loss.

Relevance of brain Aβ pathology to the protein profile of cochlear

perilymph

Next, we elucidated whether any other elements in the cochlea would be affected by AD-like

Aβ pathology in KI mice. Because perilymph potentially communicates with the CSF and

blood plasma [4,5,38], pathological signals are possibly transmitted from the brain to the

cochlea directly or via peripheral circulation in KI mice. To test this hypothesis, perilymph was

collected from the cochleae of live mice (Fig 1). First, we measured the protein content of the

samples at three, six, and 12 months of age (Fig 3). In WT mice, the concentration gradually

increased with age, whereas in KI mice, the concentration peaked at 6 months of age. Notably,

at this time point, the protein content in KI mice was approximately 1.5 times greater than

that in WT mice (n = 4 samples for each genotype, 1.1 ± 0.14 mg/mL for KI, 0.70 ± 0.05 mg/

mL for WT mice, respectively, p = 0.045). At 3 and 12 months, little difference was detected

between WT and KI mice (n = 4 samples for each genotype at each age, 3 months: 0.63 ± 0.18

mg/mL for KI, 0.66 ± 0.13 mg/mL for WT, p = 0.87; 12 months: 1.1 ± 0.15 mg/mL for KI,

1.1 ± 0.2 mg/mL for WT, p = 0.77). Consequently, the most substantial disparity between KI

and WT mice likely occurred at 6 months of age.

Accordingly, we focused on 6 months of age and compared perilymph between KI and WT

mice using TMT-based proteomic analysis (Fig 4A). We identified 18 robustly upregulated

proteins and 21 markedly downregulated proteins in KI mice (Fig 4B and 4C). To characterize

these proteins, we categorized their localization into five classes: secreted, extracellular, mem-

brane, cytoplasm, and mitochondrial matrix, based on annotations in UniProt (Fig 4D).

Approximately 70% of the upregulated proteins (13 of 18 molecules) were associated with cel-

lular components (extracellular, membrane, cytoplasm, or mitochondrial matrix). This obser-

vation suggests that the increase in protein levels in KI mice was primarily attributable to the

leakage of cellular components into the perilymph. The remaining 30% (5 of 18 molecules)

Fig 2. Auditory brainstem response (ABR) thresholds of wild-type (WT) and AppNL-G-F/NL-G-F (KI) mice. WT and KI mice at 3, 6, and 12 months of age (n = 8 for each

group) were subjected to ABR measurements, and auditory thresholds at 4, 8, 16, and 32 kHz were determined. All the data recorded at each frequency are presented in a

panel with mean ± SEM. Statistics: one-way ANOVA (F5,42 = 16, p = 1.1 ×10−8 for 4 kHz; F = 16, p = 6.7 ×10−9 for 8 kHz; F = 15, p = 2.2 ×10−8 for 16 kHz; F = 9.9, p = 2.8

×10−6 for 32 kHz) with Bonferroni post-hoc test (p = 1 for all comparisons between WT and KI with the same age and the frequency).

https://doi.org/10.1371/journal.pone.0303375.g002
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were secreted proteins, including components involved in the innate immunity complement

system, such as complement proteins C8 (CO8B) and C9 (CO9). Activating the immune sys-

tem involves elevating complement proteins [39,40]. Therefore, in KI mice, inflammatory

responses likely extend into the cochlea at 6 months when the robust AD-like Aβ pathology is

present in the brain [25]. In addition, a considerable number of perilymphatic proteins were

downregulated in KI mice (Fig 4B and 4C). In this context, roughly half (11 of 21 proteins)

were associated with cellular components. The rest (10 of 21 proteins) were classified as

secreted proteins (Fig 4D). Notably, downregulated proteins included binding proteins for

insulin-like growth factor 1 (IGF-1), such as IBP4, IBP5, and IBP6 [41,42] (Fig 4C). Since IGF-

1 likely protects the cochlea from chronic inflammation and cell death [43,44] in KI mice, the

decrease in signaling molecules related to IGF-1 may mirror the disturbance in cochlear

homeostasis.

Differential impact of brain Aβ pathology on perilymph and CSF

We then compared our perilymphatic proteomic data with the CSF data previously described

to gain insight into how the protein profile in the cochlea in KI mice was disturbed by the AD-

like Aβ pathology in the brain [26]. Among the proteins that were quantitatively altered in the

CSF of KI mice compared to WT mice (14 upregulated and 22 downregulated proteins), only

a marginal subset (one upregulated and two downregulated proteins) overlapped with the cat-

alog of our perilymph analysis (Fig 5A and 5B). Therefore, changes in the CSF profile are

unlikely to contribute directly to changes in the perilymphatic profiles of KI mice. Neverthe-

less, similar to our data (Fig 4D), more than half of the upregulated and downregulated pro-

teins in the CSF were cellular components (~60%: 8 of the 14 upregulated proteins and 13 of

the 22 downregulated proteins, respectively) (Fig 5C). The contrasting results in the perilymph

and CSF indicate that the sources of the differentially expressed proteins in the extracellular

fluid may be distinct between the cochlea and brain in KI mice.

Fig 3. Protein content of the perilymph obtained from WT and KI mice. The concentrations of the perilymph from WT and KI

mice at 3, 6, or 12 months of age (n = 4 samples for each group) were measured; all the data are plotted in each panel with

mean ± SEM. Statistics: two-tailed Student’s t-test (p = 0.65, 3 months; p = 0.045, 6 months; p = 0.78, 12 months). *p< 0.05.

https://doi.org/10.1371/journal.pone.0303375.g003
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Discussion

In this study, we aimed to address whether and how AD-like Aβ pathology in the brain can

influence the cochlea by analyzing KI mice, an AD model that harbors multiple disease-related

mutations in App and replicates a key AD-like pathology (i.e., Aβ deposition) in the brain [45–

47]. Age-related changes in hearing thresholds in KI mice were similar to those observed in

WT mice. We also explored perilymph and identified discernible alterations in the protein

landscape in KI mice at 6 months of age compared to their counterparts in WT mice.

Fig 4. Comparison of the landscape of the perilymphatic proteins between WT and KI mice. (A) Schematic illustration of tandem mass tagging

(TMT) proteomic analysis of the perilymph samples. (B) Volcano plots displaying the differentially abundant proteins in the perilymph of KI and WT

mice. The horizontal dotted line represents the cut-off p-value (0.05), whereas the vertical dotted lines show cut-off thresholds for downregulated (0.67)

and upregulated proteins (1.5). (C and D) List and characterization of the quantitively changed proteins in KI mice compared to that in WT mice. The

names of the up- or downregulated proteins are shown in panel C. In panel D, these proteins were classified in terms of the localization to the five

different categories according to the annotation in UniProt.

https://doi.org/10.1371/journal.pone.0303375.g004

PLOS ONE Proteomic analysis of a cochlear extracellular fluid in an Alzheimer’s disease mouse model

PLOS ONE | https://doi.org/10.1371/journal.pone.0303375 May 10, 2024 8 / 15

https://doi.org/10.1371/journal.pone.0303375.g004
https://doi.org/10.1371/journal.pone.0303375


Epidemiological studies in humans have demonstrated a potential link between dementia

and hearing loss [48–50]. In a different AD model, termed 3×Tg-AD mice, hearing loss

induced by acoustic trauma causes inflammatory reactions and synaptic dysfunction in the

hippocampus and promotes cognitive decline [51]. In contrast, the similarity in the ABR

thresholds between KI and WT mice at any postnatal age suggests that Aβ-deposition in the

brain negligibly contributes to age-related hearing loss progression. Nonetheless, in APP/PS1

mice, an alternative AD model that overexpresses chimeric mouse/human APP and mutant

human presenilin 1 (PS1) under the control of mouse prion protein (PrP) promoter elements,

Fig 5. Protein profiles of the perilymph and cerebrospinal fluid (CSF) in KI mice. (A) Venn diagrams showing the numbers of up- or

downregulated proteins in perilymph or CSF (left: upregulated, right: downregulated). (B and C) List and characterization of the

quantitively changed proteins in the CSF of KI mice compared with that in WT mice. The names of up- or downregulated proteins are

displayed in panel B. In panel C, the proteins are classified in terms of localization into five different categories according to the annotation

in UniProt. The data are derived from the work of Jiang et al. [26].

https://doi.org/10.1371/journal.pone.0303375.g005
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the hearing threshold is elevated by approximately 20 dB sound pressure level compared to the

threshold in WT mice as early as 3 months of age [11]. Because this phenotype precedes a sig-

nificant accumulation of Aβ plaques in the brain (6 months old), the hearing impairment is

unlikely to be attributed to brain pathology [52]. Given that the induction of transgenes by the

PrP promoter is not exclusive to brain cells [53], expression of APP, PS1, or both outside the

brain may affect the auditory tract.

We observed quantitative and qualitative changes in perilymphatic proteins in KI mice.

However, how this disturbance is induced is unclear. Approximately 70% of the upregulated

proteins belonged to the cellular components category encompassing extracellular, membrane,

cytoplasm, and mitochondrial matrix. This result suggested that the elevated protein fractions

in the perilymph of KI mice are likely released from damaged cells in the cochlea, brain, or

peripheral tissues. First, because the age-related progression of hearing loss was not accelerated

in KI mice, damage to the cochlea was likely minimal. Second, the upregulated cellular compo-

nents in the perilymph of KI mice encompassed a few proteins specific to peripheral tissues,

such as myosin regulatory light chain 2, fatty acid-binding protein 4, and carbonic anhydrase 1

(CAH1) [54] (Fig 4C and 4D); these proteins should be transported from the peripheral tissues

to the perilymph via peripheral circulation. Finally, in KI mice, only a few up- or downregulated

proteins overlapped between the perilymph and CSF (Fig 5), likely excluding the direct trans-

port of proteins between these fluids. Therefore, we can hypothesize that the changes in peri-

lymphatic protein composition in KI mice are mediated primarily by transferring cellular

proteins from blood plasma to the cochlea via the blood–labyrinth barrier [55]. Then, what is

the pathological significance of disturbances in the perilymphatic protein profile of KI mice?

Notably, the levels of complement proteins, which are potential inflammatory factors, were ele-

vated. This observation suggests that at 6 months of age, the cochlea in KI mice may be engaged

in inflammatory responses to some extent. Acoustic trauma induces inflammation in the peri-

lymph, and this pathological state is likely involved in hearing impairment [56]. Similarly,

chronic inflammation in the cochlea of KI mice may result in the mice being more susceptible

to hearing loss upon being subjected to external stresses, although the animals exhibited appar-

ently normal hearing thresholds (Fig 2). To prove this idea, further studies are needed to clarify

the relationship between perilymphatic protein repertoire and cochlear function.

Although perilymph and CSF are physically interconnected via the cochlear aqueduct [4–

6], whether the protein profiles in the two compartments are similar is uncertain. Therefore,

we compared the results from our perilymph proteomic analysis with the corresponding data

in the CSF [26]. Only a few proteins were shared between perilymph and CSF, suggesting min-

imal protein exchange between the two fluids in mice despite the cochlear aqueduct. Further-

more, in WT mice, the perilymph protein content is approximately three times higher than

that of the CSF [57]. These observations support the hypothesis that the perilymph has a pro-

tein environment that is relatively independent of the CSF, at least in mice. Nevertheless, try-

pan blue, a water-soluble dye with a molecular weight of< 5 kDa, reaches the brain when

injected into the inner ear [3]. Therefore, small molecules such as sugars, amino acids, and

nucleic acids may permeate the cochlear aqueduct in mice, affecting cochlear cells, and modu-

lating the protein profile of the fluid. Notably, the aqueduct is larger in humans (~1 mm in

diameter) than in mice [58,59]. Therefore, in humans, the cochlear aqueduct may serve as a

passage for macromolecules, including proteins.

This study provides informative data on the cochlear environment in the AD mouse model,

but has a few limitations. First, the perilymph samples collected from mice of both sexes were

mixed and analyzed (Fig 4); this approach may involve a confounding factor. Nevertheless, in

each series of the experiments, the genetic background of the animals we used and their age

were unified (i.e., C57BL/6J and the ages of 3, 6, and 12 months old) to minimize effects other
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than AD-like Aβ pathology. Second, because the volume of perilymph in a cochlea is small, in

the sampling of this fluid we could not completely rule out the possibility of contamination by

cellular components and/or other extracellular solutions. The third issue is the relatively small

sample size used in the study (n = 3; see Fig 4). Nonetheless, previous studies reporting the

results of TMT analysis have conducted similar experiments with the same number of biologi-

cal replicates as that used in our work to examine statistically significant differences among

multiple subject groups [29,32]. This possible limitation is also related to the technical diffi-

culty involved in our procedure and ethical concern for animal experiments. In a mouse

cochlea, the volume of perilymph is extremely small, approximately 5 μL [60]. Therefore, col-

lection of this fluid with minimal contamination of other fluids and cells requires a high level

of skill. In other words, increasing the sample size must be accompanied by a significant

increase in the number of animals we test. In this context, we need to pay attention to such eth-

ical concerns that, in general, the number of animals used in any study must be minimized as

much as possible. Taken together, we concluded that the sample size described in this study is

acceptable. Finally, although the results detected in the perilymph of KI mice by LC-MS/MS

should be validated by other approaches such as western blot and/or ELISA analyses, we did

not conduct these assays. This strategy is attributed to our standpoint of minimization of the

number of the tested mice as mentioned above.

In conclusion, our findings reveal the potential impact of AD-like pathology in the brain on

the homeostasis of perilymphatic proteins in the cochlea. Taking this into consideration, it is

of interest to identify the mechanisms underlying the up- and downregulation of the perilym-

phatic proteins in KI mice and the pathophysiological roles that these proteins play in cochlear

activity and brain function. In particular, the latter issue must be crucial from a clinical stand-

point. By clarifying the relationship between hearing loss and AD in mice, we were able to

apply our findings to the establishment of a diagnostic biomarker for AD-related hearing

impairment in the future, although collecting perilymph from human cochlea is challenging

and invasive under the existing clinical situation. Considering the relationship between differ-

ent neurodegenerative diseases and hearing impairment [48,61–64], disturbances in the peri-

lymph profile may be common across patients with several brain disorders. A possible target is

Parkinson’s disease; this disease is related to a-synuclein deposits in the brain, reminiscent of

Aβ deposits in the brain of patients with AD. Indeed, in this study a-synuclein was found in

perilymph, although little change was detectable between the samples taken from WT and KI

mice. Further studies are required to uncover the pathophysiological significance of brain-to-

perilymph remote signaling.
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