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Abstract
Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated 
neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains 
unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing 
two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing 
microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp 
increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, 
ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell 
cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple 
members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell 
RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, 
mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the 
inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by 
increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory 
response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the 
dysfunction and death of bystander neurons.
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Significance Statement

Even after the introduction of effective antiretroviral therapy (ART), mild forms of HIV-associated neurocognitive disorder (HAND) are 
found in 30–50% of HIV-positive people. To dissect the pathogenic mechanisms underlying development of HAND, two inducible 
pluripotent stem cell-derived human brain organoids were used as experimental models. Our results are consistent with an initial 
inflammatory response in infected microglia leading to the activation of type I IFN-regulated genes and proinflammatory genes. 
This inflammatory response subsequently spreads to other types of uninfected brain cells including neurons, generating a toxic mioc
roenvironment that disrupts normal neuron function and survival. This response is blunted but not eliminated by the introduction of 
ART, consistent with the persistence of HAND in the post-ART era.

Competing interests: L.C.N. serves as a scientific advisor to Abbvie and ViiV Healthcare, serves on the board of Cytodyn and has finan
cial interests in Ledidi AS, all for work unrelated to this study. After the completion of this work, W.C.G. was appointed President and 
Chief Scientific Officer of InvisiShield Technologies Ltd.––the work of this company has no overlap with the subject matter of this article. 
All other authors have declared that no competing interests exist. 
Received: January 20, 2024. Accepted: April 17, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

PNAS Nexus, 2024, 3, pgae179 

https://doi.org/10.1093/pnasnexus/pgae179
Advance access publication 29 April 2024 

Research Report

https://orcid.org/0000-0002-9104-7730
https://orcid.org/0000-0002-0353-0037
https://orcid.org/0000-0002-5464-1976
https://orcid.org/0000-0003-4600-275X
https://orcid.org/0000-0001-9896-8615
mailto:warner.greene@gladstone.ucsf.edu
https://creativecommons.org/licenses/by/4.0/


Introduction
Approximately 39 million people worldwide are infected with HIV, 
with 1–2 million new infections occurring each year. Despite in
creasingly widespread use of highly effective antiretroviral ther
apy (ART), mild cases of HIV-associated neurocognitive disorder 
(HAND) continue to occur in 30–50% of patients living with HIV 
(1–3). Affected individuals present with a broad spectrum of 
neurological deficits including decreased attention, focus, and 
memory; lack of motivation; irritability; depression; and slower 
physical movements. All of these symptoms can negatively im
pact quality of life.

HIV infection of the brain usually occurs within 2–4 weeks after 
initial infection, HIV invades the central nervous system (CNS) (4). 
T cells and monocytes infected with the virus are capable of cross
ing the blood–brain barrier (5). In turn, HIV is transmitted to 
CNS-resident tissue macrophages and microglia (6–8) that com
prise between 0.5 and 16% of all cells in the adult brain (9, 10). 
These target cells, especially microglia, likely play a prominent 
role in HAND pathogenesis (11–14).

HIV infection of microglia alters their state of activation, viabil
ity, and metabolism (15–18). Within infected microglia, expression 
of HIV gp120 Env, Vpr, Tat, and viral RNA are readily detectable. In 
addition, proinflammatory cellular pathways leading to the pro
duction of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis 
factor alpha (TNF-α), and reactive oxygen species are activated 
and could play a role in neuronal injury and apoptosis (18–26). 
Of note, most HAND research so far involves cell culture systems 
where viral proteins are overexpressed or transgenic models 
(27–30), that fail to fully recapitulate human immune responses. 
While HIV infection of primary human fetal microglia has been 
documented (31), these cells are not widely accessible, limiting 
their utility for molecular studies of HIV-induced pathologies 
underlying HAND pathogenesis.

Preclinical studies of HAND have extended to the use of various 
in vivo models including not only transgenic and humanized mice 
and rats but also nonhuman primate models (27–30). However, 
the intrinsic cost and lack of broad availability of these models 
have limited their utility. We have elected to use inducible pluri
potent stem cells (iPSC’s) to generate human brain organoids 
that are comprised of a mixture of different types of brain cells in
cluding microglia. These brain organoids recapitulate the diverse 
cellular composition and three-dimensional (3D) environment 
found in the fetal human brain. Following HIV infection of two dif
ferent organoid models (cerebral organoids and choroid plexus or
ganoids), we have identified the cells are targeted by the virus and 
defined the molecular events that are evoked by infection using a 
variety of techniques including single-cell RNA-seq.

Results
HIV principally infects microglia in cerebral brain 
organoids but changes in the microenvironment 
promote death of bystander neurons
To generate the cerebral organoids containing microglia cells, we 
mixed wild-type (WTC11) iPSCs with a reprogrammed line, 
MG-iPSC, where doxycycline drives expression of different tran
scription factors needed for differentiation of microglia (32). 
After culturing the organoids for 5 weeks, we measured expres
sion of cell markers identifying microglia, neurons, astrocytes, 
and neuronal progenitor cells (Fig. S1). All four cell types were pre
sent, and the cerebral organoids exhibited a predominantly dorsal 
forebrain region specification. Ventricle-like structures filled with 

fluid and lined by Sox2/Nestin-positive neural progenitors were 
observed and found. Additionally, beta-tubulin III (Tuj1)/ 
MAP2-positive neurons were detected in the outer layer 
(Fig. S1B). Notably, astrocytes were only rarely observed at early 
time points but appeared after 50 days (Fig. S1C). IBA1-positive 
microglia were readily detected, often surrounded by intercalat
ing neurons (Fig. S1D).

To ensure a high HIV infection rate in cerebral organoids, we in
itiated infection at day 14 representing an early stage of organoid 
development. Cultures were continued for an additional 40 days 
post-infection (dpi), followed by microscopic examination and im
munostaining. HIV infection was detected using anti-Gag anti
body (Fig. 1). As expected, no Gag staining was detected in 
mock-infected organoids. Infected cells exhibited the morphology 
of microglia (Fig. 1A), and their cellular classification was con
firmed by dual staining with IBA1, a microglia marker (Fig. 1B) 
and anti-Gag to identify infected cells. To determine whether 
HIV also establishes productive infection in astrocytes, the most 
abundant immune cells in the CNS, cerebral brain organoids 
were infected with HIV-1 and analyzed approximately 60 days 
later. No productively infected astrocytes were identified 
(Fig. 1C). Of note, while neurons were not directly infected 
(Fig. 1D), progressive death of these cells was observed in infected 
but not uninfected organoids (Fig. 1E).

To investigate the effects of ART on HIV infection, 3-month-old 
cerebral organoids were infected with ADA for 3 days, then sub
jected to ART treatment. Supernatants were collected every 3 
days and measured for p24 by ELISA. ART treatment significantly 
reduced levels of p24-Gag measured by ELISA, a finding confirmed 
by anti-p24-Gag immunostaining (Fig. S2A and B).

HIV infects microglia in ChP brain organoids
Cerebrospinal fluid (CSF) is produced by the choroid plexus (ChP) 
present in each of the ventricles of the brain. The choroid plexus 
contains a capillary rich core surrounded by a single layer of cu
boidal epithelial cells whose tight junctions form the blood- 
cerebrospinal fluid barrier. This barrier regulates the movement 
of molecules between the systemic circulation and CSF (33). 
Cells like macrophages, microglia, dendritic cells, and T cells 
also traffic through ChP to gain entry into the CSF. Similarly, 
HIV may gain entry into the CNS through the choroid plexus. 
Using a method described by Ormel et al. (34), we generated ChP 
organoids containing microglia using two iPSC lines (WT-iPSC 
and MG-iPSC). After 7–8 weeks, ChP brain organoids containing 
chambers filled with cerebrospinal fluid were evident (Fig. 2A). 
Transthyretin (TTR) corresponds to a choroid plexus marker. 
This protein mediates transport of thyroid hormones and retinol 
from the bloodstream into the cerebrospinal fluid. The ChP orga
noids displayed columnar and cuboidal epithelia expressing TTR 
as well as the presence of tight junctions as indicated by claudin 
5 staining. These ChP stromal cells also expressed Delta Like non
canonical notch ligand 1 (DLK1) commonly detected in the mar
ginal and pseudostratified cells of the third ventricle of fetal 
brain (35) (Fig. 2B–D). We conclude that the established brain orga
noids generated in vitro correspond to ChP tissue.

To understand the potential interplay of HIV with ChP organo
ids, we initiated HIV infection at day 17 and cultured the cells for 
an additional 30 days before immunostaining. As in the cerebral 
organoids, microglia were principal targets of HIV infection in 
the ChP organoids as confirmed by dual immunostaining with 
antibodies specific for IBA1 and Gag (Fig. 2E). In accordance with 
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our earlier studies, direct HIV infection of neurons was not ob
served (Fig. 2F).

ART markedly reduces HIV replication but does 
not completely eliminate inflammation in ChP 
organoids
To analyze whether HIV infection alters the expression of various 
cytokines and chemokines in the ChP organoids, RT-qPCR em
ploying specific cytokine/chemokine primers was used to study 
the infected ChP organoids. CCL2 and CXCL10 transcripts were 
upregulated after 30 days (Fig. 3A) and 60 days (Fig. 3B) of infec
tion, as were IFN-a, IFN-b, ISG15, and IFI16 transcripts (Fig. S3A 
and B). Notably, transcription of CCL5, a natural ligand of CCR5 

and a potent HIV-1 entry inhibitor (36), was reduced during HIV in
fection at both of 30 and 60 dpi.

To test whether ART effectively inhibits HIV infection in the 
ChP organoids, enfuvirtide, darunavir, and doravirine (all at 
20 nM final concentration) were added after 50 days of HIV infec
tion, and p24-Gag protein levels were monitored in the super
natant by ELISA every 3 days. ART significantly reduced HIV 
replication in the ChP organoids (Fig. 3C). ART also attenuated 
but did not eliminate the increase in CCL2 and CXCL10 expression 
seen in supernatants obtained 3, 6, 9, and 12 dpi compared to the 
mock-infected control group (Fig. 3D, E). These findings suggest 
that the inflammatory response occurring in response to HIV in
fection is only partially inhibited by the addition of ART. In the 
ChP, CCL2 and CXL10 may serve to recruit more immune cells 
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Fig. 1. HIV infects microglia in cerebral organoids. A) Cerebral organoids were either mock-infected or infected with R5-tropic HIV-1 ADA on day 14 and 
analyzed on day 54 of culture. Anti-Gag immunofluorescence staining was employed to detect HIV-infected cells while anti-SOX2 immunostaining was 
used to identify neuronal progenitor cells. DAPI was used to stain DNA of all cells. Magnification is indicated for each panel. B) Confocal images of 
antibody immunostaining for IBA1 and HIV Gag in mock-infected (upper row) and HIV-infected organoids (lower row). Note co-immunostaining of a 
subset of IBA1-positive microglia, and Gag positive HIV-infected cells. Magnification is 60× for all panels. C) Confocal images of immunostaining for 
astrocytes (GFAP) and HIV Gag. Note an absence of detectable co-immunostaining. Magnification is 60× for all panels. D) Cerebral organoids were infected 
with HIV-1 ADA on day 14 and analyzed on day 54. Immunofluorescence staining detecting HIV (anti-Gag immunostaining), neuronal cells (anti-MAP2 
immunostaining), and microglia cells (anti-IBA1 immunostaining). Magnification is 60× for all panels. E) Immunofluorescent confocal images of neurons 
stained with anti-TUJ1 antibody, antibody and cleaved (activated) Caspase-3, and nuclear DNA staining with DAPI. Magnification is 60× for all panels.
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into the brain, including T cells and monocytes that contribute to 
the ongoing low levels of inflammation that could contribute to 
development of mild forms of HAND.

HIV infection activates an inflammatory response 
in microglia present in ChP organoids
To determine how HIV infection impacts individual host cells, we 
performed single-cell RNA-seq (scRNA-seq) on HIV-infected ChP 
organoids. Distinct cell types within the organoids, including 
neural progenitor cells, neurons, microglia, mature, and imma
ture choroid plexus cells, stroma, and neural epithelia cells were 
identified based on cell-specific marker gene expression patterns 
(Fig. 4A). Next, we examined expression of HIV receptor genes, in
cluding CD4, CXCR4, and CCR5 within these populations. CCR5 

was only expressed in microglia cells, and at low levels. CD4 
was mainly expressed in microglia while CXCR4 was detected in 
in a much broader array of cell types (Fig. 4B). These results are 
consistent with findings recently reported by Gumb et al. (37).

To examine changes in gene expression occurring in microglia 
infected with HIV, we enriched these cells using CD11B+ microbe
ads. scRNA-seq analyses revealed HIV infection downregulated 
expression of CCL3L3, CCL3, CCL4L2 and CCL4 (Fig. 4C). These 
chemokines have been reported to exert anti-HIV activity (38, 
39) and thus their downregulation could encourage further viral 
spread. In contrast, genes involved in innate immune responses, 
neutrophil degranulation, and inflammatory responses were up
regulated (Fig. 4F). Numerous interferon-responsive genes were 
also activated, including MX1, ISG15, ISG20, IFI27, and IFITM3. 
Similarly, HIV infection upregulated the S100 family of genes, 
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including S100B, S100A6, S100A7, S100A8, S100A9, S100A10, 
S100A11, and S100A12 (Fig. 4D and E). Inflammation is induced 
by S100 family members by binding to specific receptors includ
ing the toll-like receptor 4, CD147/EMMPRIN (extracellular ma
trix metalloproteinase inducer), Receptors for advanced 
glycation, and specific G-protein-coupled receptors. These bind
ing events lead to subsequent activation of the NF-kappa B and 
AP1 transcription factor pathways promoting an inflammatory 
response (40). Of note, increased expression of S100B, S100A4, 
S100A6, S100A8, and S100A9 has also been linked with 
Alzheimer’s disease (41). RT-qPCR validated increased expres
sion of RNAs corresponding to S100 family members (Fig. S3D), 
and immunostaining further confirmed increased S100A9 pro
tein in microglia (Fig. S3C). Additionally, several other chemo
kine/cytokine genes involved in inflammatory responses were 
upregulated including CCL2, CCL8, CXCL13, CXCL10, and IL32 
(Fig. 4I).

In contrast, various microglial genes were specifically downre
gulated following HIV infection including the TREM2 receptor and 
ABCA1 transporter (Fig. 4G and H). In brain, TREM2 is predomin
antly expressed on microglia, and loss of TREM2 reduces phago
cytosis and anti-inflammatory activity within these cells (42). 
Reduction in ABCA1 transporter expression impairs cholesterol 
efflux, a response linked to increased inflammation (43). 
These results suggest that the upregulation of the interferon- 
related and S100 family of genes coupled with downregulation 

of ABCA1/TREM2 may combine to induce inflammation in 
HIV-1 infected brain tissue.

To examine the gene expression patterns in HIV-infected ra
ther than bystander uninfected microglia, we realigned all the 
single-cell sequencing reads with the HIV-1 AD8 genome se
quence to identify HIV-infected RNA+ cells. As expected, no HIV 
transcripts were detected in noninfected organoids, but viral 
RNA sequences were detected in the infected organoids primarily 
in microglia (Figs. 5A and B, S3E). As anticipated based on the 3′10x 
Genomics single-cell assay and mapping to a consensus reference 
sequence, alignment of HIV transcripts in microglia was biased to 
the 3′ and 5′ long terminal repeat regions (Fig. 5B). Compared to 
bystander uninfected microglia, the infected microglia exhibited 
upregulation of S100 family genes (S100B and S100A9), several 
chemokines including CCL13, CCL2, CCL8, CXCL10, and CXCL8, 
and genes indicating microglia activation, AIF1 and CD74 
(Fig. 5C). Pathway analysis revealed upregulation of genes in
volved in cytokine-mediated and interferon-gamma-mediated 
signaling, as well as neutrophil degranulation (Fig. 5D). GO ana
lyses of downregulated genes in infected microglia revealed an en
richment for genes involved in regulation of microtubule 
polymerization/depolymerization, RNA polymerase II transcrip
tion, and genes involved in neuron migration and forebrain neu
ron differentiation (Fig. 5E). Together, these results highlight 
how HIV infection of microglia triggers an inflammatory response 
leading to microglia dysfunction.
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HIV infection elicits a broader inflammatory 
response involving uninfected stromal cells, 
mature ChPs, immature ChPs, and NPC
To determine how HIV infection impacts the expression of host 
genes in cell types other than microglia, we analyzed mature 
ChP, ChP stromal cells, neural progenitor cells (NPC), and imma
ture ChP cells from our scRNA-seq datasets. Following infection, 
we observed upregulation of many inflammatory cytokines/che
mokines including IL6, CCL2, CCL3, CCL7, CXCL3, CXCL6, 
CXCL10, CXCL11, CXCL16, and CXCL17 in ChP stroma cells 
(Fig. 6A); CXCL1, CXCL8, CXCL10, CCL2, CXCL17, IL6, and IL32 in 
mature ChP (Fig. 6B); CXCL10, CXCL8, CCL2, and IL32 in NPCs 
(Fig. 6C); and CXCL17, CXCL10, CXCL16, IL11, CCL2, and IL32 in im
mature ChP (Fig. S4B). Pathway analysis revealed that innate im
mune response, cytokine signaling in the immune system, and 
apoptosis were occurring in these cell types (Figs. 6D–F and S4A). 

Closer inspection of the upregulated genes in ChP stroma cells 
and mature ChP cells also identified several interferon-inducible 
genes including ISG15, IFI35, IFI6, and MX1 (Fig. 7A and B). After 
HIV infection, S100 family genes, including S100A7, S100A8, 
S100A9, and S100P, were significantly upregulated in ChP stroma, 
mature ChPs, NPCs, and immature ChPs (Figs. 7C–E and S4C). 
Several genes involved in cellular responses to HIV infection, 
including LCN2, ICAM1, SOD2, TNIP1, and INHBA, were also 
significantly upregulated during HIV infection (Figs. S4D and S5) 
(44–48). Notably, LCN2 and SOD2 have been strongly linked to 
HIV-associated neuronal damage (46, 47).

Genes involved in multicellular organismal processes, cell dif
ferentiation, regulation of cell communication, and biological 
regulation, were downregulated in ChP stroma following HIV in
fection (Fig. 7F). GO analysis of HIV-downregulated genes in ma
ture ChPs revealed an enrichment of genes associated with 
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cilium-mediated motility, axoneme assembly, epithelial cilium 
movement including extracellular fluid movement, cilium or 
flagellum-dependent cell motility, and CSF circulation (Fig. 7G). 
Taken together, these findings suggest that HIV infection disrupts 
cellular processes involved in cell movement and fluid circulation. 
In addition, multiple metabolic processes linked with RNA, nitro
gen compounds, and macromolecules were downregulated in 
NPCs (Fig. 7H). Overall, our findings reveal that HIV infection of 
microglia induces robust changes in the gene expression profiles 
of bystander cells suggesting the inflammatory response occur
ring in microglia fundamentally alters the cellular microenviron
ment in a way that favors the broader spread of inflammation.

HIV infection increases neuroinflammation, 
reduces neuronal metabolism, and impairs 
neurotransmitter transport
Since neuronal dysfunction and death play central role in HAND, 
we next focused attention on changes in neuronal gene expres
sion that occurred following HIV infection of microglia in the orga
noids. Analysis of the scRNA-seq data for neurons revealed 
increased expression of genes involved in the innate immune 

response, cytokine signaling in the immune system, cellular sen
escence, and cell death (CASP1, PMAIP1, BID, and PERP) (Fig. 8A); 
genes related to inflammation or neurodegenerative disease, 
such as S100A6/A7/A8/A9 and S100P (Fig. 8B); and genes associ
ated with type I interferon production including ISG15, ISG20, 
IFI27, IFI35, IFI6, and MX1 (Fig. 8C). Genes encoding the serum 
amyloid A proteins SAA1 and SAA2, which are involved in amyloid 
plaque aggregation, were also upregulated in neurons present in 
infected ChP organoids, suggesting inflammation-induced neur
onal damage/degeneration (49, 50) (Fig. 8D). This finding was fur
ther corroborated by increased expression of a number of 
proinflammatory chemokine/cytokine genes (CCL2, CCL8, 
CXCL10, CXCL8, IL1B, IL6, and IL32) (Fig. 8E). Intriguingly, HIV in
fection also increased neuronal expression of the HIV 
Nef-interacting genes ARF1 and AP1S1 (Fig. S5F) raising the possi
bility that extracellular Nef might play an unidentified role in 
neurotoxicity. We also observed that LCN2 and SOD2, two bio
markers of HAND (46, 47), were markedly elevated in neurons fol
lowing HIV infection of the organoids (Fig. S5B).

GO analysis of downregulated genes in neurons revealed 
enrichment for genes involved in nervous system development, 
generation of neurons, neurogenesis, RNA/nitrogen compound 
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metabolic process, macromolecule biosynthetic process, cell 
communication, axo-dendritic transport, modulation of chemical 
synaptic transmission, and regulation of trans-synaptic signaling 
(Fig. 8F). Together, these findings underscore how HIV infection of 
microglia profoundly alters the gene expression profile of by
stander neurons likely driving major changes in neuronal func
tion, synaptic transmission, and viability.

Discussion
While ART reduces the severity of HIV-associated brain disease, 
up to 30–50% of HIV-positive individuals continue to exhibit mild
er forms of HAND. The pathophysiological changes associated 
with HAND are not well understood due to a paucity of inform
ative experimental models and limited access to useful 
HIV-infected human brain samples. Here, we describe two brain 
organoid models and their use to examine the effects of HIV infec
tion on multiple brain cell types. We chose brain organoids for 
these studies because they have proven valuable in investigation 
of various neurodevelopmental abnormalities including autism 
spectrum disorders and microcephaly associated with Zika virus 
infection (51–54). However, most of these prior studies utilized 
brain organoids lacking microglia, the primary cellular target for 
HIV in the brain. To address this shortcoming, we differentiated 
engineered iPSC cells into microglia and incorporated these cells 
into developing iPSC-derived brain organoids. In studies of both 
cerebral and ChP organoids, we find that HIV predominantly 

infects microglia in agreement with prior studies (8, 55–57). 
Furthermore, our findings suggest that astrocytes do not support 
productive HIV replication and are likely poorly infectable due to 
limited CCR5 expression.

A likely cause of HAND symptoms is chronic immune activa
tion and inflammation, which persists in people living with HIV 
at low levels despite addition of ART (58, 59). Indeed, although 
ART effectively suppresses HIV replication in ChP organoids, it 
does not completely abrogate production of the proinflammatory 
chemokines (CXCL10 and CCL2). In the pre-ART era, CXCL10 and 
CCL2 were regarded as biomarkers for HAND. CCL2 and CXCL10 
expression are also increased in the CSF of people living with 
HIV (60) as well as in SIV-infected models of simian encephalitis 
(61). Our experiments show that one of the cellular sources of 
CXCL10 and CCL2 is infected microglia. In addition, these infected 
microglia upregulate numerous type I interferon-responsive 
genes (ISG15, ISG20, MX1, and IFI6), as well as S100 calcium- 
binding proteins (S100B, S100A6/A7/A8/A9) (62, 63). The S100 fam
ily of proteins are known mediators of inflammation but also help 
regulate a variety of other intracellular and extracellular re
sponses including cell death, proliferation, differentiation, and 
migration (40). In addition to their role in inflammation, recent 
studies indicate that the S100B, S100A6, S100A8, and S100A9 pro
teins play a role in aging and neurodegeneration (40, 64–67). 
Numerous members of the S100 family are increased in the brains 
of Alzheimer’s disease patients as a result of astrocyte and micro
glial activation (41). Not only does S100A8/A9 operate as an 
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inflammatory response gene, it also amplifies inflammatory sig
nals by promoting the release of proinflammatory cytokines and 
activating NF-κB, a “master regulator” of inflammation (68). 
These findings suggest that the upregulation of S100 family pro
teins could serve as an additional genetic biomarker for HAND. 

Another contributor to brain inflammation could be the downre
gulation of the ABCA1 transporter and TREM2 receptor that oc
curs in microglia following HIV infection. ABCA1 transports 
cholesterol out of cells for assembly into high-density lipoproteins 
(69–71). ABCA1 and APOE deficiency promotes inflammation in 
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macrophages (43, 72), suggesting that intracellular accumulation 
of cholesterol likely triggers an inflammatory response. TREM2 is 
essential for maintaining microglial metabolic fitness. TREM2 defi
ciency enhances inflammation and impairs phagocytosis (42).

However, while microglia appear to form the principal target for 
HIV infection, other organoid cells beyond microglia develop signa
tures of inflammation following HIV infection. Increased expression 
of CCL2 and CXCL10 and several S100 family members (notably S100 
A8/A9) is observed in neurons, mature ChP cells, in infected ChP or
ganoids. Self-sustaining and amplifying cycles of inflammation ex
tending beyond the infected cells may also help explain why 
ART is not entirely effective in preventing HAND. Of note, IL32, a 
proinflammatory cytokine that induces IL-6, IL-1β, and various che
mokines is significantly elevated across multiple cell types during 
HIV infection. IL32 is a robust biomarker of control failure in 
HIV-infected slow progressors, and of persistent inflammation in 
virologically suppressed HIV-infected individuals (73, 74). Our study 
also identifies other elevated genes including SAA1/2, ICAM1, SOD2, 
and LCN2 that are clearly linked to brain injury (46, 47, 50, 75, 76). In 
this amplifying inflammatory microenvironment, bystander neu
rons are likely unable to prevent dysfunctional intracellular events 
that ultimately culminates with neuronal apoptosis.

In summary, we propose that infected microglia are respon
sible for triggering an inflamed and toxic microenvironment 

that ultimately leads to neuronal cell dysfunction and death 
(Fig. 9). According to this model, viral infection principally oc
curs within microglia and initiates an inflammatory response 
that is propagated to other cells within the organoid including 
mature and immature ChP cells, as well as the surrounding 
stromal cells and NPCs. This inflammatory response centrally 
involves HIV-associated increases in the expression of S100 
calcium-binding proteins, IFN, and various cytokines/chemo
kines coupled with downregulation of genes involved in choles
terol efflux (ABCA1and TREM2). All these events promote and 
amplify the inflammatory response allowing spread to bystand
er cells importantly including neurons. Derangements in neur
onal metabolism and decreased neurotransmitter transport 
combine to promote neuronal cell dysfunction and death. 
We believe these organoid models represent a highly useful ex
perimental platform to explore in even greater depth the patho
genetic mechanisms underlying HAND development. Our 
findings suggest that the use of anti-inflammatory drugs could 
be a promising option for treating individuals with HAND. 
Additionally, this platform could be employed to assess other 
strategies beyond the use of anti-inflammatory drugs, to miti
gate the low levels of neuroinflammation that likely drive the 
mild cases of HAND observed in some individuals on long-term 
ART.
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Materials and methods
Viruses and cells
HIV ADA (NIH AIDS Reagent Program) was used for infection of 
the human brain organoid. Infections were performed in a biosaf
ety level 3 (BSL3) laboratory. Viral titers were determined by p24 
ELISA.

iPSC maintenance
Many of the Materials and Methods involving preparation of the 
brain organoids and their analysis have been described in our pri
or publication and are repeated in part or whole here (77). 
Wild-type WTC11 iPSC and microglia-iPSC (32) (MG-iPSC) were 
cultured in mTeSR plus (Stemcell Technologies) on Matrigel 
(8 μg/mL, Corning)-coated cell culture plates at 37°C, 5% CO2. 
Cells were passaged every 4–5 days using ReLeSR (Stemcell 
Technologies) and treated with Rock Inhibitor Y-27632 
(SelleckChem) for 24 h after each passage.

Brain organoid differentiation
Cerebral organoids were formed with the commercial STEMdiff™ 
cerebral organoid kit following manufacturer’s instructions 
(Stemcell Technologies) (77). Single-cell suspensions of human 
iPSC colonies were prepared by addition of a gentle cell dissoci
ation reagent (Stemcell Technologies). Around 9,000 cells (2,500 
MG + 7,500 WTC11) were seeded into each well of an ultra-low at
tachment V-bottom 96 well plate to allow embryoid bodies to form 
in the presence of 20 uM Y27632. Subsequently, 100 μL of EB me
dium containing 2 μg/mL of doxycycline was added to each well 

on days 2 and 4 without disturbing the EBs. EBs were cultured 
for an additional 3 days after being relocated to 24-well low- 
attachment plates containing neural induction medium on day 
5. The EBs were then suspended in 15 μL of Matrigel and cultured 
in neural expansion medium for an additional 3 days in 6-well 
low-attachment plates to allow organoid formation to continue. 
Finally, the organoids were cultured in neural culture medium 
and placed on an orbital shaker for further development.

Choroid plexus organoids were generated according to a previ
ously published protocol briefly described below (34). In total, ap
proximately 8,000 cells (4,000 MG + 4,000 WTC) were seeded into 
each well of a V-bottom ultra-low-attachment 96-well plate in 
EB formation media (DMEM/F12, 1% Glutamax supplement (vol/ 
vol), 1% MEM-NEAA, 3% ES-quality FBS, 20% KOSR, 0.1 mM 2-mer
captoethanol, and 4 ng/mL bFGF) supplemented with 20 μM 
Y27632. Without disrupting the EBs, 100  μL EB medium contain
ing 2 µg/mL of doxycycline were added to each well on day 2 
and day 4. On day 6, EBs were transferred to 24-well low- 
attachment plates in neural induction medium (DMEM/F-12, 
1 mM GlutaMAX, 0.1 mM MEM-NEAA, 1% penicillin/streptomy
cin, 1% N2 supplement [Gibco], and 0.1 μg/mL heparin) for another 
6 days. EBs were further embedded in 15 μL of Matrigel and cul
tured in neural expansion medium (1:1 ratio of neurobasal me
dium [Gibco] and DMEM/F-12, 1% B27 supplement without 
vitamin A [Gibco], 1% penicillin/streptomycin, 0.5% N2 supple
ment, 0.05 mM MEM-NEAA, and 0.05 mM 2-mercaptoethanol 
and 2.5 μg/mL insulin) in 6-well low-attachment plates for 4 
days to permit organoid formation. Neural culture medium (1:1 
ratio of DMEM/F-12 and neurobasal medium (Gibco), 1% B27 sup
plement with vitamin A [Gibco], 1% penicillin/streptomycin, 0.5% 
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N2 supplement, 0.05 mM MEM-NEAA, 0.05 mM 2-mercaptoetha
nol, and 2.5 μg/mL insulin) was subsequently used for growing 
the organoids on an orbital shaker.

Immunocytochemistry
Brain organoids were fixed overnight at 4°C in 4% paraformalde
hyde, followed by three washes with phosphate-buffered saline 
(PBS) (77). Post-fixation, the organoids were dehydrated in 30% 
sucrose-PBS solution at 4°C. Subsequently, the organoids were 
embedded in optical cutting temperature (OCT) compound 
(VWR) and frozen using dry ice. The frozen tissue was sectioned 
into 10  μm slices using a cryostat and placed on ultra-frosted 
glass microscope slides. These sections were stored at −80°C until 
further use. For permeabilization, the sections were treated with 
0.25% Triton X-100 and then blocked using a PBS containing 5% 
normal goat serum and 2% BSA for 2 h at room temperature. 
Sections were incubated overnight at 4°C with primary antibodies 
diluted in blocking buffer. The primary antibodies used in this 
study and their respective dilutions were: MAP2 (1:1000), TUJ1 
(1:1000), NESTIN (1:1000), IBA1 (1:1000), GFAP (1:1000), and HIV 
core antibody (1:100). After washing three times with PBS, the 
samples were incubated with fluorescently labeled secondary 
antibodies (Alexa Fluor 647, 568, and 488 conjugates, Invitrogen, 
diluted 1:500) for 1 h at room temperature. Following another 
three washes with PBS, glass coverslips were mounted on the 
samples. Fluorescence signals were captured using an Olympus 
FV3000 confocal microscope and analyzed using ImageJ software.

RT-qPCR
Brain organoids were lysed using Qiagen buffer RLT (QIAGEN) 
containing 1% β-mercaptoethanol (Bio-Rad) (77). Total RNA was 
extracted using the RNeasy Micro Kit plus (QIAGEN). After elu
tion, concentration and purity of the RNAs were assessed using 
a NanoDrop 2000c spectrophotometer (Thermo Fisher 
Scientific). RNA samples (0.2 to 1 μg) were reverse transcribed 
with the iScript™ cDNA synthesis kit from Bio-Rad. Real-time 
PCR was conducted using iTaq™ universal SYBR® Green 
Supermix (Bio-Rad) together with gene-specific primers (see 
Table S1). The PCR reactions were carried out using a Bio-Rad 
CFX connect qPCR system under the following conditions: initial 
denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 
15 s and 60°C for 1 min. The relative gene expression levels were 
normalized to the GAPDH control and were calculated following 
the formula: 2 (ΔCT of gene−ΔCT of GAPDH).

Organoid dissociation for single-cell 
RNA-sequencing
In brief, 8–10 organoids per condition (mock and HIV infection) 
were washed twice with ion-free DPBS. A single-cell suspension 
was prepared using the neural dissociation kit (Miltenyi Biotec) 
and the gentle MACS™ dissociator following the manufacturer’s 
protocol. Microglia were isolated using CD11b magnetic microbe
ads (Miltenyi Biotec). The cells were then resuspended in 0.04% 
BSA in PBS. Cell viability and cell numbers were assessed before 
being subjected to the 10× RNA-sequencing protocol.

Single-cell RNA-sequencing
For each condition, we loaded two single-cell suspensions onto a 
Chromium Next GEM Chip G, targeting an output of 5,000 to 
10,000 cells per channel. This chip was then placed in a 
Chromium Controller v3.1 (10× Genomics) to generate single-cell 
GEMs and barcodes. Using the Single-cell 3′ Gel Bead and Library 

v3.1 kit (10× Genomics) in a BSL3 lab, we carried out GEM forma
tion, barcoding, cDNA amplification, and library creation across 
the six channels. Both the amplified cDNA and final libraries 
underwent quality assessment on a Bioanalyzer before being se
quenced on an Illumina NovaSeq 6000 platform. Any cells exhib
iting more than 30% mitochondrial reads were excluded from 
further analysis. Data analysis was performed using BBrowser 3, 
and the raw datasets are accessible at the Gene Expression 
Omnibus under the accession code GSE262349.

Statistical analyses
All data are presented as mean ± SEM. Statistical analyses for the 
qPCR and ELISA experiments were conducted using GraphPad 
Prism 9 software, incorporating one-way ANOVA.
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